CN208765878U - A kind of condenser type pliable pressure sensor - Google Patents

A kind of condenser type pliable pressure sensor Download PDF

Info

Publication number
CN208765878U
CN208765878U CN201821589532.3U CN201821589532U CN208765878U CN 208765878 U CN208765878 U CN 208765878U CN 201821589532 U CN201821589532 U CN 201821589532U CN 208765878 U CN208765878 U CN 208765878U
Authority
CN
China
Prior art keywords
pressure sensor
electrode
condenser type
pliable pressure
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201821589532.3U
Other languages
Chinese (zh)
Inventor
张旻
李萌萌
王旭东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Graduate School Tsinghua University
Original Assignee
Shenzhen Graduate School Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Graduate School Tsinghua University filed Critical Shenzhen Graduate School Tsinghua University
Priority to CN201821589532.3U priority Critical patent/CN208765878U/en
Application granted granted Critical
Publication of CN208765878U publication Critical patent/CN208765878U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

A kind of condenser type pliable pressure sensor, which includes polymer elastomer electrode, insulating layer of thin-film and ITO electrode;The polymer elastomer electrode includes conductive film, polymer elastomer and electrode substrate, the polymer elastomer includes the microstructured layers with micro-structure array of protrusions being formed in the electrode substrate, and the conductive film is covered on the surface of the microstructured layers;The insulating layer of thin-film is placed between the polymer elastomer electrode and the ITO electrode, and is contacted by the conductive film with the top of the micro-structure protrusion of the microstructured layers.The utility model provides the good condenser type pliable pressure sensor of a kind of high sensitivity, device stability.

Description

A kind of condenser type pliable pressure sensor
Technical field
The utility model relates to pressure sensor technique field, in particular to a kind of condenser type pliable pressure sensor.
Background technique
Flexible electronic was once chose as " one of big scientific and technological achievement in the world ten " as emerging technology areas.Industry 4.0 with Under 2025 epoch of made in China, all things on earth interconnection, the expectation of the range, precision, scene, stability and performance parameter of perception information It is gradually increased, traditional silicon-based electronic devices are difficult to satisfy social needs.Furthermore the mankind and other biological sheet are as flexible body, more It is suitble to one of the element of flexible device and flexible electronic driving.So-called flexible electronic, i.e., by organic/inorganic thin film electronic Device fabrication is manufactured in flexible plastic substrate or metallic film/glass substrate electronic technology.In stretching appropriate, extend, certainly By can still work normally the accurate measurement realized to information under bending even folded state.Flexible electronic technology in numerous areas, Such as flexible sensing, Flexible Displays and illumination, medical treatment & health, wearable device, human-computer interaction, energy storage field have extensively Application.
Pressure sensor can be divided into condenser type, pressure resistance type and piezoelectric type etc. according to its working principle.Capacitive pressure sensing Device structure is simple, high resolution, and speed-adaptive is fast under the rugged environments such as high temperature, radiation.It is not only applicable to displacement, vibration The measurement of some mechanical-physical amounts such as dynamic, angular speed, acceleration, and be also widely used for pressure, differential pressure, liquid pressure, The measurement of the hot engineering parameter such as the content of ingredient.But currently, capacitance pressure transducer, remains some problems, tradition pressure Force snesor can not be bent or in a flexed condition according sensitivity it is lower, it is at high cost etc..
Utility model content
The main purpose of the utility model is to overcome the deficiencies in the prior art, provide it is a kind of with high sensitivity, The good condenser type pliable pressure sensor of device stability.
To achieve the above object, the utility model uses following technical scheme:
A kind of condenser type pliable pressure sensor, including polymer elastomer electrode, insulating layer of thin-film and ITO electrode; The polymer elastomer electrode includes conductive film, polymer elastomer and electrode substrate, and the polymer elastomer includes The microstructured layers with micro-structure array of protrusions being formed in the electrode substrate, the conductive film are covered on micro- knot The surface of structure layer;The insulating layer of thin-film is placed between the polymer elastomer electrode and the ITO electrode, and by described Conductive film is contacted with the top of the micro-structure protrusion of the microstructured layers.
Further:
The micro-structure protrusion includes at least one of taper, truncated cone-shaped, truncated cone-shaped and hemispherical.
The taper includes conical or pyramid, described truncated cone-shaped including frustroconical or truncated pyramid shape, institute Taper or the truncated cone-shaped taper are stated between 30 ° -90 °.
The bed-plate dimension of the micro-structure protrusion is 10-60 μm of diameter or bottom edge side length is 10-60 μm.
The spacing of the micro-structure protrusion is 10-120 μm.
The polymer elastomer material is PDMS, TPU, PET, silicon rubber or polyurethane rubber.
The material of the conductive film is gold, silver, copper, carbon nanotube or silver nanowires.
The film thickness of the conductive film is 60-100nm.
The polymer elastomer electrode with a thickness of 6-100 μm.
The film thickness of the insulating layer of thin-film is 500nm-2 μm.
The beneficial effects of the utility model include:
The condenser type pliable pressure sensor of the utility model has polymer elastomer electrode, and polymer elastomer includes The microstructured layers with micro-structure array of protrusions being formed in electrode substrate, conductive film are covered on the surface of microstructured layers, Insulating layer of thin-film is placed between polymer elastomer electrode and ITO electrode, and passes through the micro-structure of conductive film and microstructured layers The top contact of protrusion, since polymer elastomer electrode includes the microstructured layers with micro-structure array of protrusions, can perceive Extremely small pressure change increases the sensitivity of pressure sensor.Specifically, by the utility model polymer elastomer The capacitance pressure transducer, that electrode is formed, when the effect by ambient pressure, the micro-structure of polymer elastomer electrode is sent out Raw deformation, causes the distance between polymer elastomer electrode and ITO electrode to change, i.e. the electricity of capacitance pressure transducer, Capacitance changes.After applying voltage to two electrodes, the variation of capacitance is converted into the variation of electric signal, to perceive the external world The variation of pressure.Ambient pressure signal is converted electric signal by the pressure sensor of the utility model, has sensitivity high, device The advantages that part stability is good, and flexibility is good, is easy to array, micromation.
Detailed description of the invention
Fig. 1 is the structural schematic diagram of the capacitance pressure transducer, of the utility model embodiment;
Fig. 2 is the diagrammatic cross-section of the capacitance pressure transducer, of the utility model embodiment;
Fig. 3 is the microstructured layers schematic diagram of the polymer elastomer electrode in the utility model embodiment;
Fig. 4 is the diagrammatic cross-section of the microstructured layers of the polymer elastomer electrode in the utility model embodiment;
Fig. 5 is the flow diagram of the production method of the capacitance pressure transducer, of the utility model embodiment;
Fig. 6 is the test result figure of the capacitance pressure transducer, of the utility model embodiment.
Specific embodiment
It elaborates below to the embodiments of the present invention.It is emphasized that following the description is only example Property, rather than in order to limit the scope of the utility model and its application.
Refering to fig. 1 to Fig. 4, in one embodiment, a kind of condenser type pliable pressure sensor, including ITO electrode plate 1, Insulating layer of thin-film 2 and polymer elastomer electrode 3;The polymer elastomer electrode 3 includes conductive film 31, polymer bullet Property body 32 and electrode substrate 33, the polymer elastomer 32 includes being formed in the electrode substrate 33 to have micro-structure convex The microstructured layers of array are played, the conductive film 31 is coated uniformly on the surface of the microstructured layers;The insulating layer of thin-film 2 is set Between the polymer elastomer electrode 3 and the ITO electrode plate, and pass through the conductive film 31 and the microstructured layers Micro-structure protrusion top contact.ITO electrode plate 1 may include ITO11 and ITO electrode substrate material 12.
In some preferred embodiments, the micro-structure protrusion includes in taper, truncated cone-shaped, truncated cone-shaped and hemispherical At least one.
In a further preferred embodiment, the taper include cone or pyramid (such as pyramid), described section Addendum cone shape includes frustroconical or truncated pyramid shape (such as truncated pyramid shape), the taper or the truncated cone-shaped taper Between 30 ° -90 °.In various embodiments, insulating layer of thin-film 2 is contacted with the pinnacle of micro-structure protrusion or truncation.
In a preferred embodiment, the bed-plate dimension of the micro-structure protrusion is 10-60 μm of diameter or bottom edge side length is 10- 60μm。
In a preferred embodiment, the spacing of the micro-structure protrusion is 10-120 μm.
In various embodiments, 32 material of polymer elastomer is PDMS, TPU, PET, silicon rubber or polyurethane Rubber.
In various embodiments, 31 material of conductive film can be gold, silver, copper, carbon nanotube, silver nanowires Deng.Preferably, the film thickness of the conductive film 31 is 60-100nm.
In a preferred embodiment, the polymer elastomer electrode 3 with a thickness of 6-100 μm.
In a preferred embodiment, the film thickness of the insulating layer of thin-film 2 is 500nm-2 μm.
For example, in a particular embodiment, the shape of micro-structure protrusion can be pyrometric cone, polygon pyramid, circular cone, rib Platform, rotary table etc., when micro-structure is taper or is truncated cone-shaped, for range of taper between 30 °~90 °, bottom edge side length is 10-60 μ m.Convex shape in micro structure array can be one kind, be also possible to it is a variety of, certainly, for the ease of facilitate processing, it is preferably micro- The shape of protrusion in array of structures is a kind of.The cell spacing of micro structure array is 10-120 μm.The conductive film film thickness For 60-100nm.The polymer elastomer electrode with a thickness of 6-100 μm, more preferably with a thickness of 10-50 μm.The polymerization Object elastomer is PDMS, TPU, PET, silicon rubber or polyurethane rubber, preferably PDMS.Preferably, the conductive film material For gold, silver, copper, carbon nanotube, silver nanowires etc., the film thickness of the conductive film is 60-100nm.The polymer elastomer Electrode with a thickness of 6-100 μm.Preferably, the material of the insulating layer of thin-film is Parylene, silica etc., the insulating layer The film thickness of film is 500nm-2 μm, specifically, is coated using atomic layer deposition or chemical vapor deposition process, growth Thickness of insulating layer is consistent.
As depicted in figs. 1 and 2, capacitance pressure transducer, includes ITO electrode plate 1, insulating layer of thin-film 2 and polymer elasticity Body electrode 3.At least one micro-structure in the micro structure array of polymer elastomer electrode 3 is contacted with insulating layer of thin-film 2, ITO Electrode plate 1, insulating layer of thin-film 2 and polymer elastomer electrode 3 are mutually bonded.Wherein, ITO electrode plate 1 includes ITO 11 and ITO Electrode substrate material 12.Insulating layer of thin-film 2 is Parylene C, and Parylene C is coated uniformly on ITO electrode by vacuum vapor deposition Plate surface.Polymer elastomer electrode 3 includes Ti/Au metallic film, micro structure array and electrode substrate material.ITO electrode lining The material of bottom and polymer elastomer electrode substrate can choose PET, PMMA etc..
In this example, the film thickness of ITO conductive film is 200nm, and substrate material selects PET material, with a thickness of 50 μm.
Refering to Fig. 5, a kind of production method for the capacitance pressure transducer, making aforementioned any embodiment, including following step It is rapid:
The polymerization that one side has micro-structure array of protrusions is produced on using the silicon mould with micro-structure array of protrusions template Object elastomer;
The another side of the electrode substrate and the polymer elastomer is subjected to lamination bonding, by the polymer after bonding Elastomer is stripped down from silicon mould;
Metal electrode is plated on one side with the micro-structure array of protrusions in the polymer elastomer, forms polymerization Object elastomer electrode.
Insulating layer of thin-film coating is carried out in ITO electrode and is packaged with the polymer elastomer electrode.
As shown in Figure 5, it is preferable that the manufacturing process of the capacitance pressure transducer, the following steps are included:
S1, standard photolithography process is carried out to silicon wafer using SU-8 glue, this example is using 100 crystal orientation silicon wafers.
S2, it is performed etching using BOE, BOE solution is configured that 80g NH4F, 20mL 49%HF solution, 120mL H2O, etch rate 1000A/min.
S3, silicon mould is made using the wet etching technique of silicon, process silicon etching solution is configured to be divided into: 70g KOH and 190mL After the above two are completely dissolved, 40mL IPA, in 80 DEG C of water-baths, etch rate 8000A/min is added in H2O.
S4, this micro-structure silicon mould is carried out silanization treatment surface, to use 1H, 1H, 2H, 2H- perfluoro decyl three in this example Chlorosilane handles 3h at 120 DEG C and obtains hydrophobic surface.
S5, vacuum spin coating PDMS (polydimethylsiloxane, the polydimethylsiloxanes on the silicon mould made Alkane), and 3h is toasted under 80 DEG C of environment, the quality proportioning 10:1 of PDMS and curing agent, vacuum degree -0.1MPa, with shape in this example At a part of polymer elastomer electrode;Fig. 4 be pressure sensitive layer diagrammatic cross-section, array protrusion between spacing a1 with The thickness a3 of microstructure height a2 and pressure sensitive layer depends on the detection range and testing requirements of pressure sensor, in preference In, a1 is 30 μm, and a2 is 15 μm, and a3 is 25 μm.
S6, lamination bonding, carry out ozone activation processing (oxygen for the face to be bonded of PET film and polymer elastomer electrode Surface Treatment with Plasma, 90W, 30s);Polymer elastomer electrode after bonding is stripped down from silicon mould.
S7, evaporation metal electrode use electron beam evaporation plating conductive film on polymer elastomer electrode microstructure surface, first 10nm Ti is deposited as adhesion layer in PDMS micro-structure surface, then 60nm Au is deposited as conductive layer.
S8, in ITO electrode using vacuum vapor deposition technique complete 2 μm of Parylene C coating and be bonded after polymerization Object elastomer electrode is packaged.
Fig. 6 show the test result of above-mentioned pressure sensor, and in 0-40Pa, transducer sensitivity reaches 24.21kPa- 1, in 40-130Pa, transducer sensitivity reaches 1.72kPa-1.
The above content is specific/preferred embodiment further detailed description of the utility model is combined, no It can assert that the specific implementation of the utility model is only limited to these instructions.For the common skill of the utility model technical field For art personnel, without departing from the concept of the premise utility, the embodiment that these have been described can also be made Some replacements or modifications, and these substitutions or variant all shall be regarded as belonging to the protection scope of the utility model.

