CN208570784U - 一种热虹吸液流电池 - Google Patents

一种热虹吸液流电池 Download PDF

Info

Publication number
CN208570784U
CN208570784U CN201821192239.3U CN201821192239U CN208570784U CN 208570784 U CN208570784 U CN 208570784U CN 201821192239 U CN201821192239 U CN 201821192239U CN 208570784 U CN208570784 U CN 208570784U
Authority
CN
China
Prior art keywords
cathode
anode
positive
cold source
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201821192239.3U
Other languages
English (en)
Inventor
张海南
邵双全
田长青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN201821192239.3U priority Critical patent/CN208570784U/zh
Application granted granted Critical
Publication of CN208570784U publication Critical patent/CN208570784U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

本实用新型提出一种热虹吸液流电池,包括正极电解液罐、负极电解液灌、正极冷源、正极冷却管路、负极冷源、负极冷却管路、电池反应器;所述正极电解液罐、负极电解液罐均位于电池反应器的上方;所述正极冷却管路连接于正极冷源,正极冷却管路至少有部分位于所述正极电解液罐内,所述正极电解罐连接于所述正极反应腔;所述负极冷却管路连接于负极冷源,负极冷却管路至少有部分位于所述负极电解液罐内,所述负极电解液罐连接于所述负极反应腔。本实用新型提出的热虹吸液流电池,无需电解液泵,提高了运行可靠性。同时具有自我调节功能,电化学反应散热较快时热虹吸循环流动加快,散热加快,避免了复杂的泵功率调节和温度控制逻辑。

