CN208537410U - 一种单纤混合气体组分识别与浓度检测可同时传感装置 - Google Patents

一种单纤混合气体组分识别与浓度检测可同时传感装置 Download PDF

Info

Publication number
CN208537410U
CN208537410U CN201820798780.2U CN201820798780U CN208537410U CN 208537410 U CN208537410 U CN 208537410U CN 201820798780 U CN201820798780 U CN 201820798780U CN 208537410 U CN208537410 U CN 208537410U
Authority
CN
China
Prior art keywords
optical fiber
core
gas
fibre
core optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201820798780.2U
Other languages
English (en)
Inventor
张海伟
薛力芳
白扬博
杨晓苹
苗银萍
任广军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN201820798780.2U priority Critical patent/CN208537410U/zh
Application granted granted Critical
Publication of CN208537410U publication Critical patent/CN208537410U/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本实用新型公开了一种单纤混合气体组分识别与浓度检测可同时传感装置,包括:模场适配光纤结构和微处理多芯光纤两部分,利用微处理多芯光纤的纤芯的空间分布规律,通过模场适配光纤结构缩小光纤气体检测装置的体积,对多芯光纤的不同纤芯进行微结构处理,分别刻写中心波长与不同气体吸收峰相关的微结构光栅;在未被刻蚀的多芯光纤区域制作穿孔作为混合气体的气室,与模场适配光纤结构共同构成单纤气体组分识别与浓度检测装置。本实用新型降低了光纤混合气体浓度检测装置的复杂度,缩小系统体积,提高结构稳定性和系统的复用能力。