Claims (10)

1. a kind of condenser type pliable pressure sensor, which is characterized in that including polymer elastomer electrode, insulating layer of thin-film and ITO electrode;The polymer elastomer electrode includes conductive film, polymer elastomer and electrode substrate, the polymer bullet Property body includes the microstructured layers with micro-structure array of protrusions being formed in the electrode substrate, and the conductive film is covered on The surface of the microstructured layers;The insulating layer of thin-film is placed between the polymer elastomer electrode and the ITO electrode, and It is contacted by the conductive film with the top of the micro-structure protrusion of the microstructured layers.
2. condenser type pliable pressure sensor as described in claim 1, which is characterized in that the micro-structure protrusion includes cone At least one of shape, truncated cone-shaped, truncated cone-shaped and hemispherical.
3. condenser type pliable pressure sensor as claimed in claim 2, which is characterized in that the taper includes cone or rib Taper, described truncated cone-shaped including frustroconical or truncated pyramid shape, the taper or the truncated cone-shaped taper exist Between 30 ° -90 °.
4. the condenser type pliable pressure sensor as described in claim 2 to 3 is any, which is characterized in that the micro-structure protrusion Bed-plate dimension be 10-60 μm of diameter or bottom edge side length is 10-60 μm.
5. the condenser type pliable pressure sensor as described in claims 1 to 3 is any, which is characterized in that the micro-structure protrusion Spacing be 10-120 μm.
6. the condenser type pliable pressure sensor as described in claims 1 to 3 is any, which is characterized in that the polymer elasticity Body material is PDMS, TPU, PET, silicon rubber or polyurethane rubber.
7. the condenser type pliable pressure sensor as described in claims 1 to 3 is any, which is characterized in that the conductive film Film thickness is 60-100nm.
8. the condenser type pliable pressure sensor as described in claims 1 to 3 is any, which is characterized in that the conductive film Material is gold, silver, copper, carbon nanotube or silver nanowires.
9. the condenser type pliable pressure sensor as described in claims 1 to 3 is any, which is characterized in that the polymer elasticity Body electrode with a thickness of 6-100 μm.
10. the condenser type pliable pressure sensor as described in claims 1 to 3 is any, which is characterized in that the insulating layer of thin-film Film thickness be 500nm-2 μm.
CN201821589532.3U 2018-09-28 2018-09-28 A kind of condenser type pliable pressure sensor Active CN208765878U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201821589532.3U CN208765878U (en) 2018-09-28 2018-09-28 A kind of condenser type pliable pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201821589532.3U CN208765878U (en) 2018-09-28 2018-09-28 A kind of condenser type pliable pressure sensor

Publications (1)

Publication Number Publication Date
CN208765878U true CN208765878U (en) 2019-04-19

Family

ID=66136272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201821589532.3U Active CN208765878U (en) 2018-09-28 2018-09-28 A kind of condenser type pliable pressure sensor

Country Status (1)