Description

一种热虹吸液流电池
技术领域
本实用新型属于储能技术领域,更具体地涉及一种液流电池。
背景技术
储能技术作为新能源产业发展和应用的关键技术,具有广阔的发展应用前景。液流电池作为一种新型的储能技术,具有容量大、效率高、响应速度快、安全性好等优势,是具有大规模应用潜力的储能技术之一。液流电池单电池由正极、负极和离子选择性膜组成,电池中作为氧化还原电对的高、低电位两种活性物质分别溶解在正负极储液罐中,通过泵流入电池中,在正极或负极上发生氧化还原反应。正负极溶液由离子选择性隔膜隔开,阴离子或阳离子通过隔膜导电。
目前的液流电池大多依靠电解液泵供液,并采用风冷进行冷却。采用泵驱动的液流电池由于电解液的腐蚀性等问题,具有可靠性方面的隐患。为此,一些无需电解液泵的液流电池方案被提出。专利CN201210144560.5提出了一种依靠重力和惰性气体压力推动电极悬浮液循环流动的方法,但系统较为复杂且惰性气体容纳与控制系统成本较高。此外,传统的冷却控制需要设计较为复杂的控制逻辑,与液流电池的工作状态难以匹配。
实用新型内容
针对本领域现有技术存在的不足之处,本实用新型旨在提供一种热虹吸液流电池。
为实现本实用新型上述目的的技术方案为:
一种热虹吸液流电池,包括正极电解液罐、负极电解液灌、正极冷源、正极冷却管路、负极冷源、负极冷却管路、电池反应器;所述电池反应器包括用隔膜隔开的正极反应腔和负极反应腔;所述正极电解液罐、负极电解液罐均位于电池反应器的上方;
所述正极冷却管路连接于正极冷源,正极冷却管路至少有部分位于所述正极电解液罐内,所述正极电解罐连接于所述正极反应腔;
所述负极冷却管路连接于负极冷源,负极冷却管路至少有部分位于所述负极电解液罐内,所述负极电解液罐连接于所述负极反应腔。
进一步地,所述电池反应器还包括与所述正极反应腔连接的正极,及与所述负极反应腔连接的负极,正极、负极和负载模块相连构成电路。
其中,所述正极冷却管路和负极冷却管路内互相独立地充填有液态或两相冷却工质,所述冷却工质选自水、乙二醇溶液或两相制冷剂中的一种。
其中,所述正极冷源、负极冷源互相独立地选自采用人工制冷方法的冷水机组或自然冷源,所述采用人工制冷方法的冷水机组为蒸气压缩制冷机或吸收式制冷机;所述自然冷源为地表水,或为与地表水传热的换热器。
优选地,所述正极电解液罐、负极电解液罐互相独立地位于电池反应器的上方1米以上。
更优选地,所述的热虹吸液流电池,包括多个电池反应器,所述多个电池反应器并联。
应用所述的热虹吸液流电池的方法为,所述正极冷却管路用于冷却正极电解液罐中的正极电解液,正极电解液依靠热虹吸原理进行循环;所述负极冷却管路用于冷却负极电解液罐中的负极电解液,负极电解液依靠热虹吸原理进行循环。
其中,所述正极电解液和负极电解液中进行氧化还原反应的体系,可选自下组中的一组:全钒(VRFB)、Ti/Fe、Cr/Fe、Zn/Fe、多硫化钠/溴(PSB)、Cr/Mn体系,但不限于上述氧化还原体系。
其中,所述正极电解罐内的正极电解液被冷却至低于正极反应腔出口温度5℃以上,然后凭重力落入所述正极反应腔;所述负极电解罐内的负极电解液被冷却至低于负极反应腔出口温度5℃以上,然后凭重力落入所述负极反应腔。
本实用新型与现有技术相比,具有如下优点:
本实用新型提出的热虹吸液流电池,无需电解液泵,提高了运行可靠性。同时具有自我调节功能,电化学反应散热较快时热虹吸循环流动加快,散热加快,避免了复杂的泵功率调节和温度控制逻辑。
本实用新型提出的热虹吸液流电池可以利用工业已有冷源或自然界存在的江河湖海里的地表水,实现电解液的自动流动循环,提高了工作效率。
附图说明
图1是本实用新型热虹吸液流电池的结构示意图。
图中:
1、正极电解液罐;2、负极电解液罐;3、正极冷却管路;4、负极冷却管路;5、正极冷源;6、负极冷源;7、电池反应器;8、负载模块;9、正电极;10、负电极;11、正极反应腔;12、负极反应腔;13、隔膜。
具体实施方式
以下实施例用于说明本实用新型,但不应用来限制本实用新型的范围。
如无特别说明,实施例中使用的手段均为本领域常规的手段。
实施例1
图1是本实用新型的一个较佳实施例的热虹吸液流电池的结构图;如图1所示,该实施例的热虹吸液流电池包括正极电解液罐1、负极电解液灌2、正极冷却管路3、负极冷却管路4、正极冷源5、负极冷源6、电池反应器7和负载模块8。所属电极反应器包括正电极9、负电极10、正极反应腔11、负极反应腔12和隔膜13。隔膜13隔开的正极反应腔11和负极反应腔12;所述正极电解液罐、负极电解液罐均位于电池反应器的上方;
所述正极冷却管路3连接于正极冷源5,正极冷却管路有部分呈盘管状,位于所述正极电解液罐内,所述正极电解罐连接于所述正极反应腔;
所述负极冷却管路4连接于负极冷源6,负极冷却管路有部分呈盘管状,位于所述负极电解液罐内,所述负极电解液罐连接于所述负极反应腔。述正极反应腔连接正电极9,负极反应腔连接负电极10,正电极9、负电极10和负载模块13相连构成电路。所述正极冷却管路和负极冷却管路内均充填有冷却工质(42%乙二醇溶液)。所述正极冷源、负极冷源均为自然冷源,采用温度长期保持5-25℃的河水。
电池工作时,正极冷却管路3和负极冷却管路4所提供的冷量与电池反应器7的反应热共同造成电解液回路的温度差从而形成密度差,产生热虹吸现象,正负极电解液分别上升至正极电解液罐1和负极电解液罐2,被冷却后回流至电池反应器7。
本实施例中,所述正极电解液罐1、负极电解液罐2置于电池反应器5的上方1.5m。
电池运行时,正极电解罐内的正极电解液被冷却至低于正极反应腔出口温度5℃以上,然后凭重力落入所述正极反应腔;所述负极电解罐内的负极电解液被冷却至低于负极反应腔出口温度5℃以上,然后凭重力落入所述负极反应腔。
实施例2
本热虹吸液流电池包括正极电解液罐1、负极电解液灌2、正极冷却管路3、负极冷却管路4、正极冷源5、负极冷源6、电池反应器7和负载模块8。所属电极反应器包括正电极9、负电极10、正极反应腔11、负极反应腔12和隔膜13。隔膜13隔开的正极反应腔11和负极反应腔12;所述正极电解液罐、负极电解液罐均位于电池反应器的上方;
所述正极冷却管路3连接于正极冷源5,正极冷却管路有部分呈盘管状,位于所述正极电解液罐内,所述正极电解罐连接于所述正极反应腔;
所述负极冷却管路4连接于负极冷源6,负极冷却管路有部分呈盘管状,位于所述负极电解液罐内,所述负极电解液罐连接于所述负极反应腔。所述正极冷却管路和负极冷却管路内均充填有冷却工质(42%乙二醇溶液)。所述正极冷源、负极冷源均采用冷水机组,控制冷却工质温度在20±2℃。
正极反应腔连接正电极9,负极反应腔连接负电极10,正电极9、负电极10和负载模块13相连构成电路。
本实施例中,所述正极电解液罐1、负极电解液罐2置于电池反应器5的上方2m。
实施例3
本实施例的热虹吸液流电池,包括4个并联的电池反应器,所述多个电池反应器并联。4个电池反应器的正极反应腔连接于一个正极电解液罐,4个负极反应腔连接于一个负极电解液罐,正极电解液罐和负极电解液罐均位于电池反应器的上方。
其他设置同实施例1。
虽然,上文中已经本实用新型作了详尽的描述,但在本实用新型基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本实用新型精神的基础上所做的这些修改或改进,均属于本实用新型要求保护的范围。

