CN208458274U - 全预混冷凝式换热装置 - Google Patents

全预混冷凝式换热装置 Download PDF

Info

Publication number
CN208458274U
CN208458274U CN201820696404.2U CN201820696404U CN208458274U CN 208458274 U CN208458274 U CN 208458274U CN 201820696404 U CN201820696404 U CN 201820696404U CN 208458274 U CN208458274 U CN 208458274U
Authority
CN
China
Prior art keywords
flue gas
heat exchange
high temperature
heat
temperature flue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201820696404.2U
Other languages
English (en)
Inventor
孟继安
戴丁军
卓宏强
孙旭光
胡旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NINGBO HRALE PLATE HEAT EXCHANGER CO Ltd
Original Assignee
NINGBO HRALE PLATE HEAT EXCHANGER CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NINGBO HRALE PLATE HEAT EXCHANGER CO Ltd filed Critical NINGBO HRALE PLATE HEAT EXCHANGER CO Ltd
Priority to CN201820696404.2U priority Critical patent/CN208458274U/zh
Application granted granted Critical
Publication of CN208458274U publication Critical patent/CN208458274U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Abstract

本实用新型公开了一种全预混冷凝式换热装置,包括外壳、高温换热装置、冷凝换热装置和燃烧器组件,所述高温换热装置和冷凝换热装置径向分布在外壳内;高温换热装置为由若干高温管翅式换热单元配合形成的第一环状结构,燃烧器组件燃烧产生的高温烟气位于第一环状结构内。本实用新型结构紧凑,显著强化了换热,有效地避免了烟尘堵塞烟气流道,提高了换热效率和安全可靠性,降低了材料成本和制造费用,提高了生产效率。

Description

全预混冷凝式换热装置
技术领域
本实用新型涉及热交换设备技术领域,特别涉及一种全预混冷凝式换热装置。
背景技术
现有全预混冷凝热交换器最常用于壁挂炉等热交换装置,混合燃气燃烧产生的高温烟气穿过全预混冷凝热交换器,对流经全预混冷凝热交换器中的水进行加热,高温烟气被降温直至冷凝,加热后的水再流入壁挂炉中被热交换器使用。现有全预混冷凝热交换器主要有盘管式全预混冷凝热交换器和圆盘翅片管式全预混冷凝热交换器两种结构。
现有一种盘管式全预混冷凝热交换器,包括外壳和逐层盘绕的环形的换热管,换热管多为扁管或者圆管的结构,换热管分为轴向布置的两组,即高温烟气盘管式换热管组件和烟气冷凝盘管式换热管组件,高温烟气盘管式换热管组件和烟气冷凝盘管式换热管组件置于外壳内,外壳上设有进气口和出气口,预混合后的燃气从进气口进入高温烟气盘管式换热管组件内设置的燃烧头内并燃烧,燃烧产生的高温烟气从内向外径向穿过高温烟气盘管式换热管组件的盘管式换热管之间的间隙,在此过程中,高温烟气与高温烟气盘管式换热管组件内的水进行热交换,高温烟气从内向外径向穿过高温烟气盘管式换热管组件之后经降温被吸热后混合为中温烟气;中温烟气再从烟气冷凝盘管式换热管组件的外围从外向内径向穿过烟气冷凝盘管式换热管组件的盘管式换热管之间的间隙,在此过程中,中温烟气与烟气冷凝盘管式换热管组件内的水进行热交换,中温烟气从外向内径向穿过烟气冷凝盘管式换热管组件之后经降温减湿被吸热后混合为低温烟气;冷凝换热后的低温烟气从烟气冷凝盘管式换热组件的内环经外壳内的烟道从外壳上设置的出气口流出盘管式全预混冷凝热交换器。
上述现有盘管式全预混冷凝热交换器技术的缺点在于:换热管多为扁管或者圆管结构,烟气与盘管式换热管进行换热的表面为光滑换热表面,烟气热传递效果较差,换热效率较低;为了提高换热性能通常采用小间隙,一般间隙在大约0.7mm左右,这样极易造成烟尘堵塞烟气流道,粘附的烟尘进一步加剧堵灰的进程,影响了换热管预先设计的阻力的平衡,造成换热器无法均匀地进行换热,降低了换热效率,而直接粘附在管壁上的固体颗粒物还具有酸性,会腐蚀换热管,影响换热管的工作寿命;高温烟气在与盘管式换热管换热时的温度降在1000℃左右,烟气平均流速也变化巨大,这也造成烟气在进入高温烟气盘管式换热管组件的流动阻力较大,而在流经高温烟气盘管式换热管组件的后部的流速十分低而使得其换热较差;另外,在低负荷运行式,高温烟气与高温烟气盘管式换热管组件换热也可能会产生冷凝,由于结构紧凑性的要求使得高温烟气盘管式换热管组件通常为卧是安装,这样高温烟气盘管式换热管组件中的产生的部分冷凝水会滴落到燃烧器的燃烧头上,长期运行会造成燃烧头损坏和降低燃烧性能,同时换热管间隙处留存和向下滴落的冷凝水也严重影响了换热性能并加速烟尘等堵塞烟气流道的问题。
现有另外一种圆盘翅片管式全预混冷凝热交换器,包括外壳和轴向布置的两组翅片管换热组件,即高温烟气圆盘翅片管换热组件和烟气冷凝圆盘翅片管换热组件,高温烟气圆盘翅片管换热组件和烟气冷凝圆盘翅片管换热组件置于外壳内,外壳上设有进气口和出气口,预混合后的燃气从进气口进入高温烟气圆盘翅片管换热组件内设置的燃烧头内并燃烧,燃烧产生的高温烟气从内向外径向穿过高温烟气圆盘翅片管换热组件的圆盘翅片之间的间隙,在此过程中,高温烟气与高温烟气圆盘翅片管换热组件内的水进行热交换,高温烟气从内向外径向穿过高温烟气圆盘翅片管换热组件之后经降温被吸热后混合为中温烟气;中温烟气再从烟气冷凝圆盘翅片管换热组件的外围从外向内径向穿过烟气冷凝圆盘翅片管换热组件的翅片之间的间隙,在此过程中,中温烟气与烟气冷凝圆盘翅片管换热组件内的水进行热交换,中温烟气从外向内径向穿过烟气冷凝圆盘翅片管换热组件之后经降温减湿被吸热后混合为低温烟气;冷凝换热后的低温烟气从烟气冷凝圆盘翅片管换热组件的内环经外壳内的烟道从外壳上设置的出气口流出圆盘翅片管式全预混冷凝热交换器。
上述现有圆盘翅片管式全预混冷凝热交换器技术,烟气与高温烟气圆盘翅片管换热组件和烟气冷凝圆盘翅片管换热组件进行换热,是采用圆盘翅片式,烟气换热性能明显强于盘管式全预混冷凝热交换器;翅片间隙一般在1.7-2.7mm之间,烟尘堵塞烟气流道的问题也明显改善。但其它盘管式全预混冷凝热交换器存在的问题依然存在:高温烟气在与圆盘翅片管式换热管换热时的温度降在1000℃左右,烟气平均流速也变化巨大,这也造成烟气在进入高温烟气圆盘翅片管式换热管组件的流动阻力较大,而在流经高温烟气圆盘翅片管式换热管组件的后部的流速较低而使得其换热较差;在低负荷运行式,高温烟气与高温烟气圆盘翅片管式换热管组件换热也可能会产生冷凝,由于结构紧凑性的要求使得高温烟气圆盘翅片管式换热管组件通常为卧式安装,这样高温烟气圆盘翅片管式换热管组件中的产生的冷凝水会部分滴落到燃烧器的燃烧头上,长期运行会造成燃烧头损坏和降低燃烧性能,同时换热管翅片间留存和向下滴落的冷凝水也严重影响了换热性能并使得烟尘等很容易堵塞烟气流道,粘附的烟尘进一步加剧堵灰的进程,影响了换热管预先设计的阻力的平衡,造成换热器无法均匀地进行换热,降低了换热效率,而直接粘附在管壁上的固体颗粒物还具有酸性,会腐蚀换热管和翅片,影响其工作寿命。另外,尽管圆盘翅片管式全预混冷凝热交换器的高温烟气圆盘翅片管换热组件和烟气冷凝圆盘翅片管换热组件的圆盘翅片采用大小翅片进行套裁,但其套裁翅片的无效边角料达40%左右,翅片的带材的材料有效利用率有待于提高;高温烟气圆盘翅片管换热组件和烟气冷凝圆盘翅片管换热组件的圆盘翅片采用大小翅片进行套裁,其空间布置的紧凑性也存在不足。
实用新型内容
本实用新型是为了克服上述现有技术中缺陷,提供一种全预混冷凝式换热装置,其高温换热装置、冷凝换热装置结构和布局更加紧凑,有效降低了材料成本和生产费用,显著强化烟气换热,明显改善烟尘堵塞烟气流道的不足,明显提高换热效率和运行可靠性,降低制造成本。
为实现上述目的,本实用新型提供一种全预混冷凝式换热装置,包括外壳、高温换热装置、冷凝换热装置和燃烧器组件,所述高温换热装置和冷凝换热装置径向分布在外壳内;
所述外壳内设置有容置空间,根据烟气的流动及热量分布,将容置空间划分为高温烟气区、中温烟气区和低温烟气区,所述外壳设置有与低温烟气区相连通的烟气出口;
所述高温换热装置包括若干高温管翅式换热单元,若干所述高温管翅式换热单元相配合形成第一环状结构,该第一环状结构环绕高温烟气区的外沿设置,将高温烟气区与中温烟气区分隔;
所述燃烧器组件燃烧产生的高温烟气位于高温换热装置的第一环状结构内;
所述冷凝换热装置位于中温烟气区与低温烟气区之间,包括一个或者一个以上的冷凝单元,所述冷凝单元为具有冷凝换热管的管式或者管翅式换热结构;
燃烧器组件燃烧产生高温烟气,高温烟气与高温换热装置热交换后转换为中温烟气,进入中温烟气区,然后与冷凝换热装置进行热交换后转换为低温烟气,进入低温烟气区,最后从烟气出口排出。
进一步设置为:所述外壳内还设置有中低温烟气分区隔板组件,所述中低温烟气分区隔板组件和冷凝换热装置或者中低温烟气分区隔板组件、冷凝换热装置和外壳的内壁配合形成第二环状结构,所述第二环状结构环绕设置在第一环状结构的外侧,将中温烟气区与低温烟气区分隔。
进一步设置为:所述中低温烟气分区隔板组件与外壳之间设置有冷凝水导流槽。
进一步设置为:所述燃烧器组件包括探入式燃烧部,该探入式燃烧部为圆筒形结构并伸入高温换热装置形成的第一环状结构内,所述探入式燃烧部的筒壁上布设有燃烧孔。
进一步设置为:所述燃烧器组件包括外置式燃烧部,所述外置式燃烧部为平板结构,位于高温换热装置形成的第一环状结构的底部,外置式燃烧部燃烧产生的火焰位于第一环状结构内。
进一步设置为:所述高温换热翅片的两侧均设置有与板体呈预定交叉角度设置的翅片单元配合部,相邻的两块高温换热翅片的翅片单元配合部相互配合,使得两块高温换热翅片呈弧状布置。
进一步设置为:所述高温换热装置的相邻高温管翅式换热单元之间采用接触连接。
进一步设置为:所述高温换热装置的相邻高温管翅式换热单元之间采用间隙配合。
进一步设置为:该间隙配合的间隙为0.1~1mm。
进一步设置为:相邻所述高温管翅式换热单元之间的间隙内填充有填充物。
进一步设置为:在同一冷凝单元内,冷凝换热管呈陈列布置且相邻的三根所述冷却换热管中心连线形成等边三角形结构。
进一步设置为:所述冷凝换热装置与高温换热装置中的介质水相连通并与烟气逆流换热。
进一步设置为:所述高温换热装置的高温换热翅片为弧形的板状结构,由板材通过套裁连续切割形成。
进一步设置为:所述高温换热装置的第一环状结构的形状为圆形、椭圆形或者多边形。
与现有技术相比,本实用新型结构紧凑,显著强化了烟气换热,有效提高了换热效率,避免了烟气所携带的固体颗粒堵塞高温管翅式换热单元的间隙和冷凝水滴落对设备性能和寿命与可靠性的影响,保证了长期运行换热的稳定性;同时高温换热装置为由若干高温管翅式换热单元配合形成的第一环状结构,有效提高了板材的利用率,减低了生产成本,提高了生产效率。
附图说明
图1是本实用新型实施例一的全预混冷凝式换热装置的横向剖面结构示意图;
图2是实施例一的高温管翅式换热单元的立体结构示意图;
图3是实施例一的高温换热翅片以及下料的结构示意图;
图4是实施例一的高温管翅式换热单元之间配合的局部结构示意图;
图5是实施例一的第二环状结构的横向剖面结构示意图;
图6是实施例一的横向剖面烟气流动示意图;
图7是实施例一的横向剖面烟气分区示意图;
图8是实施例一的纵向剖面结构示意图(探入式);
图9是实施例一的全预混冷凝式换热装置的换热原理示意图;
图10是实施例二的纵向剖面结构示意图(外置式);
图11是实施例三的横向剖面结构示意图;
图12是实施例四的横向剖面结构示意图。
结合附图在其上标记以下附图标记:
1、外壳;11、烟气出口;12、中低温烟气分区隔板组件;13、冷凝水导流槽;14、冷凝水接管;
2、高温换热装置;21、高温管翅式换热单元;211、高温换热翅片;2111、间隙;2112、翅片单元配合部;212、高温换热管;221、高温换热装置前管板;222、高温换热装置后管板;231、高温换热装置前盖板;232、高温换热装置后盖板;
3、冷凝换热装置;31、冷凝单元;311、冷凝换热管;321、冷凝换热装置前管板;322、冷凝换热装置后管板;331、冷凝换热装置前盖板;332、冷凝换热装置后盖板;
4、燃烧器组件;41、探入式燃烧部;42、外置式燃烧部;43、混合气连接部;
5、介质水流路;6、冷凝水流路;7、烟气流路;
HT:高温烟气区;MT:中温烟气区;LT:低温烟气区;E1:第一换热区;E2:第二换热区。
具体实施方式
下面结合附图,对本实用新型的一个具体实施方式进行详细描述,但应当理解本实用新型的保护范围并不受具体实施方式的限制。
本实用新型全预混冷凝式换热装置如图1-图12所示,包括外壳1、高温换热装置2、冷凝换热装置3和燃烧器组件4,其中高温换热装置2和冷凝换热装置3位于外壳1径向平面内;其中,外壳1内设置有容置空间,根据烟气的流动以及温度分布,在外壳1内设置的中低温烟气分区隔板组件12,以及后述的高温换热装置2和冷凝换热装置3,将所述容置空间在横向剖面划分为高温烟气区HT、第一换热区E1、中温烟气区MT、第二换热区E2和低温烟气区LT,外壳1设置有与低温烟气区LT相连通的烟气出口11,第一换热区E1位于高温烟气区HT和中温烟气区MT之间,第二换热区E2位于中温烟气区MT和低温烟气区LTLT之间,高温换热装置2位于第一换热区E1内,冷凝换热装置3位于第二换热区E2内,燃烧器组件4燃烧产生高温烟气;高温换热装置2形成的第一环状结构环绕设置在高温烟气区HT的外沿将高温烟气区HT与中温烟气区MT分隔,使得高温烟气区HT的高温烟气流过第一换热区E1的高温换热装置2与高温换热装置2中介质水进行热交换后转换为中温烟气并进入中温烟气区MT;外壳1内设置有中低温烟气分区隔板组件12,中低温烟分区隔板组件和冷凝换热装置3配合或者中低温烟气分区隔板组件12、冷凝换热装置3与外壳1的内壁配合形成第二环状结构,第二环状结构环绕设置在第一环状结构的外侧将中温烟气区MT与低温烟气区LT分隔,使得中温烟气区MT的中温烟气流过第二换热区E2的冷凝换热装置3与冷凝换热装置3中介质水进行热交换后转换为低温烟气并进入低温烟气区LT,最后从烟气出口11排出。
在本装置中,高温烟气区HT内的高温烟气温度一般在1000℃~1200℃之间,中温烟气区MT内的中温烟气一般在70℃~200℃之间,低温烟气区LT内的低温烟气一般在55℃以下;介质水的温度范围一般在20℃~80℃之间,根据使用情况进行选择。
实施例一
如图1至图9所示,包括外壳1、高温换热装置2、冷凝换热装置3和燃烧器组件4,高温换热装置2和冷凝换热装置3设置在外壳1的径向平面内,外壳1内设置有中低温烟气分区隔板组件12。
外壳1为圆筒形结构,圆筒形结构易于成型,加工方便。在外壳1内设置有容置空间,根据烟气的流动以及温度分布,在外壳1内设置的中低温烟气分区隔板组件12,以及高温换热装置2和冷凝换热装置3,将容置空间在横向剖面划分为高温烟气区HT、第一换热区E1、中温烟气区MT、第二换热区E2和低温烟气区LT,烟气出口11与低温烟气区LT相连通。第一换热区E1位于高温烟气区HT和中温烟气区MT之间,第二换热区E2位于中温烟气区MT和低温烟气区LT之间,高温换热装置2位于第一换热区E1内,冷凝换热装置3位于第二换热区E2内。燃烧器组件4燃烧产生高温烟气,所产生的高温烟气位于高温烟气区HT内。高温换热装置2与冷凝换热装置3均位于外壳1的径向平面内,从横向剖面看,高温换热装置2位于外壳1的下部,冷凝换热装置3位于外壳1的上部,冷凝换热装置3位于高温换热装置2的上部。高温烟气区HT的高温烟气流过第一换热区E1的高温换热装置2与高温换热装置2中介质水进行热交换,中温烟气区MT的中温烟气流过第二换热区E2的冷凝换热装置3与冷凝换热装置3中介质水进行热交换,烟气被吸热降温减湿后经烟气出口11排出。
进一步地如图7所示,在外壳1与中低温烟气分区隔板组件12之间设置有冷凝水导流槽13,冷凝换热装置3产生的冷凝水经冷凝水导流槽13导流至外壳1的下部。在外壳1的下部设置有冷凝水接管14,高温换热装置2和冷凝换热装置3产生的冷凝水经收集后经冷凝水接管14统一排放。在正常运行工况下,冷凝换热装置3会产生冷凝水,高温换热装置2不会产生冷凝水,但在特殊工况下如低负荷运行时高温换热装置2也会产生少量冷凝水。在外壳1上还设置有介质水进口接管和介质水出口接管,低温介质水从介质水进口接管进入,在冷凝换热装置3和高温换热装置2中被加热成高温介质水,最后从介质水出口接管排出。
高温换热装置2,包括若干高温管翅式换热单元21,位于第一换热区E1内。若干所述高温管翅式换热单元21配合在横向剖面上环周布置形成封闭的第一环状结构,第一环状结构环绕设置在高温烟气区HT的外沿,将高温烟气区HT与中温烟气区MT分隔,燃烧器组件4燃烧产生的高温烟气位于第一环状结构内;高温烟气区HT的高温烟气在第一环状结构的分隔和导引作用下流过高温换热装置2的高温换热翅片211间,高温烟气与高温换热装置2中的高温换热管212内的介质水进行换热后进入中温烟气区MT变为中温烟气,中温烟气包围所述高温换热装置2的高温管翅式换热单元21配合形成第一环状结构,也就是所述第一环状结构内为高温烟气,所述第一环状结构外为中温烟气,所述第一环状结构将高温烟气区HT和中低温烟气区LT分隔。所述高温管翅式换热单元21的烟气流路7在横向剖面上径向向外,所述高温管翅式换热单元21包括若干高温换热翅片211、若干高温换热管212,所述若干高温换热翅片211相互堆叠,高温换热翅片211间的烟气流道采用烟气等速收缩结构,所述的“烟气等速收缩结构”是指烟气从进入高温换热翅片211的烟气平均流速到翅片管孔后部的最窄流道处烟气平均流速相接近,一般相差不超过30%,从而在明显改善翅片间积灰和冷凝水搭桥现象的同时显著强化烟气换热;高温烟气在若干高温换热翅片211间流过与若干高温换热管212内的介质水进行高效换热,若干高温换热管212插设在高温换热翅片211的翅片管孔内,所述相邻的高温管翅式换热单元21的相互堆叠的高温换热翅片211的临近边缘接触或者间隙2111配合。
进一步地如图3所示,高温换热翅片211为弧形的板状结构,高温换热翅片211通过板材套裁连续切割形成,高温换热翅片211的前侧弧面能够与后侧弧面相拼合,有效减低了高温换热翅片211的生产成本,提高了生产效率;同时高温换热翅片211包括翅片单元配合部2112,翅片单元配合部2112是相邻两个高温管翅式换热单元21的配合部,位于高温换热翅片211板体的左、右两侧且与板体侧边具有一定的交叉角,以便相邻两个高温管翅式换热单元21配合成弧状。
进一步地如图4所示,相邻的高温管翅式换热单元21之间的配合为接触或者间隙2111配合,优选间隙2111配合,以便于制造装配,即相邻的高温换热翅片211的翅片单元配合部2112之间为间隙2111配合,优选该间隙2111为0.1~1mm。为了保证相邻的高温管翅式换热单元21之间密封良好,防止烟气从该处的配合间隙2111中泄露,可在该配合间隙2111处设置填充物。
进一步地如图8所示,高温换热装置2还包括高温换热装置2管板和高温换热装置2盖板;高温换热装置2管板包括高温换热装置前管板221和高温换热装置后管板222,分别设置在若干高温管翅式换热单元21两端,并与若干高温管翅式换热单元21的高温换热管212连接。高温换热装置2盖板包括高温换热装置前盖板231与高温换热装置后盖板232,分别与所述高温换热装置前管板221与高温换热装置后管板222相连接。所述配合的若干高温管翅式换热单元21的若干高温换热管212、高温换热装置2管板和高温换热装置2盖板内连通形成第二介质水流道,以简化制造工艺和降低介质水流道阻力。
具体的,本实施例的高温换热装置2,包括六个高温管翅式换热单元21,六个高温管翅式换热单元21配合形成第一环状结构。本实施例的高温换热装置2设置了六个高温管翅式换热单元21,也可以设置两个或者两个以上的高温管翅式换热单元21。
在低负荷运行情况下,高温换热装置2中的烟气会有少量的水分凝结,在重力的作用下滴落至下方,由于采用若干个高温管翅式换热单元21配合的结构和高温换热翅片211“烟气等速收缩结构”等,少量凝结水会在较高流速的烟气的冲刷作用下被带向高温管翅式换热单元21的外部,凝结水不会落到布置在高温换热装置2内的探入式燃烧部41上,也不会产生滴落到下部的高温管翅式换热单元21的翅片上,可以有效地延长燃烧器的寿命和长期使用性能,以及避免翅片腐蚀和积灰甚至堵塞的问题,显著提高了长期使用性能和寿命。
冷凝换热装置3包括一个或者一个以上的冷凝单元31,位于第二换热区E2域内,其为具有冷凝换热管311的管式结构,在同一冷凝单元31内,冷凝换热管311呈阵列排布且相邻的三根冷凝换热管311的中心构成等边三角形; 所述冷凝换热装置3与中低温分区隔板组件配合或者冷凝换热装置3、中低温分区隔板组件与外壳1的内侧配合在横向剖面上形成第二环状结构,在横向剖面上所述第二环状结构位于所述第一环状结构外且套在所述第一环状结构上,所述第二环状结构与所述第一环状结构之间为中温烟气区MT,所述第二环状结构将中温烟气区MT与低温烟气区LT分隔,中温烟气区MT的中温烟气在所述第二环状结构的分隔和导引作用下流过冷凝换热装置3的冷凝单元31,与所述冷凝单元31中的冷凝换热管311内的介质水进行热交换,烟气经被吸热降温减湿后流出所述冷凝换热装置3转换为低温烟气,进入低温烟气区LT,最后从烟气出口11排出。
具体的,本实施例的冷凝换热装置3,包括三个冷凝单元31,每个冷凝单元31又包括多个三角形布置的冷凝换热管311。本实施例的冷凝换热管311为光管,具有便于制造和优良的抗腐蚀和防堵塞的特性,但相对于管翅式换热结构其不足是烟气换热差一些,需要布置更多的冷凝换热管311,两者各有优缺点,根据需要选择。
如图8所示,本实施例的冷凝换热装置3还包括冷凝换热装置3管板和冷凝换热装置3盖板。其中,冷凝换热装置3管板包括冷凝换热装置前管板321和冷凝换热装置后管板322,分别设置在若干冷凝单元31两端,并与冷凝单元31的冷凝换热管311连接;冷凝换热装置3盖板包括冷凝换热装置前盖板331与冷凝换热装置后盖板332,分别与所述冷凝换热装置前管板321与冷凝换热装置后管板322相连接;所述冷凝单元31的若干冷凝换热管311、冷凝换热装置3管板和冷凝换热装置3盖板内连通形成第一介质水流道。
如图8所示,本实施例的高温换热装置前管板221与冷凝换热装置前管板321连接为一体的一体式结构;所述高温换热装置后管板222与冷凝换热装置后管板322连接为一体的一体式结构;所述高温换热装置前盖板231与冷凝换热装置前盖板331连接为一体的一体式结构;所述高温换热装置后盖板232与冷凝换装置后盖板连接为一体的一体式结构;第一介质水流道和第二介质水流道通过内部流道相连通,以简化制造工艺和降低介质水流道阻力。
如图1所示,本实施例的高温换热装置2与冷凝换热装置3在外壳1的径向平面内布置。相对于轴向布置,本实施例的径向平面内布置的结构更紧凑,制造更简便,材料成本和制造成本也更低。
如图8所示,本实施例的燃烧器组件4包括探入式燃烧部41和混合气连接部43,混合燃气在探入式燃烧部41上进行燃烧。本实施例探入式燃烧部41为筒形结构并伸入第一环状结构内,探入式燃烧部41的燃烧筒壁结构上设置有燃烧孔状或者网状结构的燃烧筒壁,混合燃气在燃烧筒壁处进行燃烧而产生高温烟气。燃烧组件的探入式燃烧部41的燃烧产生的高温烟气,位于第一环状结构内的高温烟气区HT,在所述第一环状结构的分隔和导引作用下流过第一换热区E1的高温换热装置2的若干高温管翅式换热单元21的高温换热翅片211间,与高温换热装置2的若干高温管翅式换热单元21中高温换热管212内的介质水进行热交换后转换为中温烟气,进入中温烟气区MT,然后在所述第二环状结构的分隔和导引作用下流过第二换热区E2的冷凝换热装置3的冷凝换热管311外,与冷凝换热装置3中的冷凝换热管311内介质水进行热交换后转换为低温烟气,进入低温烟气区LTLT,最后从外壳1上设置的烟气出口11接管排出。
如图9所示,本实施例的高温换热装置2和冷凝换热装置3中的介质水相连通并与烟气进行逆流换热,即低温介质水首先从冷凝换热装置3相连接的介质水进口接管进入冷凝换热装置3中的冷凝换热管311内,与冷凝换热装置3中冷凝换热管311外流过的烟气进行换热后,经冷凝换热装置3和高温换热装置2间设置的介质水连接通道进入高温换热装置2的若干高温换热单元的管翅式高温换热管212内,再与流过高温换热装置2的管翅式高温换热管212外翅片间的烟气进行换热,被烟气多次折回加热的介质水从介质水出口接管流出,完成介质水与烟气逆流换热。
本实施例的流动和换热原理如图7、图8和图9所示:
烟气流路7:燃烧组件的探入式燃烧部41的混合燃气燃烧产生的高温烟气,位于高温换热装置2的第一环状结构内的高温烟气区HT,在所述第一环状结构的分隔和导引作用下流过第一换热区E1的高温换热装置2的若干高温管翅式换热单元21的高温换热翅片211间,与高温换热装置2的若干高温管翅式换热单元21中高温换热管212内的介质水进行热交换后转换为中温烟气,进入中温烟气区MT,然后在所述第二环状结构的分隔和导引作用下流过第二换热区E2的冷凝换热装置3的冷凝换热管311外,与冷凝换热装置3中的冷凝换热管311内介质水进行热交换后转换为低温烟气,进入低温烟气区LT,最后从烟气出口11排出;
介质水流路5:高温换热装置2和冷凝换热装置3中的介质水相连通并与烟气进行逆流换热,即低温介质水首先从冷凝换热装置3相连接的介质水进口接管进入冷凝换热装置3中的冷凝换热管311内,与冷凝换热装置3中冷凝换热管311外流过的烟气进行换热后,经冷凝换热装置3和高温换热装置2间设置的介质水连接通道进入高温换热装置2的若干高温换热单元的管翅式高温换热管212内,再与流过高温换热装置2的管翅式高温换热管212外翅片间的烟气进行换热,被烟气多次折回加热的介质水从介质水出口接管流出,完成介质水与烟气逆流换热。
冷凝水流路6:在正常运行工况下,冷凝换热装置3会产生冷凝水,高温换热装置2不会产生冷凝水,但在特殊工况下如低负荷运行时高温换热装置2也会产生少量冷凝水。位于外壳1的下部的冷凝水导流槽13设置有冷凝水接管14,高温换热装置2和冷凝换热装置3产生的冷凝水流入冷凝水导流槽13并经收集后经冷凝水接管14统一排放。
综上所述,本实用新型的一种全预混冷凝式换热装置,具有如下主要特点和优点:
1、明显节省了材料成本和制造成本。由于高温换热装置2为由若干高温管翅式换热单元21配合形成的第一环状结构,高温换热翅片211通过套裁制得,相对于现有技术的圆盘翅片式全预混冷凝式换热器,可以大幅节省翅片材料;而且由于高温换热翅片211间的烟气流道采用“烟气等速收缩结构”等强化烟气换热措施,单位换热量的材料成本也明显降低;由于采用了高温换热装置2与冷凝换热装置3在外壳1的径向平面内布置、第一环状结构和第二环状结构等,不仅结构紧凑而且也便于规模化工业生产,制造成本更低。
2、显著提高寿命、可靠性和长期使用性能。由于高温换热装置2为若干高温管翅式换热单元21配合形成的第一环状结构,使得低负荷运行工况下高温换热装置2的冷凝水不会滴落到下部的燃烧器燃烧头和换热翅片上,具有更长寿命和可靠性,可以保证长期高性能使用;由于高温换热翅片211间的烟气流道采用“烟气等速收缩结构”等,使得高温换热装置2不易出现凝结水搭桥和积灰堵塞等现象,从而也使得设备具有高可靠性和长期使用高性能;由于采用了高温换热装置2和冷凝换热装置3的第一环状结构和第二环状结构等,也使得冷凝换热装置3的冷凝水便于排放,也一定程度上提高了设备的寿命和可靠性。
3、有效强化了换热,提高了热效率。由于高温换热装置2为由若干高温管翅式换热单元21配合形成的第一环状结构,相对于现有技术的盘管式全预混冷凝热交换器,不仅显著强化了换热而且明显减少了烟气流道阻力;由于高温换热翅片211间的烟气流道采用“烟气等速收缩结构”等,相对于现有技术的圆盘翅片式全预混冷凝式换热器,也明显强化了烟气换热,因而明显提高了热效率。
实施例二
如图10所示,与实施例一相比,两者的区别在于燃烧组件的燃烧部的区别,实施例一采用的是探入式燃烧部41,而实施二采用的为外置式燃烧部42结构,外置式燃烧部42为平板结构,位于第一环状结构的端部,外置式燃烧部42燃烧产生的火焰位于高温换热装置2内。
实施三
如图11所示,与实施例一相比,本实施例的主要区别在于冷凝换热装置3采用管翅式结构。本实施例的冷凝换热装置3包括一个冷凝单元31,冷凝单元31包括阵列布置的若干冷凝换热管311和若干冷凝换热翅片,冷凝换热管311插设在冷凝换热翅片的翅片管孔内,若干冷凝换热翅片相互堆叠。另外,便于冷凝换热装置3的冷凝液排放,冷凝换热装置3倾斜设置。
实施例四
如图12所示,与实施例一相比,本实施例的主要区别在于高温换热装置2形成的第一环状结构的形状,本实施例的高温换热装置2形成的环状结构形状为六边形,由六块矩形的高温管翅式换热单元21拼合形成,伸入其内的探入式燃烧部41为六边形,同理,高温换热装置2形成的环状结构的形状可为五边形,也可以为其他的多边形结构,也可以为圆形或者椭圆形或者扇形,燃烧部的形状也可以根据需要进行改变。
与现有技术相比,本实用新型结构紧凑,显著强化了烟气换热,有效提高了换热效率,避免了烟气所携带的固体颗粒堵塞高温管翅式换热单元的间隙和冷凝水滴落对设备性能和寿命与可靠性的影响,保证了长期运行换热的稳定性;同时高温换热装置由若干高温管翅式换热单元配合形成第一环状结构,有效提高了板材的利用率,减低了生产成本,提高了生产效率。
以上公开的仅为本实用新型的实施例,但是,本实用新型并非局限于此,任何本领域的技术人员能思之的变化都应落入本实用新型的保护范围。

Claims (14)

1.一种全预混冷凝式换热装置,其特征在于,包括外壳、高温换热装置、冷凝换热装置和燃烧器组件,所述高温换热装置和冷凝换热装置径向分布在外壳内;
所述外壳内设置有容置空间,根据烟气的流动及热量分布,将容置空间划分为高温烟气区、中温烟气区和低温烟气区,所述外壳设置有与低温烟气区相连通的烟气出口;
所述高温换热装置包括若干高温管翅式换热单元,若干所述高温管翅式换热单元相配合形成第一环状结构,该第一环状结构环绕高温烟气区的外沿设置,将高温烟气区与中温烟气区分隔;
所述燃烧器组件燃烧产生的高温烟气位于高温换热装置的第一环状结构内;
所述冷凝换热装置位于中温烟气区与低温烟气区之间,包括一个或者一个以上的冷凝单元,所述冷凝单元为具有冷凝换热管的管式或者管翅式换热结构;
燃烧器组件燃烧产生高温烟气,高温烟气与高温换热装置热交换后转换为中温烟气,进入中温烟气区,然后与冷凝换热装置进行热交换后转换为低温烟气,进入低温烟气区,最后从烟气出口排出。
2.根据权利要求1所述的全预混冷凝式换热装置,其特征在于,所述外壳内还设置有中低温烟气分区隔板组件,所述中低温烟气分区隔板组件和冷凝换热装置或者中低温烟气分区隔板组件、冷凝换热装置和外壳的内壁配合形成第二环状结构,所述第二环状结构环绕设置在第一环状结构的外侧,将中温烟气区与低温烟气区分隔。
3.根据权利要求2所述的全预混冷凝式换热装置,其特征在于,所述中低温烟气分区隔板组件与外壳之间设置有冷凝水导流槽。
4.根据权利要求1所述的全预混冷凝式换热装置,其特征在于,所述燃烧器组件包括探入式燃烧部,该探入式燃烧部为圆筒形结构并伸入高温换热装置形成的第一环状结构内,所述探入式燃烧部的筒壁上布设有燃烧孔。
5.根据权利要求1所述的全预混冷凝式换热装置,其特征在于,所述燃烧器组件包括外置式燃烧部,所述外置式燃烧部为平板结构,位于高温换热装置形成的第一环状结构的底部,外置式燃烧部燃烧产生的火焰位于第一环状结构内。
6.根据权利要求1所述的全预混冷凝式换热装置,其特征在于,所述高温换热翅片的两侧均设置有与板体呈预定交叉角度设置的翅片单元配合部,相邻的两块高温换热翅片的翅片单元配合部相互配合,使得两块高温换热翅片呈弧状布置。
7.根据权利要求1或6所述的全预混冷凝式换热装置,其特征在于,所述高温换热装置的相邻高温管翅式换热单元之间采用接触连接。
8.根据权利要求1或6所述的全预混冷凝式换热装置,其特征在于,所述高温换热装置的相邻高温管翅式换热单元之间采用间隙配合。
9.根据权利要求8所述的全预混冷凝式换热装置,其特征在于,该间隙配合的间隙为0.1~1mm。
10.根据权利要求8所述的全预混冷凝式换热装置,其特征在于,相邻所述高温管翅式换热单元之间的间隙内填充有填充物。
11.根据权利要求1所述的全预混冷凝式换热装置,其特征在于,在同一冷凝单元内,冷凝换热管呈陈列布置且相邻的三根所述冷凝换热管中心连线形成等边三角形结构。
12.根据权利要求1所述的全预混冷凝式换热装置,其特征在于,所述冷凝换热装置与高温换热装置中的介质水相连通并与烟气逆流换热。
13.根据权利要求1所述的全预混冷凝式换热装置,其特征在于,所述高温换热装置的高温换热翅片为弧形的板状结构,由板材通过套裁连续切割形成。
14.根据权利要求1所述的全预混冷凝式换热装置,其特征在于,所述高温换热装置的第一环状结构的形状为圆形、椭圆形或者多边形。
CN201820696404.2U 2018-05-10 2018-05-10 全预混冷凝式换热装置 Active CN208458274U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820696404.2U CN208458274U (zh) 2018-05-10 2018-05-10 全预混冷凝式换热装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820696404.2U CN208458274U (zh) 2018-05-10 2018-05-10 全预混冷凝式换热装置

Publications (1)

Publication Number Publication Date
CN208458274U true CN208458274U (zh) 2019-02-01

Family

ID=65151229

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820696404.2U Active CN208458274U (zh) 2018-05-10 2018-05-10 全预混冷凝式换热装置

Country Status (1)

Country Link
CN (1) CN208458274U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108413614A (zh) * 2018-05-10 2018-08-17 宁波市哈雷换热设备有限公司 全预混冷凝式换热装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108413614A (zh) * 2018-05-10 2018-08-17 宁波市哈雷换热设备有限公司 全预混冷凝式换热装置

Similar Documents

Publication Publication Date Title
CN108413614A (zh) 全预混冷凝式换热装置
CA2807168C (en) Latent heat exchanger in condensing boiler
CN201555208U (zh) 烟气余热回收系统
CN104251629A (zh) 热交换器及具有其的燃气热水器
CN208222846U (zh) 一种新型全预混冷凝式换热装置
CN109519953B (zh) 一种流量均衡的电站锅炉烟气余热利用系统
CN208458274U (zh) 全预混冷凝式换热装置
CN108826687A (zh) 一种全预混冷凝式换热装置
CN105823354A (zh) 一种全预混冷凝热交换器
CN208487792U (zh) 一种全预混冷凝式换热装置
CN105841351B (zh) 一种冷凝式换热器
CN201593803U (zh) 耐烟气低温腐蚀的高效空气预热器
CN112682948B (zh) 一种低氮燃烧的冷却冷凝一体化燃气热水器
CN208223267U (zh) 一种翅片及具有该翅片的全预混冷凝式换热装置
CN108397909A (zh) 一种新型全预混冷凝式换热装置
CN104471321A (zh) 具有并联热交换器的水加热装置
KR100814938B1 (ko) 콘덴싱 보일러의 열교환 장치
CN208901641U (zh) 一种全预混冷凝式换热装置
CN206755603U (zh) 燃气热水器的换热器和具有其的燃气热水器
CN208171069U (zh) 新型全预混冷凝式换热装置
CN204100858U (zh) 热交换器及具有其的燃气热水器
CN208443047U (zh) 低氮冷凝不锈钢热水锅炉
CN208901640U (zh) 一种全预混冷凝式换热设备
CN109519954B (zh) 一种电站锅炉烟气余热利用系统
CN202119303U (zh) 三维螺旋板式气-气换热器

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Assignee: Ningbo Hanbao Stainless Steel Products Co.,Ltd.

Assignor: NINGBO HRALE PLATE HEAT EXCHANGER Co.,Ltd.

Contract record no.: X2023980051767

Denomination of utility model: Full premixed condensing heat exchanger

Granted publication date: 20190201

License type: Common License

Record date: 20231212