Description

一种单纤混合气体组分识别与浓度检测可同时传感装置
技术领域
本实用新型涉及光纤传感检测技术领域,具体是涉及一种单纤混合气体组分识别与浓度检测可同时传感装置。
背景技术
光纤气体传感由于具有抗电磁干扰能力强、可靠性高、便于组网远程检测等优势,而被广泛地应用于环境治理、化工生产、电力电气等行业对有毒、有害气体的检测。传统的光纤气体传感系统偏重于单一气体的浓度检测,而降低系统的重复利用率。相较于单一气体浓度检测,混合气体组分识别与浓度检测系统的设计可以有效地扩展系统的功能,降低光纤气体浓度检测系统的使用成本。
普通光纤光栅、Sagnac滤波器和密集波分复用器等光纤器件是常用的混合气体浓度检测系统的滤波装置。为实现混合气体更多组分的识别,需要大量地使用滤波器,从而增加系统的体积和结构复杂度。为有效地解决传统单模光纤传输容量的限制,多芯光纤以其支持不同纤芯间相互独立传输不同模式和结构设计灵活紧凑的特性受到越来越多的关注,极有可能成为下一代重要的传输介质,图1是日本藤仓公司生产的多芯光纤的横截面图。
多芯光纤独特的纤芯设计,相对于普通单模光纤,同等尺寸可以容纳更多的传输通道,通过有效的将选频器件刻蚀在多芯光纤的不同纤芯处,既可以极大地缩减光纤传感装置的体积,提高系统的结构稳定性,又可以实现混合气体的组分识别和浓度检测。随着超快激光和微纳加工技术的发展,通过对多芯光纤的微处理实现气室的设计,可以进一步简化光纤传感系统的结构,实现高集成度的单纤混合气体组分识别与浓度检测装置,促使多芯光纤在光纤传感领域得到更加广泛的应用。
相较于普通光纤传感器而言,多芯光纤传感器不仅可以有效地提高系统的复用能力,实现混合气体的检测,而且可以极大地缩小光纤器件的体积,具有结构简单、体积小等优点。同时,该光纤气体传感系统具有好的可移植性,对于提高混合气体光纤传感系统的性能、扩展光纤传感检测系统可覆盖气体的范围具有非常重要的意义。
实用新型内容
为了降低光纤混合气体浓度检测装置的复杂度,缩小系统体积,提高结构稳定性和系统的复用能力,本实用新型通过对多芯光纤进行微处理,提出了一种基于多芯光纤的单纤混合气体组分识别与浓度检测装置,详见下文描述:
一种单纤混合气体组分识别与浓度检测可同时传感装置,所述装置包括:模场适配光纤结构和微处理多芯光纤两部分,
所述模场适配光纤结构包括:依次连接的单模光纤、模场匹配区、以及多模光纤,
所述微处理多芯光纤设置在多模光纤内,包括:多芯光纤、方形穿孔以及通过超快激光对多芯光纤的不同纤芯刻写的若干个微结构光栅,每个微结构光栅的中心波长对应某一气体的吸收峰。
进一步地,宽光谱信号光通过模场适配光纤结构被多芯光纤分光,经多芯光纤不同纤芯传输的信号光与方形穿孔内的气体相互作用后再次被耦合进多芯光纤;
进入不同纤芯的信号光在各自纤芯内部的微结构光栅作用下发生反射;
反向传输的信号光再次与方形穿孔内的气体相互作用,携带气体组成成分和吸收强度信息后被耦合进多芯光纤之后经模场适配光纤后输出。
进一步地,单模光纤的纤芯/包层直径为10/125μm、多模光纤的纤芯/包层直径为105/125μm;
多芯光纤的纤芯/包层直径为10/125μm、芯间距为35.4μm、纤芯数量为7,对应有7个微结构光栅,带宽均为0.1nm;
该7个微结构光栅的中心波长分别对应水蒸气、臭氧、乙炔、一氧化氮、硫化氢、氨气、二氧化碳的吸收峰。
本实用新型提供的技术方案的有益效果是:
1、本实用新型采用多芯光纤作为传感器件,单纤结构可以有效地缩小气体传感装置的体积,降低系统的复杂度,提高装置的结构稳定性;
2、本实用新型既可以实现混合气体组分的识别,又可以达到气体浓度检测的目的,市场前景好,实现方式简单,具有良好的技术转化基础,有望被广泛地应用于诸如水蒸气、二氧化碳、一氧化碳、臭氧等大气环境气体成分的监测;
3、通过本实用新型设计的检测装置可以推动多芯光纤器件的推广,实现广泛的社会效益。
附图说明
图1为藤仓多芯光纤横截面的示意图;
图2为单纤混合气体组分识别与浓度检测装置的结构示意图;
图3为宽带光源光谱图和不同浓度混合气体对应的反射光谱示意图。
附图中,各部件代表的部件列表如下:
1:单模光纤; 2:模场匹配区;
3:多模光纤; 4:七芯光纤;
5:方孔; 61:第一微结构光栅;
62:第二微结构光栅; 63:第三微结构光栅;
64:第四微结构光栅; 65:第五微结构光栅;
66:第六微结构光栅; 67:第七微结构光栅。
具体实施方式
为使本实用新型的目的、技术方案和优点更加清楚,下面对本实用新型实施方式作进一步地详细描述。
实施例1
本实用新型实施例主要是利用多芯光纤的纤芯的空间分布规律,通过单纤结构有效地缩小光纤气体检测装置的体积。由于不同纤芯传输的信号光具有不同的波长,因此不需要多芯光纤耦合装置,也不受多芯光纤不同纤芯信号串扰问题的限制。本装置可以有效地实现混合气体检测,极大丰富气体传感器的性能。
首先对多芯光纤的不同纤芯进行微结构处理,分别刻写中心波长与不同气体吸收峰相关的微结构光栅,然后在未被刻蚀的多芯光纤区域制作方形穿孔作为混合气体的气室,与模场适配光纤共同构成本实用新型实施例提供的单纤气体组分识别与浓度检测装置。
其中,宽光谱信号光首先通过模场适配光纤被多芯光纤分光。经多芯光纤不同纤芯传输的信号光与方孔5内的气体相互作用后再次被耦合进多芯光纤。进入不同纤芯的信号光在各自纤芯内部的微结构光栅作用下发生反射。反向传输的信号光再次与方孔5内的气体相互作用,携带气体组成成分和吸收强度等信息后被耦合进多芯光纤之后经模场适配光纤从检测装置中输出。由于反射光的中心波长与气体吸收峰存在一一对应关系,因此根据反射峰强度有无变化实现混合气体组分的识别,而根据反射峰强度的变化量则可实现气体浓度的检测。
实施例2
下面结合具体的实施方式对实施例1中的方案作进一步介绍,详见下文描述:
如图2所示,本实用新型实施例提供的单纤混合气体组分识别与浓度检测同时传感装置主要包括:模场适配光纤结构和微处理多芯光纤两大部分。两者的有机结合实现本实用新型实施例提出的单纤混合气体组分识别与浓度检测装置。
其中,模场适配光纤结构包括:依次连接的纤芯/包层直径为10/125μm的单模光纤1、模场匹配区2、以及纤芯/包层直径为105/125μm的多模光纤3。单模光纤1与多模光纤3 通过拉锥熔接实现连接。
其中,在多模光纤3内设置有微处理多芯光纤,该微处理多芯光纤主要包括:纤芯/包层直径为10/125μm、芯间距为35.4μm、纤芯数量为7的多芯光纤4、方形穿孔5以及通过超快激光对多芯光纤4的不同纤芯刻写的第一微结构光栅61、第二微结构光栅62、第三微结构光栅63、第四微结构光栅64、第五微结构光栅65、第六微结构光栅66、第七微结构光栅67,其带宽均为0.1nm,中心波长依次为λ1=1899.71nm、λ2=1901.98nm、λ3=1911 nm、λ4=1918.38nm、λ5=1927.95nm、λ6=1942.54nm、λ7=1948.22nm,分别对应水蒸气、臭氧、乙炔、一氧化氮、硫化氢、氨气、二氧化碳等气体的吸收峰。
如图2所示,本实用新型实施例提供的单纤混合气体组分识别与浓度检测装置的工作过程是:
工作波段为1890-1950nm的宽带光源输出的信号光通过单模光纤1、模场匹配区2和多模光纤3到达多芯光纤4,经多芯光纤4的不同纤芯分光后与方形穿孔5内部的待测气体相互作用,然后再次耦合进多芯光纤4继续传输,通过不同的纤芯分别到达其内部对应的第一微结构光栅61、第二微结构光栅62、第三微结构光栅63、第四微结构光栅64、第五微结构光栅65、第六微结构光栅66、第七微结构光栅67。
经各个微结构光栅反射的信号光再次与方形穿孔5内部的待检测气体相互作用。反射的信号光携带气体组分和浓度信息后依次经过多芯光纤4、多模光纤3和模场匹配区2后经单模光纤1输出。
由于气体的吸收峰值是气体固有的物理特征,其与气体的类别具有一一对应的关系,因此如图3所示,对比宽带光源和反射光的光谱可以同时得到气体组成成分和对应浓度:通过分析反射光中心波长强度是否发生变化可以获得可检测气体的组成成分,实现组分的识别;通过分析反射光中心波长强度的变化量可以获得可检测气体的吸收强度,实现气体浓度的检测,从而实现混合气体组分与浓度检测的同时传感。
通过对多芯光纤4的微结构处理,可以有效地提高气体与信号光的作用强度,实验结果表明本实用新型实施例可将浓度为1%气体的吸收强度提高5倍以上,相应的灵敏度提高5倍。同时,上述微结构光栅的窄带特性可以用于区分吸收峰间隔大于0.05nm的多种气体,相对于波长线宽为亚纳米量级的信号光而言,混合气体组分识别的准确率可以有效地提高一倍。
本实用新型实施例对各器件的型号除做特殊说明的以外,其他器件的型号不做限制,只要能完成上述功能的器件均可。
本领域技术人员可以理解附图只是一个优选实施例的示意图,上述本实用新型实施例序号仅仅为了描述,不代表实施例的优劣。
以上所述仅为本实用新型的较佳实施例,并不用以限制本实用新型,凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (3)