Claims (6)

1.一种热虹吸液流电池,其特征在于,包括正极电解液罐、负极电解液灌、正极冷源、正极冷却管路、负极冷源、负极冷却管路、电池反应器;所述电池反应器包括用隔膜隔开的正极反应腔和负极反应腔;所述正极电解液罐、负极电解液罐均位于电池反应器的上方;
所述正极冷却管路连接于正极冷源,正极冷却管路至少有部分位于所述正极电解液罐内,所述正极电解罐连接于所述正极反应腔;
所述负极冷却管路连接于负极冷源,负极冷却管路至少有部分位于所述负极电解液罐内,所述负极电解液罐连接于所述负极反应腔。
2.根据权利要求1所述的热虹吸液流电池,其特征在于,所述电池反应器还包括与所述正极反应腔连接的正极,及与所述负极反应腔连接的负极,正极、负极和负载模块相连构成电路。
3.根据权利要求1所述的热虹吸液流电池,其特征在于,所述正极冷却管路和负极冷却管路内互相独立地充填有液态或两相冷却工质,所述冷却工质选自水、乙二醇溶液或两相制冷剂中的一种。
4.根据权利要求1所述的热虹吸液流电池,其特征在于,所述正极冷源、负极冷源互相独立地选自采用人工制冷方法的冷水机组或自然冷源,所述采用人工制冷方法的冷水机组为蒸气压缩制冷机或吸收式制冷机;所述自然冷源为地表水,或为与地表水传热的换热器。
5.根据权利要求1~4任一项所述的热虹吸液流电池,其特征在于,所述正极电解液罐、负极电解液罐互相独立地位于电池反应器的上方1米以上。
6.根据权利要求1~4任一项所述的热虹吸液流电池,其特征在于,包括多个电池反应器,所述多个电池反应器并联。
CN201821192239.3U 2018-07-25 2018-07-25 一种热虹吸液流电池 Active CN208570784U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201821192239.3U CN208570784U (zh) 2018-07-25 2018-07-25 一种热虹吸液流电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201821192239.3U CN208570784U (zh) 2018-07-25 2018-07-25 一种热虹吸液流电池

Publications (1)

Publication Number Publication Date
CN208570784U true CN208570784U (zh) 2019-03-01

Family

ID=65448104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201821192239.3U Active CN208570784U (zh) 2018-07-25 2018-07-25 一种热虹吸液流电池

Country Status (1)

Country Link
CN (1) CN208570784U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097606A (zh) * 2021-03-23 2021-07-09 深圳大学 一种液流金属空气电池系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097606A (zh) * 2021-03-23 2021-07-09 深圳大学 一种液流金属空气电池系统

Similar Documents

Publication Publication Date Title
JP6231202B2 (ja) 全バナジウムレドックスフロー電池及びその運転方法
CN102055000B (zh) 氧化还原液流电池和使电池长时间持续运行的方法
JP7114815B2 (ja) 電力供給を継続できる開放型金属空気燃料電池システム
CN206282930U (zh) 一种氢储能系统中的热控制系统及应用
CN108172950B (zh) 一种自动配制电解液的金属空气电池系统及其运行方法
CN103882466B (zh) 一种中高压固体聚合物水电解装置
CN204577513U (zh) 一种利用地埋管进行全钒液流电池电解液温度控制的装置
WO2021139162A1 (zh) 季铵盐型蒽醌活性物质的应用以及有机水相盐穴电池
CN102306815A (zh) 液流电池系统
CN206282931U (zh) 一种氢储能系统中的热控制系统
CN108630960A (zh) 一种热虹吸液流电池及其应用
CN208570784U (zh) 一种热虹吸液流电池
CN108899564A (zh) 一种兆瓦级储能电站液流电池冷却系统
CN210296513U (zh) 液流电池换热系统
CN109841931A (zh) 一种氯镁燃料电池
CN108615961A (zh) 一种梯次互补电-热平衡储电充电系统及方法
CN206516704U (zh) 一种全钒液流电池电解液的恒温控制装置
CN112853387A (zh) 一种适用于电解法制备三氟化氮气体的换热装置及电解方法
CN112500438A (zh) 二茂铁-紫精双极性活性物质及其制备方法和应用
CN217361659U (zh) 一种燃料电池余热回收系统
CN114050358B (zh) 一种三腔室浓差铝空气电池系统
CN113314750B (zh) 一种联吡啶碘盐对称型双极性活性物质及在盐穴电池中的应用
CN220829990U (zh) 一种提高全钒液流电池运行效率的系统
CN117276614B (zh) 一种以双氧水为电子能量载体的储能系统
JP4264993B2 (ja) 再生型燃料電池設備

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant