CN207884485U - Pfc circuit, electric machine control system and transducer air conditioning - Google Patents

Pfc circuit, electric machine control system and transducer air conditioning Download PDF

Info

Publication number
CN207884485U
CN207884485U CN201820153377.4U CN201820153377U CN207884485U CN 207884485 U CN207884485 U CN 207884485U CN 201820153377 U CN201820153377 U CN 201820153377U CN 207884485 U CN207884485 U CN 207884485U
Authority
CN
China
Prior art keywords
value
current
voltage
bus
pfc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201820153377.4U
Other languages
Chinese (zh)
Inventor
霍军亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GD Midea Air Conditioning Equipment Co Ltd
Original Assignee
Guangdong Midea Refrigeration Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Midea Refrigeration Equipment Co Ltd filed Critical Guangdong Midea Refrigeration Equipment Co Ltd
Priority to CN201820153377.4U priority Critical patent/CN207884485U/en
Application granted granted Critical
Publication of CN207884485U publication Critical patent/CN207884485U/en
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

The utility model provides a kind of pfc circuit, electric machine control system and transducer air conditioning, electric machine control system is by including reactor, rectification part, current detecting part, filter circuit, alternating voltage sampling unit, DC voltage sampling unit and calculation control unit composition, and rectification part is by including that rectification unit concatenated again and two concatenated switch units of switching tube in parallel are formed in parallel four rectifier diodes two-by-two, full-wave rectifying circuit is constituted with this, calculation control unit includes PFC calculation control units, by the DC bus-bar voltage given value for obtaining motor operation, and according to AC-input voltage value, d-c bus voltage value, DC bus current value and DC bus-bar voltage given value generate the switching tube work of PFC duty cycle of switching signals driving rectification part, to carry out Active PFC to the alternating current of input.The relatively existing pfc circuit of the pfc circuit of the utility model embodiment can effectively improve efficiency, reduce common mode noise, and the reliability of entire electric machine control system is improved with this.

Description

Pfc circuit, electric machine control system and transducer air conditioning
Technical field
The utility model is related to convertible frequency air-conditioner technical field more particularly to pfc circuit, electric machine control system and convertible frequency air-conditioners Device.
Background technology
In order to cope with household appliances power conservation requirement, convertible frequency air-conditioner is developed rapidly, and active power factor correction is It is widely used in convertible frequency air-conditioner electric control part.The automatically controlled power factor correction portion of major part convertible frequency air-conditioner uses Boost at present (boosting) type circuit after electric current flows through rectifier bridge, supplies motor inverter, the electricity of this type after inductance and diode Control is the disadvantage is that AC-DC (AC-DC) transfer efficiency is relatively low;Or there is a kind of PFC (Active PFC) of no bridge mode Circuit, although the pfc circuit of this no bridge mode improves AC-DC transfer efficiencies to a certain extent, but there are common-mode noises Big problem.
The above is only used for auxiliary and understands the technical solution of the utility model, does not represent and recognizes that the above is existing Technology.
Utility model content
The main purpose of the utility model is to provide a kind of pfc circuit, electric machine control system and transducer air conditioning, purposes It is to solve the problems, such as in existing pfc circuit that there are transfer efficiency is relatively low or common-mode noise is big.
To achieve the above object, a kind of pfc circuit provided by the utility model, the pfc circuit include reactor, rectification Portion, current detecting part, filter circuit, alternating voltage sampling unit, DC voltage sampling unit and calculation control unit;The reactor connects The input terminal of AC power is connect, the reactor and rectification part are connected in ac power supply circuit;The rectification part output end connects DC bus is connect, the filter circuit is connect by the DC bus with the rectification part;The current detecting part is connected on On the DC bus;
The rectification part includes the first diode, the second diode, third diode, the 4th diode and included afterflow two Public anode after the first switch pipe and second switch pipe of pole pipe, first diode and the connection of the second diodes in parallel, And the common cathode after the third diode and the connection of the 4th diodes in parallel is connect with the L lines of AC power;It is described First switch pipe and second switch pipe series connection after points of common connection and AC power N lines connect, the first switch pipe and Common cathode connection after one end is connect with first diode and the second diodes in parallel after the series connection of second switch pipe, it is described Public affairs after the other end is connect with the third diode and the 4th diodes in parallel after first switch pipe and the series connection of second switch pipe Common-anode connects, and the control terminal of the first switch pipe and second switch pipe is separately connected the calculation control unit;Wherein,
The current detecting part is used to detect the electric current on the DC bus, and obtains corresponding DC bus current Value;The filter circuit is used to carry out smothing filtering to the direct current that the rectification part exports to export DC bus-bar voltage;Institute Alternating voltage sampling unit is stated for detecting AC-input voltage, and obtains corresponding AC-input voltage value;The DC voltage Sampling unit obtains corresponding d-c bus voltage value for detecting the DC bus-bar voltage;
The calculation control unit includes PFC calculation control units, and the PFC calculation control units are for obtaining the straight of motor operation Busbar voltage given value is flowed, and according to the AC-input voltage value, the d-c bus voltage value, the DC bus current Value and the DC bus-bar voltage given value generate PFC duty cycle of switching signals and the switching tube of the rectification part are driven to work, To carry out Active PFC to the alternating current of the input.
Preferably, the current detecting part is connected on the electrode line of the DC bus.
Preferably, the current detecting part is connected in the negative line of the DC bus.
Preferably, the electric machine control system includes phase current sampling portion and inverter;
The phase current sampling portion is used to sample the phase current signal of the motor and is input to the calculation control unit;
The inverter input terminal connects the DC bus, and the inverter output end connects motor;
The calculation control unit further includes motor calculation control unit, and the motor calculation control unit is used for according to the direct current The rotating speed of target value of bus voltage value, the phase current signal of the motor and the motor, which calculates, generates pulse width signal, The calculation control unit also generates triangle carrier signal, and is generated according to the triangle carrier signal and the pulse width signal Pwm control signal is to the inverter, to drive the motor operation.
Preferably, the motor calculation control unit includes:
Location/velocity estimation module is estimated to estimate with the rotor angle for obtaining motor for the rotor-position to motor Evaluation and motor speed estimated value;
Q axis gives current value computing module, for calculating Q axis according to motor rotating speed of target value, motor speed estimated value and giving Constant current value;
D axis gives current value computing module, for according to the maximum output voltage of inverter and the output voltage of inverter Amplitude calculates D axis and gives current value;
Current control module, for giving current value according to the Q axis, the D axis gives current value, the motor speed It estimated value, the d-c bus voltage value and the phase current values of motor sampling calculate generates the pulse width and believes Number, and the pwm control signal is generated to the inverter according to the triangle carrier signal and the pulse width signal, with Drive the motor operation.
Preferably, the PFC calculation control units include that weak magnetic critical voltage value computing module, AC voltage parameter determine mould Block, weak magnetic critical voltage value clipping module, the inductive current given value computing module, inductor current value computing module, PFC are opened OFF signal duty ratio computing module and switching signal generation module;Wherein
The weak magnetic critical voltage value computing module, for according to the Q axis given voltage value, the D axis given voltage Weak magnetic critical voltage value when motor operation is calculated in value and index of modulation Kmax;
The AC voltage parameter determining module, the AC-input voltage value for being acquired according to alternating voltage sampling unit, Calculate that respectively obtain AC-input voltage polarity mark signal, AC-input voltage virtual value, AC-input voltage absolute Value and zero passage detection signal;
The weak magnetic critical voltage value clipping module is described straight for being obtained to weak magnetic critical voltage value progress amplitude limit Flow busbar voltage given value;
The inductive current given value computing module, for female according to the DC bus-bar voltage given value and the direct current Line voltage value carries out that the inductive current given value is calculated;
The inductor current value computing module, for the inductive current to be calculated according to the DC bus current value Value;
The PFC switching signals duty ratio computing module, for according to the inductive current given value and inductance electricity The PFC switching signals duty cycle signals are calculated in flow valuve;
The switching signal generation module, for according to the PFC switching signals duty cycle signals, AC-input voltage pole Switching signal is calculated to control the first switch pipe or described in property beacon signal and alternating voltage zero-crossing signal Two switching tubes switch work.
Preferably, the given current value computing module of the D axis includes:
Weak magnetic controller, for the output voltage amplitude to the maximum output voltage of the inverter and the inverter into Row is calculated gives current value initial value to obtain D axis;
Clipping unit is given to obtain the D axis for giving current value initial value progress amplitude limiting processing to the D axis Current value.
To achieve the above object, the utility model also provides a kind of electric machine control system, including the PFC circuits.
To achieve the above object, the utility model also provides a kind of transducer air conditioning, including the electric machine control system.
Pfc circuit provided by the utility model applied to electric machine control system, by including reactor, rectification part, electric current Test section, filter circuit, alternating voltage sampling unit, DC voltage sampling unit and calculation control unit composition, and rectification part is by including Rectification unit concatenated again and two concatenated switch units of switching tube in parallel are formed in parallel four rectifier diodes two-by-two, with this Full-wave rectifying circuit is constituted, calculation control unit includes PFC calculation control units, and the DC bus-bar voltage by obtaining motor operation is given Definite value, and according to AC-input voltage value, d-c bus voltage value, DC bus current value and DC bus-bar voltage given value The switching tube work for generating PFC duty cycle of switching signals driving rectification part, to carry out Active PFC to the alternating current of input. The relatively existing pfc circuit of the pfc circuit of the utility model embodiment can effectively improve efficiency, reduce common mode noise, with this Improve the reliability of entire electric machine control system.
Description of the drawings
Fig. 1 is the electrical block diagram of the utility model pfc circuit first embodiment;
Fig. 2 is another electrical block diagram of the utility model pfc circuit first embodiment;
Fig. 3 is current loop schematic diagram of the electric current from the reactors of L lines in energy storage in first embodiment;
Fig. 4 is the current loop schematic diagram that electric current charges to electrolytic capacitor from L lines in first embodiment;
Fig. 5 is current loop schematic diagram of the electric current from the reactors of N lines in energy storage in first embodiment;
Fig. 6 is the current loop schematic diagram that electric current charges to electrolytic capacitor from N lines in first embodiment;
Fig. 7 is the sine wave modulation waveform diagram of the pwm signal of the control inverter in first embodiment;
Fig. 8 is the correspondence of the pwm signal and isosceles triangle carrier signal of the control inverter in first embodiment Schematic diagram;
Fig. 9 is 51 output pwm signal waveform of PFC calculation control units and the friendship of the utility model pfc circuit second embodiment Galvanic electricity stream waveform diagram;
Figure 10 is the motor calculation control unit high-level schematic functional block diagram of the utility model pfc circuit 3rd embodiment;
Figure 11 be motor D axle inductances and Q axle inductances with electric current change curve;
Figure 12 is the PFC calculation control unit high-level schematic functional block diagrams of the utility model pfc circuit fourth embodiment.
Specific implementation mode
The embodiments of the present invention are described below in detail, examples of the embodiments are shown in the accompanying drawings, wherein from beginning Same or similar element or element with the same or similar functions are indicated to same or similar label eventually.Below by ginseng The embodiment for examining attached drawing description is exemplary, it is intended to for explaining the utility model, and should not be understood as to the utility model Limitation.
Referring to Fig.1, Fig. 1 is the pfc circuit structural schematic diagram that the utility model first embodiment provides, for the ease of saying It is bright, illustrate only with the relevant part of the utility model embodiment, details are as follows:
The PFC of the utility model embodiment is applied to electric machine control system, including reactor L, rectification part 4, current detecting Portion 3, filter circuit 7, alternating voltage sampling unit 2, DC voltage sampling unit 6 and calculation control unit 5;Reactor L connection alternating currents The input terminal in source 1, reactor L and rectification part 4 are connected in ac power supply circuit;4 output end of rectification part connects DC bus, filter Wave circuit 7 is connect by DC bus with rectification part 4;Current detecting part 3 is connected on DC bus;Wherein
The direct current progress smothing filtering that filter circuit 7 is used to export rectification part 4 is to export DC bus-bar voltage, in figure Filter circuit 7 is mainly made of electrolytic capacitor EC.
Current detecting part 3 is for detecting DC bus current value Idc, and current detecting part 3 can be based on series resistance class here The current sampling circuit of type, then the output of the difference channel by being connect with resistance both ends, such sample circuit belong to the prior art Details are not described herein.
Alternating voltage sampling unit 2 and DC voltage sampling unit 6 are respectively used to Sample AC input voltage value Uac and direct current Bus voltage value Udc, here DC voltage sampling unit 6 can based in figure by the first divider resistance R4 and the second divider resistance R5 The circuit of simple pressure sampling circuit in series, alternating voltage sampling unit 2 can be identical as DC voltage sampling unit 6, It can be based on the voltage sampling circuit of other existing voltage sampling circuits such as transformer device structure type.
Calculation control unit 5 includes PFC calculation control units 51, and PFC calculation control units 51 are used to obtain the direct current of motor operation Busbar voltage given value Udref, and according to AC-input voltage value Uac, d-c bus voltage value Udc, DC bus current value Idc and DC bus-bar voltage given value Udref generates the switching tube work of PFC duty cycle of switching signals driving rectification part 4, with Active PFC is carried out to the alternating current of input.
Specifically, rectification part 4 includes the first rectification unit 41 and second switch unit 42, the first rectification unit 41 includes the The first branch and third diode D3 and the 4th diode D4 that one diode D1 and the second diode D2 parallel connections are formed are in parallel The second branch of formation, and the first branch and the second branch series connection, second switch unit 42 include concatenated two pole of included afterflow The first switch pipe S7 and second switch pipe S8 of pipe, the first rectification unit 41 and second switch unit 42 are in parallel, first switch pipe The control terminal of S7 and second switch pipe S8 are separately connected calculation control unit 5, and the first diode D1 and the second diode D3's connects altogether The total contact of point and first switch pipe S7 and second switch pipe S8 are separately connected the L lines and N lines of AC power, are constituted with this Ac power supply circuit.
The first diode D1, the second diode D2, the second diode D3 and the 4th diode D4 can be commonly low in figure Fast rectifier diode, first switch pipe S7 and second switch pipe S8 are metal-oxide-semiconductor (Metal Oxid Semiconductor, metal Oxide semiconductor), naturally it is also possible to it is other kinds of power tube such as IGBT pipes (Insulated Gate Bipolar Transistor, insulated gate bipolar transistor);
First diode D1 and the second diode D2 be connected in parallel after public anode and third diode D3 and the 4th Common cathode after diode D4 is connected in parallel is connect with the L lines of AC power;First switch pipe S7 and second switch pipe S8 The N lines of points of common connection and AC power after series connection connect, after first switch pipe S7 and the S8 series connection of second switch pipe one end with Common cathode after first diode D1 and the second diode D2 is connected in parallel connects, first switch pipe S7 and second switch pipe Public anode after the other end is connected in parallel with third diode D3 and the 4th diode D4 after S8 series connection is connect, first switch pipe The control terminal of S7 and second switch pipe S8 are separately connected calculation control unit 5;
The anode and cathode of sustained diode 5 is separately connected the poles D and the poles S of first switch pipe S7, and sustained diode 6 collects At inside first switch pipe S7, the anode and cathode of sustained diode 6 is separately connected the poles D and the poles S of second switch pipe S8, Sustained diode 6 is integrated in inside second switch pipe S8.In the rectification circuit for needing high current to work, need matched Rectifier diode model is likely difficult to be adapted to or selectable model causes price to increase less, and samples group in parallel two-by-two Conjunction can make the electric current of single diode only need the half of matching current, therefore relatively easy adaptation is much, and can also Cost is reduced, if rectification circuit needs the current requirements of 30A, and the specification of 30A is difficult to be adapted to for single rectifier diode It obtains or cost is also relatively high, and the rectifier diode for sampling single 20A is just easy to be adapted to, and even if two in parallel Cost is also more much lower than single, therefore circuit cost can be greatly reduced in the combining form of above-mentioned parallel connection two-by-two.
Thus, first rectification unit 41 of the present embodiment is by the first diode D1 in parallel being composed in series again two-by-two and the Two diode D2 and third diode D3 and the 4th diode D4 compositions, the rectification circuit of opposite two Diode series, Diode model is easy adaptation, can effectively reduce the cost of entire circuit.
Above-mentioned current detecting part 3 is connected on the positive line side of DC bus in Fig. 1, can also be connected on DC bus Cathode line side, as shown in Fig. 2, its to detect the function of DC bus current value Idc identical as Fig. 1.Current detecting part 3 is specific It can be connected between rectification part 4 and the filter circuit 7.
Pfc circuit operation principle shown in the present embodiment is as follows:It is helped by reactor L, rectification part 4 and electrolytic capacitor EC groups Wave current rectifying and wave filtering circuit, as shown in figure 3, when PFC calculation control units 51 control the S7 conductings of first switch pipe, second switch pipe S8 When cut-off, at this time AC power electric current from firewire, that is, L lines through the first diode D1 and the second diode D2, first switch The poles S and the poles D of pipe S7, reactor L return to AC power zero curve i.e. N lines and constitute circuit, realize the energy storage to reactor L;Work as PFC When calculation control unit 51 controls the S7 cut-offs of first switch pipe, as shown in figure 4, generating induced electromotive force, electromotive force on reactor L The electric current of generation flow through reactor L current direction and first switch pipe S7 cut-off before be consistent, the induction of reactor L at this time The electric current that electromotive force generates is through the first diode D1 and the second diode D2, current detecting part 3, electrolytic capacitor EC, second switch Sustained diode 6, reactor L and the current detecting part 3 of pipe S8 returns to AC power zero curve i.e. N lines and constitutes circuit with to electrolysis Capacitance EC charges, with this realize AC power electric current from L line starting directions when slave rectification part 4 input alternating current Phasing, that is, Active PFC of pressure and alternating current.
And when PFC calculation control units 51 control the S7 cut-offs of first switch pipe, when the S8 conductings of second switch pipe, such as Fig. 5 institutes Show, at this time AC power electric current from zero curve, that is, N lines through reactor L, the poles S of second switch pipe S8 and the poles D, third diode D3 and the 4th diode D4 returns to AC power firewire i.e. L lines and constitutes circuit, realizes the energy storage to reactor L;When PFC operation controls When portion 51 processed controls the S8 cut-offs of second switch pipe, as shown in fig. 6, induced electromotive force is generated on reactor L, what electromotive force generated Electric current flow through reactor L current direction and second switch pipe S8 cut-off before be consistent, the induced electromotive force of reactor L at this time Sustained diode 5 of the electric current of generation through first switch pipe S7, current detecting part 3, electrolytic capacitor EC, third diode D3 and 4th diode D4 returns to AC power firewire i.e. L lines and constitutes circuit to charge to electrolytic capacitor EC, and friendship is realized with this Galvanic electricity ource electric current from N line starting directions when slave rectification part 4 input alternating voltage and alternating current phasing, that is, power Factor correction.
Therefore, PFC calculation control units 51 pass through the alternate conduction of control first switch pipe S7 and second switch pipe S8 respectively And cut-off, realize the Active PFC function under full-wave rectification pattern.
Further, the electric machine control system cited in the pfc circuit of the utility model embodiment further includes that phase current is adopted Sample portion 9, current sample portion 9 are used for the phase current signal of sample motor 10 and are input to calculation control unit 5, such as the phase electricity in Fig. 1 Signal Iu, Iv, Iw are flowed, current sample portion 9 can be realized based on the current sample scheme of three resistance and single electron, belong to existing skill Art, details are not described herein.
8 input terminal of inverter connects DC bus, is that inverter 8 provides the DC power supply described in work by rectification busbar, 8 output end of inverter connects motor 10, and calculation control unit 5 further includes motor calculation control unit 52, and motor calculation control unit 52 is used According to phase current signal Iu, Iv, Iw of d-c bus voltage value Udc, motor and the rotating speed of target value ω ref of motor 10 It calculates and generates pulse width signal, calculation control unit 5 also generates triangle carrier signal, and wide according to triangle carrier signal and pulse It spends signal and generates pwm control signal to inverter 8, run with driving motor 10.
Specifically, motor calculation control unit 52 passes through simultaneously according to phase current signal Iu, Iv, Iw of the motor 10 of sampling The rotating speed of target value ω ref for further obtaining d-c bus voltage value Udc and motor 10 finally export six tunnels by calculating Pwm control signal is to inverter 8, and pwm control signal is macroscopically being based on sine wave modulation principle, as shown in fig. 7, passing through Lumbar triangle carrier wave S2 is modulated the pwm control signal waveform such as S1 finally obtained wherein all the way using sine voltage signal S3 Shown, the cycle T of PWM is traditionally arranged to be 100us-250us, finally by 8 driving motor 10 of inverter, due to motor around The inductance characteristic of group finally forms sinusoidal waveform as shown in the dotted portion waveform S4 in Fig. 7 on three windings of motor 10.
Since the frequency of PWM is very high, carries out pulsewidth calculating in motor calculation control unit 52 and ultimately produce PWM control letters Number when, be actually based on the Principle of Space Voltage Vector PWM (SVPWM) realization, that is, pass through calculate generate pulse width letter Number, and continuous triangle carrier signal is generated by timer inside motor calculation control unit 52, and by above-mentioned pulse width The mode final output pwm control signal that signal is compared with triangle carrier signal, pwm control signal share six tunnels, point Not Kong Zhi inverter 8 S1-S6 six switching tubes work, last inverter 8 exports three-phase driving signal to the realization pair of motor 10 The driving of motor 10 is run.
As shown in figure 8, the triangle carrier signal waveform diagram that the timer inside motor calculation control unit 52 generates is such as Shown in S6, as shown in Du1, Du2, Du3 in figure, practical Software Create pwm control signal waveform is pulse width signal This pulse width signal is sent into comparand register, being based on triangular carrier S6 finally by timer produces wherein all the way Pwm control signal is as shown in S5, and wherein each the triangular carrier cycle corresponds to one of pwm control signal period.Wherein S6 For triangle carrier signal in each triangle be isosceles triangle, the wave crest of each of which isosceles triangle in this isosceles three The intermediate time of the effective pulse width of pwm control signal in angular carrier cycle is identical, such as first isoceles triangle in figure The wave crest of shape corresponds to the midpoint b moment position at the a-c moment in effective pulse width, that is, figure of first pwm pulse waveform.It is logical It crosses different pulse width signals and ultimately generates the different pwm control signal of different effective pulse widths.This PWM of wherein six roads Control signal is added to six switching tubes of inverter 8 and finally constitutes three 120 ° of space phase mutual deviations when controlling motor 10 Vector finally synthesizes the voltage vector signal changed over time, and this voltage vector signal amplitude is constant, identical according to sine wave Frequency rotation so that motor 10 this voltage vector signal control under realize operating.
The pfc circuit applied to electric machine control system of the utility model embodiment, by include reactor L, rectification part 4, Current detecting part 3, filter circuit 7, alternating voltage sampling unit 2, DC voltage sampling unit 6 and calculation control unit 5 form, and whole Stream portion 4 is by including the rectification unit that four rectifier diodes concatenated again in parallel form two-by-two and two concatenated switches of switching tube Unit is formed in parallel, and full-wave rectifying circuit is constituted with this, and calculation control unit includes PFC calculation control units 51, by obtaining motor The DC bus-bar voltage given value Udref of operation, and according to AC-input voltage value Uac, d-c bus voltage value Udc, direct current Bus current value Idc and DC bus-bar voltage given value Udref generate opening for PFC duty cycle of switching signals driving rectification part 4 Pipe work is closed, to carry out Active PFC to the alternating current of input.The pfc circuit of the utility model embodiment is relatively existing Pfc circuit can effectively improve efficiency, reduce common mode noise, and the reliability of entire electric machine control system is improved with this.
Further, the second embodiment as pfc circuit provided by the utility model, the PFC based on the utility model The first embodiment of circuit, in the present embodiment, the current value for passing through reactor by detecting DC bus current Idc determinations IL, current detecting part 3 is in first switch pipe S7 or the intermediate time progress current sample of second switch pipe S8 closings.
Pfc circuit operation principle is illustrated in first embodiment it is found that controlling first switch pipe in PFC calculation control units 51 When S7 or second switch pipe S8 are opened, energy storage of the AC power electric current to reactor L passes through the electric current I of reactor at this timeL Without electrolytic capacitor EC, will not charge at this time to electrolytic capacitor EC, therefore there is no electric current to flow through on DC bus, only PFC calculation control units 51 control first switch pipe S7 or second switch pipe S8 when closing, the induction electric generated on reactor L The electric current I that gesture generatesLIt can just charge to electrolytic capacitor EC, just there is electric current on DC bus at this time, therefore in order to accurate Detect the electric current of DC bus, it should detect in first switch pipe S7 or second switch pipe S8 down periods.
Pwm signal waveform such as S7 control first switch pipe S7 that PFC calculation control units 51 as shown in Figure 9 export or the The on off state of two switching tube S8 switches over, and when carrying out Active PFC to control pfc circuit, current detecting part 3 is right The acquisition of DC bus current is control first switch pipe S7 or second switch pipe S8 in a pwm control signal period Be the T2 periods in the period figure of closing intermediate time such as figure in the t1 moment sampled, due to first switch pipe When the on off state of S7 or second switch pipe S8 switch over, reactor L can carry out the conversion of energy storage and release, above-mentioned Reactor L energy storage during switching tube is opened, passes through the current value I of reactorLIncrease, and in electricity of above-mentioned switching tube down periods The induced electromotive force that anti-device L is generated releases to the electrolytic capacitor electric discharge of filtering, passes through the current value I of reactorLReduce, It passes through the alternating current I of reactor LLIt follows the waveform diagram of the PWM of switching tube as shown in the S8 in figure, is opened in switching tube T1 devices its electric current increase opened, and its electric current reduces during the t2 that switching tube is closed, therefore select a suitable electric current Sampled point is important, the problem that otherwise sampling error can be brought big.Due in first switch pipe S7 or second switch pipe S8 When unlatching, pass through the electric current i of reactorLWithout electrolytic capacitor EC, only in first switch pipe S7 or second switch pipe S8 When closing, pass through the electric current i of reactorLJust pass through electrolytic capacitor, i.e., the electric current i of reactor at this timeLFor DC bus current value Idc, it is tests determined, it is handed over than accurate representative in the electric current that the intermediate time of above-mentioned switching tube down periods samples Galvanic electricity stream each PWM cycle actual current value, such as I in figureL_ sample is the current value that actual samples obtain, size Close to the electric current I of reactorLIn the average value of the PWM control signal device variations of entire switching tube, in this, as passing through electricity The current value I of anti-deviceL, therefore ensure that the accuracy of sampled current value, hereby it is ensured that FC calculation control units 51 control switching tube Work is accurate, and the accuracy of Active PFC is improved with this.
Further, the 3rd embodiment as pfc circuit provided by the utility model, the PFC based on the utility model The first embodiment of circuit, as shown in Figure 10, the motor calculation control unit 52 of the electric machine control system of the present embodiment further includes:
Location/velocity estimation module 521 is estimated for the rotor-position to motor to obtain the rotor of motor 10 Angle estimation value θ est and motor speed estimated value ω est;
Q axis gives current value Iqref computing modules 522, for being estimated according to motor rotating speed of target value ω ref, motor speed Evaluation ω est calculate Q axis and give current value Iqref;
D axis gives current value Idref computing modules 523, for according to the maximum output voltage Vmax of inverter and inversion The output voltage amplitude V1 of device calculates D axis and gives current value Idref;
Current control module 524 gives current value Idref, motor speed for giving current value Iqref, D axis according to Q axis Degree estimated value ω est, d-c bus voltage value Udc and phase current values Iu, Iv, Iw for being sampled to motor 10 calculate Pwm control signal is generated to pulse width signal, and according to above-mentioned triangle carrier signal and pulse width signal to inverter 8, To drive the motor 10 to run
Specifically, the motor 10 in the utility model embodiment can be the motor of position-sensor-free, location/velocity is estimated When counting the rotor angle estimated values theta est and motor speed estimated value ω est of the determination motor 10 of module 521, it can be seen by magnetic linkage Survey method realizes above-mentioned function, specifically, first can be according to the voltage V in two-phase stationary coordinate systemα、VβWith electric current Iα、IβIt calculates The estimated value of compressor electric motor useful flux in two-phase stationary coordinate system α and β axis direction is counted with specific reference to following formula (1) It calculates as follows:
Wherein,WithThe respectively estimated value of motor useful flux in α and β axis directions, VαAnd VβRespectively α and β Voltage in axis direction, IαAnd IβElectric current respectively in α and β axis directions, R are stator resistance, LqJoin for the q axle inductances of motor Number.
Then, the rotor angle estimated values theta est and motor actual speed of compressor electric motor are calculated according to following formula (2) Value value ω est:
Wherein, Kp_pllAnd Ki_pllRespectively proportional integration parameter, θerrFor misalignment angle estimated value, ωfFor speed low pass filtered The bandwidth of wave device.
Specifically, it includes superpositing unit and pi regulator that Q axis, which gives current value computing module 522,.Wherein, superpositing unit is used It is calculated in the difference of motor rotating speed of target value ω ref and motor speed estimated value ω est, PI adjusters are used for according to above-mentioned The difference of the motor rotating speed of target value ω ref and motor speed estimated value ω est of superpositing unit output carry out PI and adjust to export Q axis Given current value Iqref.
Specifically, it includes weak magnetic controller and clipping unit that D axis, which gives current value computing module 523, wherein weak magnetic controls Device be used to calculate with the output voltage amplitude V1 of inverter 8 the maximum output voltage Vmax of inverter 8 with obtain D axis to Constant current value initial value Id0, clipping unit be used for D axis give current value initial value Id0 carry out amplitude limiting processing with obtain D axis to Constant current value Idref.
In the embodiments of the present invention, at the beginning of weak magnetic controller can calculate the given current value of D axis according to following formula (3) Initial value Id0:
Wherein, Id0Current value initial value, K are given for D axisiFor integral control coefficient, V1 For the output voltage amplitude of inverter, vdFor D shaft voltages, vqFor Q shaft voltages, VmaxFor the maximum output voltage of inverter 8, Vdc The DC bus-bar voltage exported for rectifier 4.
In the embodiments of the present invention, clipping unit obtains D axis according to following formula (4) and gives current value:
Wherein, Idref is that D axis gives current value, IdemagFor motor demagnetization current limits value.
Specifically, the specific calculating of current control module 524 is as follows:
U, V, W three-phase electricity flow valuve Iu, Iv, Iw are obtained according to being sampled to motor 10, and passes through the static seat of three phase static-two-phase It marks converting unit and carries out Clark transformation, be based on following formula (5), obtain motor in two-phase stationary coordinate system α and β axis direction Electric current IαAnd Iβ
Iα=Iu
Further according to rotor angle estimated values thetaestPass through static-two cordic phase rotators converting unit of two-phase to carry out Park is converted, and actual current value Iq, Id of d axis and q axis under two-phase rotating coordinate system is calculated by following formula (6).
Id=Iαcosθest+Iβsinθest
Iq=-Iαsinθest+Iβcosθest (6)
Q shaft currents value and D shaft current value meters in current control module 524 are realized above by formula (5) and formula (6) Calculate calculating of the unit to actual current value Iq, Id of D axis and Q axis.
Further, current control module 524 can calculate Q axis given voltage values and the given electricity of D axis according to following formula (7) Pressure value:
Wherein, Vq is Q axis given voltage values, and Vd is D axis given voltage values, and Iqref is that Q axis gives current value, Idref is D axis gives current value, and Iq is Q shaft currents, and Id is D shaft currents, and Kpd and Kid are respectively the control proportional gain of D shaft currents and product It is respectively the control proportional gain of Q shaft currents and storage gain to divide gain, Kpq and Kiq, and ω is motor speed, and Ke is that motor 10 is anti- The coefficient of potential, Ld and Lq are respectively D axis and Q axle inductances, the two parameters can be provided by motor manufacturer, specifically can basis The motor D axis and Q axis that motor manufacturer provides with taking rated value therein in the change curve of electric current,Indicate the integrals of x (τ) in time.
Further, in order to further accurately obtain D axle inductance Ld and Q axle inductance Lq, current control module 524 is also For:The phase current values of motor operation are obtained, and transfer the first phase current values to prestore and the second phase current values are corresponding First Q axle inductances, the 2nd Q axle inductances value and the first D axle inductances, the 2nd D axle inductance values, according to phase current values and the first phase Current value and the second phase current values, the first Q axle inductances, the 2nd Q axle inductances value and the first D axle inductances, the 2nd D axle inductance value meters Calculate Q axle inductances and D axle inductance values.Specifically, the phase current signal Iu of motor 10 by obtaining 9 acquisition of current sample portion, Iv, Iw, wherein these three phase current sizes are identical, only need to use one of them.The motor D axis that motor manufacturer provides With the change curve of electric current as shown in Figure 11, wherein i is winding current, that is, phase current values of motor for inductance and Q axle inductances, this When can be prestored by above-mentioned curve graph the first phase current values i1 and the corresponding first Q axle inductance values of the second phase current values i2 Lq1, the 2nd Q axle inductance value Lq2 and the first D axle inductance values Ld1, the 2nd D axle inductance value Ld2, and currently detected phase electricity The corresponding D axle inductances value Ld and Q axle inductance values Lq of stream i can be calculated according to mathematic interpolation formula below:
Ld=Ld1+ (Ld2-Ld1) * (i-i1)/(i2-i1)
Lq=Lq1+ (Lq2-Lq1) * (i-i1)/(i2-i1)
Pass through corresponding D axle inductances Ld and Q the axis electricity of the phase current of the relatively accurate settled front motor 10 really of above-mentioned formula energy Feel Lq values.
It, can be according to angle of rotor of motor estimated value after getting Q axis given voltage value Vq and D axis given voltage values Vd θestPark inverse transformations are carried out by two-phase rotation-two-phase static coordinate converting unit to Vq and Vd, obtain what fixed coordinates were fastened Voltage value V α and V β, specific transformation for mula (8) are as follows:
Wherein, θ is 10 rotor angle of motor, can use above-mentioned rotor angle estimated values theta est herein.
Further, can according to voltage value V α and the V β that fixed coordinates are fastened by two-phase it is static-three phase static coordinate turn It changes unit and carries out Clark inverse transformations, obtain three-phase voltage Vu, Vv and Vw, specific transformation for mula (9) is as follows:
Vu=Vα
Then duty ratio computing unit can carry out duty ratio according to DC bus-bar voltage Udc and three-phase voltage Vu, Vv and Vw It calculates, obtains duty cycle control signal, i.e. three-phase duty ratio Du, Dv and Dw, specific formula for calculation (10) is as follows:
Du=(Vu+0.5Vdc)/Vdc
Dv=(Vv+0.5Vdc)/Vdc
Dw=(Vw+0.5Vdc)/Vdc (10)
Wherein, Udc is DC bus-bar voltage.
Here three-phase duty cycle signals contain three road pulse width signals, such as a wherein phase duty ratio Du in Fig. 8 In different moments corresponding Du1, Du2, Du3 duty cycle signals, finally generated again by the timer inside calculation control unit Triangle carrier signal generates corresponding three road pwm control signal to the upper bridge arm three-way switch pipe of inverter 8, and the three of lower bridge arm Road controls signal and the three complementary road pwm control signals that are corresponding to it, therefore three-phase duty cycle signals here are practical contains Six road pwm control signals, finally according to the corresponding six roads pwm control signal of three-phase duty ratio Du, Dv, Dw to the six of inverter 4 Way switch pipe is controlled, to realize that the driving to motor 10 is run.
Further, the fourth embodiment as pfc circuit provided by the utility model, the PFC based on the utility model The 3rd embodiment of circuit, as shown in figure 12, in the present embodiment, PFC calculation control units 51 include weak magnetic critical voltage value Us Computing module 511, AC voltage parameter determining module 512, weak magnetic critical voltage value Us clipping modules 513, inductive current are given Value ILref computing modules 514, inductor current value ILIt computing module 516, PFC switching signal duty ratios computing module 515 and opens OFF signal generation module 517;
Weak magnetic critical voltage value Us computing modules 511 are used for Q axis given voltage value Vq, D axis given voltage value Vd and tune Weak magnetic critical voltage value Us when motor operation is calculated in COEFFICIENT K max processed.
AC voltage parameter determining module 512, the AC-input voltage value for being acquired according to alternating voltage sampling unit 2 Uac carries out calculating and respectively obtains AC-input voltage polarity mark signal, AC-input voltage virtual value Urms, exchange input Absolute value of voltage | Uac | and zero passage detection signal, since AC-input voltage value Uac is the voltage value that sine wave changes, It is not difficult to obtain above-mentioned parameter value by analyzing and calculating its real-time voltage value in a sine wave period.
Weak magnetic critical voltage value Us clipping modules 513 obtain direct current mother for carrying out amplitude limit to weak magnetic critical voltage value Us Line voltage given value Udref.
Inductive current given value ILrefComputing module 514, for according to DC bus-bar voltage given value Udref and direct current Bus voltage value Udc carries out that inductive current given value I is calculatedLref
Inductor current value ILComputing module 516, for inductor current value I to be calculated according to DC bus current value IdcL
PFC switching signal duty ratios computing module 515, for according to inductive current given value ILrefWith inductor current value IL PFC switching signal duty cycle signals are calculated;
Switching signal generation module 517, for according to PFC switching signals duty cycle signals, AC-input voltage polarity mark Know signal and switching signal is calculated to control first switch pipe S7 or second switch pipe S8 in alternating voltage zero-crossing signal Switch work.
Specifically, weak magnetic critical voltage value Us clipping modules 513 are calculated based on following equation (11):
Wherein Vd is D axis given voltage values, and Vq is Q axis given voltage values, the two parameters are in above-mentioned 3rd embodiment The current control module 524 of motor calculation control unit 52 be calculated based on formula (7), Kmax is the index of modulation, i.e. inversion The ratio between device maximum output voltage and busbar voltage.If the case where considering linear modulation,
Further, weak magnetic critical voltage value Us is passed through amplitude limit [U by weak magnetic critical voltage value Us clipping modules 513dc_min, Udc_max] after obtain the command value Udref of DC bus-bar voltage, wherein Udc_minIt is determined according to input voltage, usually takes Udc_min =Uac_max+U0,Uac_maxFor the maximum value of alternating voltage, U0For constant, recommendation takes 5V-10V.Udc_maxAccording to system pressure resistance and protect Certain surplus is stayed to determine, Udc_max=Urate-U1,UrateFor device pressure voltage, IPM module pressure resistances can used in the present embodiment It is taken as 500V, i.e. Urate=500V, U1To retain pressure-resistant surplus, recommend 50V-100V, U in the present embodiment1It can be taken as 100V.
Further, inductive current given value ILrefInductive current given value I is calculated in computing module 514LrefWhen, first DC bus-bar voltage given value Udref and d-c bus voltage value Udc are made the difference, and carry out PI controls, is multiplied by supply voltage Absolute value | Uac |, multiplied by with the 1/U reciprocal of supply voltage virtual value square2Rms obtains the command value I of inductive currentLref
Further, inductor current value ILInductor current value I is calculated in computing module 516LWhen, pass through DC bus electricity Inductor current value I is calculated in flow valuve IdcL, in second embodiment it is found that DC bus current value Idc is first switch pipe The inductor current value I that S7 or second switch pipe S8 down periods pass through reactor LL, therefore with DC bus current value Idc be Inductor current value I can be representedL
Further, when PFC switching signal duty cycle signals are calculated in PFC switching signals duty ratio computing module 515, According to inductive current given value ILrefWith the actual value I of inductive currentLIt makes the difference, and carries out PI control acquisition PFC switching signals and account for Sky ratio D.
Further, switching signal generation module 517 is finally according to PFC switching signal duty cycle signals D exchange input electricity Polarity mark signal and alternating voltage zero-crossing signal is pressed finally to determine output to first switch pipe S7 or second switch pipe S8 The pwm control signal for switching work, to control pfc circuit work.
The PFC calculation control units 51 of the present embodiment calculate generate control switching tube work switching signal during, by The pwm control signal for generating control inverter is being calculated finally to obtain the operation of motor 10 in introducing motor calculation control unit 52 Relevant parameter such as Q axis given voltage value Vq and D axis given voltage value Vd with obtain weak magnetic control parameter value, therefore its transport Control process introduces the real-time parameter during motor 10 controls so that the control of pfc circuit can monitor motor 10 in real time Loading condition and change, therefore control it is more accurate.
The utility model also provides a kind of electric machine control system, and electric machine control system can be used for driving permanent magnet synchronous motor Operation can be applicable in the household appliance of the sampling permanent magnet synchronous motor work such as air conditioner or washing machine, the utility model Electric machine control system includes the pfc circuit of above-mentioned the utility model embodiment, and can effectively improve entire electric machine control system can By property.
The utility model also provides a kind of transducer air conditioning, and transducer air conditioning includes indoor unit part and outdoor machine part, Wherein outdoor controller and/or indoor machine controller may include the electric machine control system described in the utility model embodiment, To control indoor fan either outdoor fan or outdoor compressor operation, the reliable of entire transducer air conditioning can be effectively promoted Property.
In the description of this specification, the description meaning of reference term " first embodiment ", " second embodiment ", " example " etc. Refer at least one implementation that specific method, device or feature described in conjunction with this embodiment or example are contained in the utility model In example or example.In the present specification, schematic expression of the above terms are necessarily directed to identical embodiment or show Example.Moreover, specific features, method, apparatus or the feature of description can be in any one or more of the embodiments or examples to close Suitable mode combines.In addition, without conflicting with each other, those skilled in the art can will be described in this specification The feature of different embodiments or examples and different embodiments or examples is combined.
It these are only the preferred embodiment of the utility model, it does not limit the scope of the patent of the present invention, every Equivalent structure or equivalent flow shift made based on the specification and figures of the utility model, is applied directly or indirectly in Other related technical areas are equally included in the patent within the scope of the utility model.

Claims (9)

1. a kind of pfc circuit, the pfc circuit is applied to electric machine control system, which is characterized in that the pfc circuit includes electricity Anti- device, rectification part, current detecting part, filter circuit, alternating voltage sampling unit, DC voltage sampling unit and calculation control unit;Institute The input terminal of reactor connection AC power is stated, the reactor and rectification part are connected in ac power supply circuit;The rectification Portion's output end connects DC bus, and the filter circuit is connect by the DC bus with the rectification part;The electric current inspection Survey portion is connected on the DC bus;
The rectification part includes the first diode, the second diode, third diode, the 4th diode and included fly-wheel diode First switch pipe and second switch pipe, first diode and the second diodes in parallel connection after public anode, and Common cathode after the third diode and the connection of the 4th diodes in parallel is connect with the L lines of AC power;Described first The N lines of points of common connection and AC power after switching tube and the series connection of second switch pipe connect, the first switch pipe and second Common cathode connection after one end is connect with first diode and the second diodes in parallel after switching tube series connection, described first Public sun after the other end is connect with the third diode and the 4th diodes in parallel after switching tube and the series connection of second switch pipe Pole connects, and the control terminal of the first switch pipe and second switch pipe is separately connected the calculation control unit;Wherein,
The current detecting part is used to detect the electric current on the DC bus, and obtains corresponding DC bus current value;Institute It states direct current of the filter circuit for being exported to the rectification part and carries out smothing filtering to export DC bus-bar voltage;The exchange Voltage sample portion obtains corresponding AC-input voltage value for detecting AC-input voltage;The DC voltage sampling unit For detecting the DC bus-bar voltage, and obtain corresponding d-c bus voltage value;
The calculation control unit includes PFC calculation control units, and the direct current that the PFC calculation control units are used to obtain motor operation is female Line voltage given value, and according to the AC-input voltage value, the d-c bus voltage value, the DC bus current value with And the DC bus-bar voltage given value generates PFC duty cycle of switching signals and the switching tube of the rectification part is driven to work, with right The alternating current of the input carries out Active PFC.
2. pfc circuit as described in claim 1, which is characterized in that the current detecting part is connected on the rectification part and institute Between stating filter circuit, pass through the current value of the reactor by detecting the DC bus current determination.
3. pfc circuit as claimed in claim 2, which is characterized in that the current detecting part is connected on the DC bus On electrode line.
4. pfc circuit as claimed in claim 2, which is characterized in that the current detecting part is connected on the DC bus In negative line.
5. pfc circuit as described in claim 1, which is characterized in that the electric machine control system include phase current sampling portion and Inverter;
The phase current sampling portion is used to sample the phase current signal of the motor and is input to the calculation control unit;
The inverter input terminal connects the DC bus, and the inverter output end connects motor;
The calculation control unit further includes motor calculation control unit, and the motor calculation control unit is used for according to the DC bus The rotating speed of target value of voltage value, the phase current signal of the motor and the motor, which calculates, generates pulse width signal, described Calculation control unit also generates triangle carrier signal, and generates PWM according to the triangle carrier signal and the pulse width signal Signal is controlled to the inverter, to drive the motor operation.
6. pfc circuit as claimed in claim 5, which is characterized in that the motor calculation control unit includes:
Location/velocity estimation module is estimated for the rotor-position to motor to obtain the rotor angle estimated value of motor With motor speed estimated value;
Q axis gives current value computing module, for calculating the given electricity of Q axis according to motor rotating speed of target value, motor speed estimated value Flow valuve;
D axis gives current value computing module, for according to the maximum output voltage of inverter and the output voltage amplitude of inverter It calculates D axis and gives current value;
Current control module, for giving current value according to the Q axis, the D axis gives current value, the motor speed is estimated It value, the d-c bus voltage value and the phase current values of motor sampling calculate generates the pulse width signal, and The pwm control signal is generated to the inverter, with driving according to the triangle carrier signal and the pulse width signal The motor operation.
7. pfc circuit as claimed in claim 6, which is characterized in that the PFC calculation control units include weak magnetic critical voltage value Computing module, AC voltage parameter determining module, weak magnetic critical voltage value clipping module, the inductive current given value calculate mould Block, inductor current value computing module, PFC switching signal duty ratio computing modules and switching signal generation module;Wherein
The weak magnetic critical voltage value computing module, for according to the Q axis given voltage value, the D axis given voltage value with And the weak magnetic critical voltage values of index of modulation Kmax when being calculated motor operation;
The AC voltage parameter determining module, the AC-input voltage value for being acquired according to alternating voltage sampling unit carry out Calculating respectively obtain AC-input voltage polarity mark signal, AC-input voltage virtual value, AC-input voltage absolute value and Zero passage detection signal;
The weak magnetic critical voltage value clipping module obtains the direct current mother for carrying out amplitude limit to the weak magnetic critical voltage value Line voltage given value;
The inductive current given value computing module, for according to the DC bus-bar voltage given value and DC bus electricity Pressure value carries out that the inductive current given value is calculated;
The inductor current value computing module, for the inductor current value to be calculated according to the DC bus current value;
The PFC switching signals duty ratio computing module, for according to the inductive current given value and the inductor current value The PFC switching signals duty cycle signals are calculated;
The switching signal generation module, for according to the PFC switching signals duty cycle signals, AC-input voltage polarity mark Show that switching signal is calculated to control the first switch pipe or described second open in signal and alternating voltage zero-crossing signal It closes pipe and switchs work.
8. a kind of electric machine control system, which is characterized in that including pfc circuit as described in any one of claim 1 to 7.
9. a kind of transducer air conditioning, which is characterized in that including electric machine control system as claimed in claim 8.
CN201820153377.4U 2018-01-29 2018-01-29 Pfc circuit, electric machine control system and transducer air conditioning Withdrawn - After Issue CN207884485U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820153377.4U CN207884485U (en) 2018-01-29 2018-01-29 Pfc circuit, electric machine control system and transducer air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820153377.4U CN207884485U (en) 2018-01-29 2018-01-29 Pfc circuit, electric machine control system and transducer air conditioning

Publications (1)

Publication Number Publication Date
CN207884485U true CN207884485U (en) 2018-09-18

Family

ID=63507872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820153377.4U Withdrawn - After Issue CN207884485U (en) 2018-01-29 2018-01-29 Pfc circuit, electric machine control system and transducer air conditioning

Country Status (1)

Country Link
CN (1) CN207884485U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023473A (en) * 2018-01-29 2018-05-11 广东美的制冷设备有限公司 Pfc circuit, electric machine control system and transducer air conditioning

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023473A (en) * 2018-01-29 2018-05-11 广东美的制冷设备有限公司 Pfc circuit, electric machine control system and transducer air conditioning
CN108023473B (en) * 2018-01-29 2023-10-31 广东美的制冷设备有限公司 PFC circuit, motor control system and variable frequency air conditioner

Similar Documents

Publication Publication Date Title
CN108054913B (en) PFC circuit, motor control system and variable frequency air conditioner
CN108023473B (en) PFC circuit, motor control system and variable frequency air conditioner
CN108199576A (en) Pfc circuit, electric machine control system and transducer air conditioning
CN107681929A (en) Electric machine control system, transducer air conditioning
JP4429338B2 (en) Motor control device, current detection unit
CN101025156B (en) DC frequency-changeable compressor driving apparatus and method
CN105119536B (en) A kind of motor driver topology and its control method
CN108123593A (en) Pfc circuit, electric machine control system and transducer air conditioning
CN110224648A (en) Permanent magnet synchronous motor parameter identification and method for controlling position-less sensor and system
CN110297182B (en) Power electronic load system for simulating open-winding permanent magnet synchronous motor
CN101951182B (en) Voltage compensation method of pulse width modulation output based on voltage equivalent
CN101674046A (en) Electric current reconstructing and over-modulating device of air conditioning frequency converter and method thereof
CN207427006U (en) Electric machine control system, transducer air conditioning
CN110112964A (en) A kind of brushless DC motor without position sensor commutation position correction system and method
CN109713949A (en) A kind of suppressing method and system of torque pulsation of brushless DC motor
CN110299882B (en) Three-vector model prediction control method for hybrid power supply type open winding permanent magnet synchronous motor
CN111130333B (en) Control method, control device, PFC circuit, motor driving device and air conditioner
CN106788048A (en) Brushless DC motor control system and control method based on no electrolytic capacitor inverter
CN109525152A (en) Motor drive control method, device and circuit
CN108023474B (en) PFC circuit, motor control system and variable frequency air conditioner
CN108054914A (en) Pfc circuit, electric machine control system and transducer air conditioning
CN109639160A (en) Novel unidirectional three-phase tri-level rectifier based on soft switch technique
CN207884488U (en) Pfc circuit, electric machine control system and transducer air conditioning
CN209488475U (en) Motor control assembly and electrical equipment based on FOC
CN207884485U (en) Pfc circuit, electric machine control system and transducer air conditioning

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20180918

Effective date of abandoning: 20231031

AV01 Patent right actively abandoned

Granted publication date: 20180918

Effective date of abandoning: 20231031

AV01 Patent right actively abandoned
AV01 Patent right actively abandoned