1.一种单纤混合气体组分识别与浓度检测可同时传感装置,其特征在于,所述装置包括:模场适配光纤结构和微处理多芯光纤两部分,
所述模场适配光纤结构包括:依次连接的单模光纤、模场匹配区、以及多模光纤,
所述微处理多芯光纤设置在多模光纤内,包括:多芯光纤、方形穿孔以及通过超快激光对多芯光纤的不同纤芯刻写的若干个微结构光栅,每个微结构光栅的中心波长对应某一气体的吸收峰。
2.根据权利要求1所述的一种单纤混合气体组分识别与浓度检测可同时传感装置,其特征在于,
宽光谱信号光通过模场适配光纤结构被多芯光纤分光,经多芯光纤不同纤芯传输的信号光与方形穿孔内的气体相互作用后再次被耦合进多芯光纤;
进入不同纤芯的信号光在各自纤芯内部的微结构光栅作用下发生反射;
反向传输的信号光再次与方形穿孔内的气体相互作用,携带气体组成成分和吸收强度信息后被耦合进多芯光纤之后经模场适配光纤后输出。
3.根据权利要求1-2中任一权利要求所述的一种单纤混合气体组分识别与浓度检测可同时传感装置,其特征在于,
单模光纤的纤芯/包层直径为10/125μm、多模光纤的纤芯/包层直径为105/125μm;
多芯光纤的纤芯/包层直径为10/125μm、芯间距为35.4μm、纤芯数量为7,对应有7个微结构光栅,带宽均为0.1nm;
该7个微结构光栅的中心波长分别对应水蒸汽、臭氧、乙炔、一氧化氮、硫化氢、氨气、二氧化碳的吸收峰。
CN201820798780.2U 2018-05-25 2018-05-25 一种单纤混合气体组分识别与浓度检测可同时传感装置 Withdrawn - After Issue CN208537410U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820798780.2U CN208537410U (zh) 2018-05-25 2018-05-25 一种单纤混合气体组分识别与浓度检测可同时传感装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820798780.2U CN208537410U (zh) 2018-05-25 2018-05-25 一种单纤混合气体组分识别与浓度检测可同时传感装置

Publications (1)

Publication Number Publication Date
CN208537410U true CN208537410U (zh) 2019-02-22

Family

ID=65394524

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820798780.2U Withdrawn - After Issue CN208537410U (zh) 2018-05-25 2018-05-25 一种单纤混合气体组分识别与浓度检测可同时传感装置

Country Status (1)

Country Link
CN (1) CN208537410U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108956536A (zh) * 2018-05-25 2018-12-07 天津理工大学 一种单纤混合气体组分识别与浓度检测可同时传感装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108956536A (zh) * 2018-05-25 2018-12-07 天津理工大学 一种单纤混合气体组分识别与浓度检测可同时传感装置
CN108956536B (zh) * 2018-05-25 2023-09-08 天津理工大学 一种单纤混合气体组分识别与浓度检测可同时传感装置

Similar Documents

Publication Publication Date Title
Zhao et al. Highly sensitive airflow sensor based on Fabry–Perot interferometer and Vernier effect
CN106248247B (zh) 一种基于拉曼-布里渊分布式温度、应力双参量检测的传感装置
CN1940607B (zh) 纤维光学化学传感装置、系统和方法
CN101319878B (zh) 一种高精度大范围测量光纤长度的方法和设备
Tong et al. Relative humidity sensor based on small up-tapered photonic crystal fiber Mach–Zehnder interferometer
CN101819140B (zh) 气态单质汞浓度的连续监测装置和方法
CN105928469B (zh) 一种高灵敏可判别弯曲方向的无温度交叉灵敏的光纤曲率传感器
CN110726697A (zh) 基于锥形细芯光纤的马赫-曾德尔干涉仪光纤氨气传感器
CN110220868B (zh) 一种可同时测量氢气和甲烷的pcf-spr结构传感器
CN103528609A (zh) 复合干涉型的多参量光纤传感器
CN204718708U (zh) 一种基于球形和细芯光纤的温度和应变同时测量的传感器
CN105044033B (zh) 一种强度解调型光纤气体传感装置及其传感方法
CN208537410U (zh) 一种单纤混合气体组分识别与浓度检测可同时传感装置
CN113324570A (zh) 一种基于气球形光纤mzi的传感装置及气球形光纤mzi传感器制作方法
CN108507500B (zh) 扭曲光纤段的制备方法、光纤扭曲传感器及其测试装置
CN106932364A (zh) 宏弯曲错位拉锥型光纤液体折射率传感器
CN103983577B (zh) 打孔光子晶体光纤气室有源内腔气体检测方法与装置
CN100593688C (zh) 一种光纤布拉格光栅传感器在线测量微生物膜厚度的方法
CN114813638A (zh) 一种基于光纤端面集成超表面的二氧化碳传感结构及系统
CN101319879A (zh) 一种快速测量光纤长度的方法和设备
CN108956536A (zh) 一种单纤混合气体组分识别与浓度检测可同时传感装置
CN102539011B (zh) 一种基于磷掺杂光纤辐射致衰减温度敏感性的温度传感器
CN105466457B (zh) 一种测量光子带隙光纤陀螺背向次波相干误差的装置及方法
Sun et al. Research on the gas refractive index sensing based on microfiber double-knot resonator with a parallel structure
CN202330268U (zh) 全光纤双微环高灵敏度传感器

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20190222

Effective date of abandoning: 20230908

AV01 Patent right actively abandoned

Granted publication date: 20190222

Effective date of abandoning: 20230908

AV01 Patent right actively abandoned
AV01 Patent right actively abandoned