Country Link
CN (1) CN208765878U (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109115376A (en) * 2018-09-28 2019-01-01 清华大学深圳研究生院 A kind of condenser type pliable pressure sensor and preparation method thereof
CN110487168A (en) * 2019-08-29 2019-11-22 清华大学深圳研究生院 Bend in one direction sensitive sensor and preparation method thereof
CN110579225A (en) * 2019-09-11 2019-12-17 京东方科技集团股份有限公司 Planar capacitive sensor and manufacturing method thereof
CN112798156A (en) * 2019-11-13 2021-05-14 中国科学院微电子研究所 Nanowire pressure sensor and sensor array
CN113125065A (en) * 2021-03-30 2021-07-16 苏州大学 Flexible three-dimensional force sensor and preparation method thereof
CN113155327A (en) * 2021-03-30 2021-07-23 中国科学院深圳先进技术研究院 Bionic microarray flexible electrode, preparation method thereof and flexible pressure sensor
WO2021253278A1 (en) * 2020-06-17 2021-12-23 中国科学院深圳先进技术研究院 Touch sensor, manufacturing method, and intelligent device comprising touch sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109115376A (en) * 2018-09-28 2019-01-01 清华大学深圳研究生院 A kind of condenser type pliable pressure sensor and preparation method thereof
CN110487168A (en) * 2019-08-29 2019-11-22 清华大学深圳研究生院 Bend in one direction sensitive sensor and preparation method thereof
CN110487168B (en) * 2019-08-29 2024-03-01 清华大学深圳研究生院 Unidirectional bending sensitive sensor and preparation method thereof
CN110579225A (en) * 2019-09-11 2019-12-17 京东方科技集团股份有限公司 Planar capacitive sensor and manufacturing method thereof
CN110579225B (en) * 2019-09-11 2022-02-25 京东方科技集团股份有限公司 Planar capacitive sensor and manufacturing method thereof
CN112798156A (en) * 2019-11-13 2021-05-14 中国科学院微电子研究所 Nanowire pressure sensor and sensor array
WO2021253278A1 (en) * 2020-06-17 2021-12-23 中国科学院深圳先进技术研究院 Touch sensor, manufacturing method, and intelligent device comprising touch sensor
CN113125065A (en) * 2021-03-30 2021-07-16 苏州大学 Flexible three-dimensional force sensor and preparation method thereof
CN113155327A (en) * 2021-03-30 2021-07-23 中国科学院深圳先进技术研究院 Bionic microarray flexible electrode, preparation method thereof and flexible pressure sensor

Similar Documents

Publication Publication Date Title
CN109115376A (en) A kind of condenser type pliable pressure sensor and preparation method thereof
CN208765878U (en) A kind of condenser type pliable pressure sensor
Han et al. Ultralow-cost, highly sensitive, and flexible pressure sensors based on carbon black and airlaid paper for wearable electronics
Cho et al. Micropatterned pyramidal ionic gels for sensing broad-range pressures with high sensitivity
CN206740283U (en) Pressure sensitive layer, piezoresistive pressure sensor and pressure drag type pressure sensor array
Oh et al. Pressure insensitive strain sensor with facile solution-based process for tactile sensing applications
Chen et al. Acid-interface engineering of carbon nanotube/elastomers with enhanced sensitivity for stretchable strain sensors
CN106908176B (en) Multi-phase dielectric layer capacitive pressure sensor with micro-structure and manufacturing method thereof
Park et al. Photolithography-based patterning of liquid metal interconnects for monolithically integrated stretchable circuits
Mao et al. Robust and wearable pressure sensor assembled from AgNW-coated PDMS micropillar sheets with high sensitivity and wide detection range
Yang et al. Multifunctional soft robotic finger based on a nanoscale flexible temperature–pressure tactile sensor for material recognition
Lin et al. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging
US10295401B2 (en) Flexible conductive diaphragm, flexible vibration sensor and preparation method and application thereof
CN106932128A (en) For the pressure sensitive layer and piezoresistive pressure sensor of piezoresistive pressure sensor
Tsai et al. Multilayered Ag NP–PEDOT–paper composite device for human–machine interfacing
CN110174195A (en) A kind of Bionic flexible pressure sensor
Liu et al. Ultrasonically patterning silver nanowire–acrylate composite for highly sensitive and transparent strain sensors based on parallel cracks
Wang et al. A highly flexible tactile sensor with an interlocked truncated sawtooth structure based on stretchable graphene/silver/silicone rubber composites
CN105758562A (en) Flexible pressure sensor and preparation method thereof
Thouti et al. Flexible capacitive pressure sensors using microdome like structured polydimethylsiloxane dielectric layers
CN106092384A (en) Capacitance type pressure sensor and preparation method thereof
CN110701992B (en) Method for manufacturing capacitive strain sensor by taking sandpaper surface microstructure as template
Yao et al. Environment-resilient graphene vibrotactile sensitive sensors for machine intelligence
CN104505148A (en) Method for preparing flexible-substrate three-dimensional conformal graphene film
Hu et al. A flexible capacitive tactile sensor array with micro structure for robotic application

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant