CN208076958U - A kind of quantitative control system based on Fuzzy Adaptive PID - Google Patents

A kind of quantitative control system based on Fuzzy Adaptive PID Download PDF

Info

Publication number
CN208076958U
CN208076958U CN201721496342.2U CN201721496342U CN208076958U CN 208076958 U CN208076958 U CN 208076958U CN 201721496342 U CN201721496342 U CN 201721496342U CN 208076958 U CN208076958 U CN 208076958U
Authority
CN
China
Prior art keywords
capacitor
module
ads1218
chip
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201721496342.2U
Other languages
Chinese (zh)
Inventor
张法全
刘保坤
肖海林
毛学港
王国富
叶金才
贾小波
王小红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201721496342.2U priority Critical patent/CN208076958U/en
Application granted granted Critical
Publication of CN208076958U publication Critical patent/CN208076958U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

本实用新型公开了一种基于模糊自适应PID的定量控制系统,包括微处理器、ADC模块、卡尔曼滤波器、压力传感器模块、电源模块、键盘输入模块、人机交互界面和执行器,电源模块的输出端分别与卡尔曼滤波器、压力传感器模块和微处理器的输入端连接,压力传感器模块的输出端与ADC模块的输入端连接,ADC模块的输出端与卡尔曼滤波器的输入端连接,卡尔曼滤波器输出端还与微处理器的输入端连接,微处理器的输出端分别与人机交互界面、执行器和键盘输入模块连接。该系统结构简单,适应环境能力强、控制策略优异,能够很好的满足了医药行业需求。

The utility model discloses a quantitative control system based on fuzzy self-adaptive PID, which comprises a microprocessor, an ADC module, a Kalman filter, a pressure sensor module, a power supply module, a keyboard input module, a man-machine interaction interface and an actuator, a power supply The output terminal of the module is connected with the input terminal of the Kalman filter, the pressure sensor module and the microprocessor respectively, the output terminal of the pressure sensor module is connected with the input terminal of the ADC module, and the output terminal of the ADC module is connected with the input terminal of the Kalman filter The output end of the Kalman filter is also connected with the input end of the microprocessor, and the output end of the microprocessor is respectively connected with the human-computer interaction interface, the actuator and the keyboard input module. The system has simple structure, strong ability to adapt to the environment, and excellent control strategy, which can well meet the needs of the pharmaceutical industry.

Description

一种基于模糊自适应PID的定量控制系统A Quantitative Control System Based on Fuzzy Adaptive PID

技术领域technical field

本实用新型涉及定量控制系统技术领域,具体是一种基于模糊自适应PID的定量控制系统。The utility model relates to the technical field of quantitative control systems, in particular to a quantitative control system based on fuzzy adaptive PID.

背景技术Background technique

医药行业是我国国民经济的重要组成部分。在我国,医药行业生产工艺还比较落后,缺乏先进的配套设施,目前并没有可靠的质量控制方法与手段为医药行业服务。The pharmaceutical industry is an important part of my country's national economy. In my country, the production technology of the pharmaceutical industry is still relatively backward, lacking advanced supporting facilities, and currently there are no reliable quality control methods and means to serve the pharmaceutical industry.

有鉴于此,本实用新型提供了一种基于模糊自适应PID的定量控制系统。本系统采用了卡尔曼滤波器和模糊自适应PID控制器。在药物的定量控制过程中,压力传感器会由于外界的各种原因,压力输出结果与实际值产生偏差,将输出结果通过卡尔曼滤波器滤波后,能够较好的滤除杂波,输出稳定且比较纯净的压力信号,使测量值更加接近于实际值。模糊自适应PID控制器会根据实际落药量与期望落药量的偏差,运用模糊推理,对PID参数进行调整,控制下一次的落药量,从而达到期望的落药量。In view of this, the utility model provides a quantitative control system based on fuzzy adaptive PID. The system uses Kalman filter and fuzzy adaptive PID controller. In the process of quantitative control of drugs, the pressure sensor will have deviations between the pressure output results and the actual value due to various external reasons. After the output results are filtered by the Kalman filter, the clutter can be better filtered out, and the output is stable and stable. The purer pressure signal makes the measured value closer to the actual value. The fuzzy adaptive PID controller will use fuzzy reasoning to adjust the PID parameters according to the deviation between the actual dropping amount and the expected dropping amount, and control the next dropping amount so as to achieve the expected dropping amount.

实用新型内容Utility model content

本实用新型的目的在于克服现有技术的不足,而提供一种基于模糊自适应 PID的定量控制系统,该系统结构简单、适应环境能力强、控制策略优异,能够很好的满足了医药行业需求。The purpose of the utility model is to overcome the deficiencies of the prior art and provide a quantitative control system based on fuzzy self-adaptive PID. The system has a simple structure, strong ability to adapt to the environment, and excellent control strategy, which can well meet the needs of the pharmaceutical industry .

实现本实用新型目的的技术方案是:The technical scheme that realizes the utility model purpose is:

一种基于模糊自适应PID的定量控制系统,包括微处理器、ADC模块、卡尔曼滤波器、压力传感器模块、电源模块、键盘输入模块、人机交互界面和执行器,电源模块的输出端分别与卡尔曼滤波器、压力传感器模块和微处理器的输入端连接,压力传感器模块的输出端与ADC模块的输入端连接,ADC模块的输出端与卡尔曼滤波器的输入端连接,卡尔曼滤波器输出端还与微处理器的输入端连接,微处理器的输出端分别与人机交互界面、执行器和键盘输入模块连接。A quantitative control system based on fuzzy adaptive PID, including a microprocessor, an ADC module, a Kalman filter, a pressure sensor module, a power module, a keyboard input module, a man-machine interface and an actuator, and the output terminals of the power module are respectively It is connected with the input end of the Kalman filter, the pressure sensor module and the microprocessor, the output end of the pressure sensor module is connected with the input end of the ADC module, the output end of the ADC module is connected with the input end of the Kalman filter, and the Kalman filter The output end of the device is also connected with the input end of the microprocessor, and the output end of the microprocessor is respectively connected with the human-computer interaction interface, the actuator and the keyboard input module.

所述的微处理器,包括模糊自适应PID控制器、LCD接口、第一GPIO接口、第二GPIO接口;卡尔曼滤波器和电源模块的输出端分别与模糊自适应PID 控制器的输入端连接;模糊自适应PID控制器的输出端通过LCD接口与人机交互界面连接,通过第一GPIO接口与执行器连接,通过第二GPIO接口与键盘输入模块连接。Described microprocessor comprises fuzzy adaptive PID controller, LCD interface, the first GPIO interface, the second GPIO interface; The output end of Kalman filter and power module is connected with the input end of fuzzy adaptive PID controller respectively ; The output end of the fuzzy self-adaptive PID controller is connected to the human-computer interaction interface through the LCD interface, connected to the actuator through the first GPIO interface, and connected to the keyboard input module through the second GPIO interface.

所述的微处理器,为MK60型微处理器。Described microprocessor is MK60 type microprocessor.

所述的人机交互界面,为LCD显示器。The human-computer interaction interface is an LCD display.

所述的ADC模块,是基于ADS1218芯片的ADC模块。The ADC module is an ADC module based on the ADS1218 chip.

所述的ADC模块,包括第一电阻、第二电阻、第三电阻、第四电阻、第一电容、第二电容、第三电容、第四电容、第五电容、第六电容、第七电容、第八电容、第一晶振和ADS1218芯片;第一电阻的一端与压力传感器模块连接,另一端分别与第一电容的一端、第二电容的一端、ADS1218芯片的3号管脚AINO 连接;第一电容的另一端接地;第二电阻的一端与压力传感器模块连接,另一端分别与第二电容的另一端、第三电容的一端、ADS1218芯片的4号管脚AINI连接;第三电容的另一端接地;第五电容的一端、第三电阻的一端分别接地;第五电容的另一端与ADS1218芯片的14号管脚VRCAP连接;第三电阻的另一端与 ADS1218芯片的17号管脚RDAC连接;ADS1218芯片的24号管脚RESET分别与第四电阻的一端、第六电容的一端连接;第四电阻的另一端接3.3V电压;第六电容的另一端接地;ADS1218芯片的25号管脚XIN分别与第一晶振的一端、第七电容的一端连接;ADS1218芯片的26号管脚XOUT分别与第一晶振的另一端、第八电容的一端连接;第七电容的另一端、第八电容的另一端接地;第四电容的一端分别与ADS1218芯片的47号管脚VREF+、46号管脚VREFOUT连接; ADS1218芯片的48号管脚VREF-、45号管脚AGND、第四电容的另一端接地。The ADC module includes a first resistor, a second resistor, a third resistor, a fourth resistor, a first capacitor, a second capacitor, a third capacitor, a fourth capacitor, a fifth capacitor, a sixth capacitor, and a seventh capacitor , the eighth capacitor, the first crystal oscillator and the ADS1218 chip; one end of the first resistor is connected to the pressure sensor module, and the other end is respectively connected to one end of the first capacitor, one end of the second capacitor, and pin 3 of the ADS1218 chip AINO; The other end of the first capacitor is grounded; one end of the second resistor is connected to the pressure sensor module, and the other end is respectively connected to the other end of the second capacitor, one end of the third capacitor, and pin 4 AINI of the ADS1218 chip; the other end of the third capacitor One end is grounded; one end of the fifth capacitor and one end of the third resistor are respectively grounded; the other end of the fifth capacitor is connected to the 14th pin VRCAP of the ADS1218 chip; the other end of the third resistor is connected to the 17th pin RDAC of the ADS1218 chip ;The 24th pin RESET of the ADS1218 chip is respectively connected to one end of the fourth resistor and one end of the sixth capacitor; the other end of the fourth resistor is connected to 3.3V voltage; the other end of the sixth capacitor is grounded; the 25th pin of the ADS1218 chip XIN is respectively connected to one end of the first crystal oscillator and one end of the seventh capacitor; pin 26 XOUT of the ADS1218 chip is respectively connected to the other end of the first crystal oscillator and one end of the eighth capacitor; the other end of the seventh capacitor and the eighth capacitor The other end of the fourth capacitor is grounded; one end of the fourth capacitor is connected to the 47th pin VREF+ and the 46th pin VREFOUT of the ADS1218 chip; the 48th pin VREF- of the ADS1218 chip, the 45th pin AGND, and the other end of the fourth capacitor grounded.

有益效果:本系统采用了卡尔曼滤波器对压力传感器的噪声进行了有效的处理,较好的滤除了杂波,能够精确跟踪压力信号。通过使用模糊自适应PID控制器实时改变其控制策略,对PID参数进行有效的更改,从而控制落药量的精度。相对了传统的定量控制设备,本系统结构简单、适应环境能力强、控制策略优异,能够很好的满足了医药行业需求。Beneficial effects: the system adopts the Kalman filter to effectively process the noise of the pressure sensor, better filters out the clutter, and can accurately track the pressure signal. By using the fuzzy adaptive PID controller to change its control strategy in real time, the PID parameters can be changed effectively, so as to control the accuracy of the dropping amount. Compared with traditional quantitative control equipment, this system has simple structure, strong adaptability to the environment, and excellent control strategy, which can well meet the needs of the pharmaceutical industry.

附图说明Description of drawings

图1为本实用新型的一种基于模糊自适应PID的定量控制系统觉得结构框图;Fig. 1 is a kind of quantitative control system based on fuzzy self-adaptive PID of the utility model and feels structural block diagram;

图2为ADC模块的电路图;Fig. 2 is the circuit diagram of ADC module;

图3为模糊自适应PID控制器结构;Fig. 3 is the fuzzy adaptive PID controller structure;

图4为模糊自适应PID控制器的工作流程图;Fig. 4 is the work flowchart of fuzzy adaptive PID controller;

图中,1.ADC模块 2.卡尔曼滤波器 3.MK60微处理器 4.模糊自适应PID 控制器5.LCD接口 6.人机交互界面 7.第一GPIO接口 8.执行器 9.键盘输入模块 10.第二GPIO接口 11.系统电源 12.压力传感器模块。In the figure, 1. ADC module 2. Kalman filter 3. MK60 microprocessor 4. Fuzzy adaptive PID controller 5. LCD interface 6. Human-computer interaction interface 7. First GPIO interface 8. Actuator 9. Keyboard Input module 10. Second GPIO interface 11. System power supply 12. Pressure sensor module.

具体实施方式Detailed ways

下面结合附图和实施例对本实用新型做进一步阐述,但不是对本实用新型的限定。The utility model will be further elaborated below in conjunction with the accompanying drawings and embodiments, but the utility model is not limited thereto.

实施例:Example:

如图1所示,一种基于模糊自适应PID的定量控制系统,包括MK60微处理器3、ADC模块1、卡尔曼滤波器2、压力传感器模块12、系统电源11、键盘输入模块9、人机交互界面6和执行器8,系统电源11的输出端分别与卡尔曼滤波器2、压力传感器模块12和MK60微处理器3的输入端连接,压力传感器模块12的输出端与ADC模块1的输入端连接,ADC模块1的输出端与卡尔曼滤波器2的输入端连接,卡尔曼滤波器2输出端还与MK60微处理器3的输入端连接,MK60微处理器3的输出端分别与人机交互界面6、执行器8和键盘输入模块9连接。As shown in Figure 1, a quantitative control system based on fuzzy adaptive PID includes MK60 microprocessor 3, ADC module 1, Kalman filter 2, pressure sensor module 12, system power supply 11, keyboard input module 9, human Machine interaction interface 6 and actuator 8, the output end of system power supply 11 is connected with the input end of Kalman filter 2, pressure sensor module 12 and MK60 microprocessor 3 respectively, the output end of pressure sensor module 12 is connected with ADC module 1 The input end is connected, the output end of the ADC module 1 is connected with the input end of the Kalman filter 2, the output end of the Kalman filter 2 is also connected with the input end of the MK60 microprocessor 3, and the output end of the MK60 microprocessor 3 is connected with the input end of the MK60 microprocessor 3 respectively. The human-computer interaction interface 6, the actuator 8 and the keyboard input module 9 are connected.

所述的MK60微处理器3,包括模糊自适应PID控制器4、LCD接口5、第一GPIO接口7、第二GPIO接口10;卡尔曼滤波器2和系统电源11的输出端分别与模糊自适应PID控制器4的输入端连接;模糊自适应PID控制器4的输出端通过LCD接口5与人机交互界面6连接,通过第一GPIO接口7与执行器8 连接,通过第二GPIO接口10与键盘输入模块9连接。Described MK60 microprocessor 3 comprises fuzzy adaptive PID controller 4, LCD interface 5, the first GPIO interface 7, the second GPIO interface 10; Adapt to the input terminal connection of the PID controller 4; the output terminal of the fuzzy adaptive PID controller 4 is connected with the human-computer interaction interface 6 through the LCD interface 5, connected with the actuator 8 through the first GPIO interface 7, and connected with the actuator 8 through the second GPIO interface 10 Connect with keyboard input module 9.

所述的人机交互界面6,为LCD显示器。The human-computer interaction interface 6 is an LCD display.

所述的ADC模块1,是基于ADS1218芯片的ADC模块。The ADC module 1 is an ADC module based on the ADS1218 chip.

如图2所示,所述的ADC模块1,包括第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第一电容C1、第二电容C2、第三电容C3、第四电容 C4、第五电容C5、第六电容C6、第七电容C7、第八电容C8、第一晶振Y1和 ADS1218芯片;第一电阻R1的一端与压力传感器模块12连接,另一端分别与第一电容C1的一端、第二电容C2的一端、ADS1218芯片的3号管脚AINO连接;第一电容C1的另一端接地;第二电阻R2的一端与压力传感器模块12连接,另一端分别与第二电容C2的另一端、第三电容C3的一端、ADS1218芯片的4 号管脚AINI连接;第三电容C3的另一端接地;第五电容C5的一端、第三电阻R3的一端分别接地;第五电容C5的另一端与ADS1218芯片的14号管脚VRCAP 连接;第三电阻R3的另一端与ADS1218芯片的17号管脚RDAC连接;ADS1218 芯片的24号管脚RESET分别与第四电阻R3的一端、第六电容C6的一端连接;第四电阻R4的另一端接3.3V电压;第六电容C6的另一端接地;ADS1218芯片的25号管脚XIN分别与第一晶振Y1的一端、第七电容C7的一端连接;ADS1218 芯片的26号管脚XOUT分别与第一晶振Y1的另一端、第八电容C8的一端连接;第七电容C7的另一端、第八电容C8的另一端接地;第四电C4容的一端分别与ADS1218芯片的47号管脚VREF+、46号管脚VREFOUT连接;ADS1218 芯片的48号管脚VREF-、45号管脚AGND、第四电容C4的另一端接地。As shown in Figure 2, the ADC module 1 includes a first resistor R1, a second resistor R2, a third resistor R3, a fourth resistor R4, a first capacitor C1, a second capacitor C2, a third capacitor C3, a Four capacitors C4, fifth capacitor C5, sixth capacitor C6, seventh capacitor C7, eighth capacitor C8, first crystal oscillator Y1 and ADS1218 chip; one end of the first resistor R1 is connected to the pressure sensor module 12, and the other end is respectively connected to the first One end of the first capacitor C1, one end of the second capacitor C2, and the No. 3 pin AINO of the ADS1218 chip are connected; the other end of the first capacitor C1 is grounded; one end of the second resistor R2 is connected to the pressure sensor module 12, and the other end is respectively connected to the first The other end of the second capacitor C2, one end of the third capacitor C3, and the No. 4 pin AINI of the ADS1218 chip are connected; the other end of the third capacitor C3 is grounded; one end of the fifth capacitor C5 and one end of the third resistor R3 are respectively grounded; The other end of the five-capacitor C5 is connected to the 14th pin VRCAP of the ADS1218 chip; the other end of the third resistor R3 is connected to the 17th pin RDAC of the ADS1218 chip; the 24th pin RESET of the ADS1218 chip is respectively connected to the fourth resistor R3 One end and one end of the sixth capacitor C6 are connected; the other end of the fourth resistor R4 is connected to 3.3V voltage; the other end of the sixth capacitor C6 is grounded; the 25th pin XIN of the ADS1218 chip is respectively connected to one end of the first crystal oscillator Y1, the seventh One end of the capacitor C7 is connected; the No. 26 pin XOUT of the ADS1218 chip is respectively connected to the other end of the first crystal oscillator Y1 and one end of the eighth capacitor C8; the other end of the seventh capacitor C7 and the other end of the eighth capacitor C8 are grounded; One end of the four-capacitor C4 is respectively connected to the 47th pin VREF+ and the 46th pin VREFOUT of the ADS1218 chip; the 48th pin VREF- and the 45th pin AGND of the ADS1218 chip, and the other end of the fourth capacitor C4 is grounded.

如图3所示,该系统使用时,键盘输入模块9用来输入所需称重药物的重量,人机交互界面6采用了LCD显示器,用来输出当前药瓶内药物的重量,并实时绘制重量增长曲线图;执行器8则是用于控制落药量的大小;压力传感器模块 12采集的重量值经ADC模块1转换后输入到卡尔曼滤波器2,以下是卡尔曼滤波器2的工作过程:As shown in Figure 3, when the system is in use, the keyboard input module 9 is used to input the weight of the medicine to be weighed, and the man-machine interface 6 uses an LCD display to output the weight of the medicine in the current medicine bottle and draw it in real time. The weight growth curve; the actuator 8 is used to control the amount of the dropped medicine; the weight value collected by the pressure sensor module 12 is converted by the ADC module 1 and then input to the Kalman filter 2, the following is the work of the Kalman filter 2 process:

首先利用系统的过程模型来预测系统下一状态,设在k时刻的系统状态为 X(k),则可以根据系统模型,由上一状态预测出当前状态:First, use the process model of the system to predict the next state of the system. Assuming that the system state at time k is X(k), the current state can be predicted from the previous state according to the system model:

X(k|k-1)=AX(k-1|k-1)+Bu(k) (1)X(k|k-1)=AX(k-1|k-1)+Bu(k) (1)

其中X(k|k-1)是上一时刻的状态对现在时刻状态的预测,X(k-1|k-1)是上一时刻状态的最优结果,u(k)为现在时刻状态的控制量。Among them, X(k|k-1) is the prediction of the state of the previous moment to the state of the current moment, X(k-1|k-1) is the optimal result of the state of the previous moment, and u(k) is the state of the current moment amount of control.

系统的状态已经更新,现在需要更新系统的误差估计协方差矩阵,用 P(k|k-1)表示误差估计协方差矩阵:The state of the system has been updated, and now the error estimation covariance matrix of the system needs to be updated, and P(k|k-1) is used to represent the error estimation covariance matrix:

P(k|k-1)=A*P(k-1|k-1)A′+Q (2)P(k|k-1)=A*P(k-1|k-1)A'+Q (2)

其中P(k|k-1)是在k时刻由上一状态对此状态的预测,P(k-1|k-1)是 X(k-1|k-1)对应的误差估计协方差矩阵,Q表示系统过程噪声的协方差。Where P(k|k-1) is the prediction of this state from the previous state at time k, and P(k-1|k-1) is the error estimation covariance corresponding to X(k-1|k-1) matrix, Q represents the covariance of the system process noise.

现在我们得到了预测结果,然后我们根据得到的现在状态的测量值进行修正得到最优的估计量X(k|k)Now we have the prediction result, and then we correct it according to the measured value of the current state to get the optimal estimator X(k|k)

X(k|k)=X(k|k-1)+Kg(k)*(Z(k)-HX(k|k-1)) (3)X(k|k)=X(k|k-1)+Kg(k)*(Z(k)-HX(k|k-1)) (3)

公式(3)中Kg(k)未知,则需要对其就行求解,就引出(4)式:Kg(k) in formula (3) is unknown, so it needs to be solved, and formula (4) is derived:

Kg(k)=P(k|k-1)*H′/(H*P(k|k-1)*H′+R) (4)Kg(k)=P(k|k-1)*H'/(H*P(k|k-1)*H'+R) (4)

到现在,我们以及得出的k时刻的系统状态的最优值X(k|k),为了让卡尔曼滤波器不断地进行下去,我们需要更新X(k|k)对应的P(k|k)Up to now, we have obtained the optimal value X(k|k) of the system state at time k. In order to make the Kalman filter continue, we need to update the corresponding P(k| k)

P(k|k)=(1-Kg(k)*H)*P(k|k-1) (5)P(k|k)=(1-Kg(k)*H)*P(k|k-1) (5)

经过卡尔曼滤波器2优化的重量值输入到模糊自适应PID控制器4。模糊自适应PID控制器4根据各模糊子集的隶属度赋值表和各参数模糊控制模型,应用模糊合成推理设计PID参数的模糊矩阵表,查出修正参数代入下式计算:The weight value optimized by the Kalman filter 2 is input to the fuzzy adaptive PID controller 4 . The fuzzy adaptive PID controller 4 is based on the membership degree assignment table of each fuzzy subset and the fuzzy control model of each parameter, and uses fuzzy synthesis reasoning to design the fuzzy matrix table of PID parameters, and finds out the correction parameters and substitutes them into the following formula for calculation:

kp=kp′+{ei,eci}p k p =k p ′+{e i ,ec i } p

ki=ki′+{ei,eci}i k i =k i ′+{e i ,ec i } i

kd=kd′+{ei,eci}d k d =k d ′+{e i ,ec i } d

在线运行过程中,控制系统通过对模糊逻辑规则的结果进行处理、查表和运算,完成对PID参数的在线自校正。During online operation, the control system completes online self-calibration of PID parameters by processing the results of fuzzy logic rules, looking up tables and computing.

模糊自适应PID控制器输出的控制期望输入到执行器模块,执行模块通过控制出药口口径的大小进行药物的定量控制。The control expectation output by the fuzzy adaptive PID controller is input to the actuator module, and the execution module controls the quantitative control of the drug by controlling the size of the drug outlet.

Claims (6)

1.一种基于模糊自适应PID的定量控制系统,其特征在于,包括微处理器、ADC模块、卡尔曼滤波器、压力传感器模块、电源模块、键盘输入模块、人机交互界面和执行器,电源模块的输出端分别与卡尔曼滤波器、压力传感器模块和微处理器的输入端连接,压力传感器模块的输出端与ADC模块的输入端连接,ADC模块的输出端与卡尔曼滤波器的输入端连接,卡尔曼滤波器输出端还与微处理器的输入端连接,微处理器的输出端分别与人机交互界面、执行器和键盘输入模块连接。1. a quantitative control system based on fuzzy self-adaptive PID, is characterized in that, comprises microprocessor, ADC module, Kalman filter, pressure sensor module, power supply module, keyboard input module, man-machine interface and actuator, The output terminal of the power module is connected to the input terminal of the Kalman filter, the pressure sensor module and the microprocessor respectively, the output terminal of the pressure sensor module is connected to the input terminal of the ADC module, and the output terminal of the ADC module is connected to the input terminal of the Kalman filter The output end of the Kalman filter is also connected with the input end of the microprocessor, and the output end of the microprocessor is respectively connected with the human-computer interaction interface, the actuator and the keyboard input module. 2.根据权利要求1所述的一种基于模糊自适应PID的定量控制系统,其特征在于,所述的微处理器,包括模糊自适应PID控制器、LCD接口、第一GPIO接口、第二GPIO接口;卡尔曼滤波器和电源模块的输出端分别与模糊自适应PID控制器的输入端连接;模糊自适应PID控制器的输出端通过LCD接口与人机交互界面连接,通过第一GPIO接口与执行器连接,通过第二GPIO接口与键盘输入模块连接。2. a kind of quantitative control system based on fuzzy adaptive PID according to claim 1, is characterized in that, described microprocessor comprises fuzzy adaptive PID controller, LCD interface, the first GPIO interface, the second GPIO interface; the output ends of the Kalman filter and the power module are respectively connected to the input ends of the fuzzy adaptive PID controller; the output ends of the fuzzy adaptive PID controller are connected to the human-computer interaction interface through the LCD interface, and through the first GPIO interface Connect with the actuator, and connect with the keyboard input module through the second GPIO interface. 3.根据权利要求1所述的一种基于模糊自适应PID的定量控制系统,其特征在于,所述的微处理器,为MK60型微处理器。3. a kind of quantitative control system based on fuzzy adaptive PID according to claim 1, is characterized in that, described microprocessor is MK60 type microprocessor. 4.根据权利要求1所述的一种基于模糊自适应PID的定量控制系统,其特征在于,所述的人机交互界面,为LCD显示器。4. A kind of quantitative control system based on fuzzy adaptive PID according to claim 1, characterized in that, the human-computer interaction interface is an LCD display. 5.根据权利要求1所述的一种基于模糊自适应PID的定量控制系统,其特征在于,所述的ADC模块,是基于ADS1218芯片的ADC模块。5. a kind of quantitative control system based on fuzzy adaptive PID according to claim 1, is characterized in that, described ADC module is the ADC module based on ADS1218 chip. 6. 根据权利要求1所述的一种基于模糊自适应PID的定量控制系统,其特征在于,所述的ADC模块,包括第一电阻、第二电阻、第三电阻、第四电阻、第一电容、第二电容、第三电容、第四电容、第五电容、第六电容、第七电容、第八电容、第一晶振和ADS1218芯片;第一电阻的一端与压力传感器模块连接,另一端分别与第一电容的一端、第二电容的一端、ADS1218芯片的3号管脚AINO连接;第一电容的另一端接地;第二电阻的一端与压力传感器模块连接,另一端分别与第二电容的另一端、第三电容的一端、ADS1218芯片的4号管脚AINI连接;第三电容的另一端接地;第五电容的一端、第三电阻的一端分别接地;第五电容的另一端与ADS1218芯片的14号管脚VRCAP连接;第三电阻的另一端与ADS1218芯片的17号管脚RDAC连接;ADS1218芯片的24号管脚RESET分别与第四电阻的一端、第六电容的一端连接;第四电阻的另一端接3.3V电压;第六电容的另一端接地;ADS1218芯片的25号管脚XIN分别与第一晶振的一端、第七电容的一端连接;ADS1218芯片的26号管脚XOUT分别与第一晶振的另一端、第八电容的一端连接;第七电容的另一端、第八电容的另一端接地;第四电容的一端分别与ADS1218芯片的47号管脚VREF+、46号管脚VREFOUT连接;ADS1218芯片的48号管脚VREF-、45号管脚AGND 、第四电容的另一端接地。6. a kind of quantitative control system based on fuzzy self-adaptive PID according to claim 1, is characterized in that, described ADC module comprises first resistance, second resistance, the 3rd resistance, the 4th resistance, the first Capacitor, second capacitor, third capacitor, fourth capacitor, fifth capacitor, sixth capacitor, seventh capacitor, eighth capacitor, first crystal oscillator and ADS1218 chip; one end of the first resistor is connected to the pressure sensor module, and the other end Connect to one end of the first capacitor, one end of the second capacitor, and AINO pin 3 of the ADS1218 chip; the other end of the first capacitor is grounded; one end of the second resistor is connected to the pressure sensor module, and the other end is respectively connected to the second capacitor The other end of the third capacitor, one end of the third capacitor, and the 4th pin AINI of the ADS1218 chip are connected; the other end of the third capacitor is grounded; one end of the fifth capacitor and one end of the third resistor are respectively grounded; the other end of the fifth capacitor is connected to the ADS1218 The 14th pin VRCAP of the chip is connected; the other end of the third resistor is connected to the 17th pin RDAC of the ADS1218 chip; the 24th pin RESET of the ADS1218 chip is respectively connected to one end of the fourth resistor and one end of the sixth capacitor; The other end of the four resistors is connected to 3.3V voltage; the other end of the sixth capacitor is grounded; the 25th pin XIN of the ADS1218 chip is respectively connected to one end of the first crystal oscillator and one end of the seventh capacitor; the 26th pin XOUT of the ADS1218 chip is respectively Connect with the other end of the first crystal oscillator and one end of the eighth capacitor; the other end of the seventh capacitor and the other end of the eighth capacitor are grounded; one end of the fourth capacitor is respectively connected to pin 47 VREF+ and pin 46 of the ADS1218 chip VREFOUT connection; the 48th pin VREF- of the ADS1218 chip, the 45th pin AGND, and the other end of the fourth capacitor are grounded.
CN201721496342.2U 2017-11-10 2017-11-10 A kind of quantitative control system based on Fuzzy Adaptive PID Expired - Fee Related CN208076958U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201721496342.2U CN208076958U (en) 2017-11-10 2017-11-10 A kind of quantitative control system based on Fuzzy Adaptive PID

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201721496342.2U CN208076958U (en) 2017-11-10 2017-11-10 A kind of quantitative control system based on Fuzzy Adaptive PID

Publications (1)

Publication Number Publication Date
CN208076958U true CN208076958U (en) 2018-11-09

Family

ID=64032969

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201721496342.2U Expired - Fee Related CN208076958U (en) 2017-11-10 2017-11-10 A kind of quantitative control system based on Fuzzy Adaptive PID

Country Status (1)

Country Link
CN (1) CN208076958U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113586417A (en) * 2021-09-01 2021-11-02 淮阴工学院 Air compressor grading control system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113586417A (en) * 2021-09-01 2021-11-02 淮阴工学院 Air compressor grading control system and method

Similar Documents

Publication Publication Date Title
CN105404141B (en) Fuzzy-adaptation PID control instrument and control method
CN103520786B (en) A kind of control method of flow of blood purification peristaltic pump
CN204926079U (en) Control integrated circuit board based on DSP and FPGA
CN208076958U (en) A kind of quantitative control system based on Fuzzy Adaptive PID
CN104132674A (en) Multi-signal output intelligent pressure transmitter
CN104330640A (en) Large scale and high accuracy RLC (radio link control) measurement device and method
CN205216730U (en) Accurate dispensing device of ration
CN107885120A (en) A kind of quantitative control system based on Kalman filter
CN109951077A (en) A program-controlled DC power module
CN102033673B (en) Capacitance test circuit and method for scanning line of capacitive touch screen and touch screen
CN204347631U (en) Based on the tank level control system of fuzzy
CN202958562U (en) Fully-automatic balanced pressure pesticide spraying barrel
CN103837170B (en) Frequency output type sensor automatic frequency compensation circuit and method
CN202083511U (en) Smart Wireless Capacitive Pressure Transmitter
CN206710912U (en) High-precision multipoint parallel temperature control device
CN103105869A (en) Three-tank single-loop liquid level system
CN206224455U (en) A kind of computer software testing device
CN205098579U (en) Full -automatic liquid liquid filling machine electrical system of vacuum type
CN206627797U (en) A kind of multi-path data acquiring system based on Modbus
WO2019174123A1 (en) Intelligent humidity sensor
CN206099946U (en) Adjustable sample hold circuit
CN2919694Y (en) High stability crystal oscillator control device
CN205255366U (en) PU feed proportioning system automatic measurement device
CN205068045U (en) Electronic batching scale based on C8051F020 singlechip
CN103716033B (en) A kind of method of Auto-matching multrirange switching point

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181109

Termination date: 20191110