CN207780388U - 一种偏振分束器 - Google Patents

一种偏振分束器 Download PDF

Info

Publication number
CN207780388U
CN207780388U CN201820162844.XU CN201820162844U CN207780388U CN 207780388 U CN207780388 U CN 207780388U CN 201820162844 U CN201820162844 U CN 201820162844U CN 207780388 U CN207780388 U CN 207780388U
Authority
CN
China
Prior art keywords
waveguide
shaped
slab
polarization beam
caldding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201820162844.XU
Other languages
English (en)
Inventor
黄田野
谢苑
吴易恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
Original Assignee
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences filed Critical China University of Geosciences
Priority to CN201820162844.XU priority Critical patent/CN207780388U/zh
Application granted granted Critical
Publication of CN207780388U publication Critical patent/CN207780388U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

本实用新型涉及一种偏振分束器,包括两个波导芯,两个波导芯为条形波导和J形波导;条形波导包括有依次连接的狭缝波导和第一输出波导,狭缝波导包括有上覆盖层、狭缝和下覆盖层,狭缝位于上覆盖层和下覆盖层之间,狭缝采用的材料是氧化铟锡,上覆盖层、下覆盖层和第一输出波导采用的材料均为硅;J形波导包括有输入波导和第二输出波导,第二输出波导为弧形波导,J形波导采用的材料为硅;条形波导与J形波导之间存在间隔,在其侧面的长度垂直方向上,狭缝波导和输入波导在交错重叠的部分及间隔形成耦合区,该偏振分束器通过设置狭缝波导及在狭缝中填充氧化铟锡ITO材料,减小了耦合波导的长度,实现了尺寸优化,且插入损耗低、偏振消光比高。

Description

一种偏振分束器
技术领域
本实用新型涉及光学技术领域,具体涉及一种偏振分束器。
背景技术
偏振是指横波的振动矢量(垂直于波的传播方向)偏于某些方向的现象。偏振控制在许多应用领域起着非常关键的作用,例如通信,生物传感,量子光学等,而高效率和小尺寸的偏振控制器件在这些领域具有非常重要的应用价值。光通信中的偏振分束器(polarization beam splitter)是一种集成光电子器件,用于实现TE(横电)模和TM(横磁)模的分离。偏振分束器的实现方法主要基于二维光栅和波导两大类,目前基于波导的偏振分束器有着比较广泛的应用,然而基于波导的偏振分束器大多尺寸大,不利于器件的高度集成化,且工艺容差小,需要复杂甚至非标准的工艺步骤。
狭缝波导因为其光场限制能力较高的特点而日益受到人们的重视,其数值计算及结构优化为进一步完善波导设计、获得低损耗高功率的波导结构具有重要意义。
氧化铟锡(ITO)作为等离子体激元特性材料及超材料应用的替代材料获得了人们的关注,其载流子浓度可通过重掺杂等方式改变,而载流子的改变可以显著地改变其介电常数。基于这一优势,ITO被广泛应用于无源及有源器件。调节其载流子浓度,可使光信号中TM模式有效地与ITO相互作用,产生强烈的极化效应并极大改变光信号中TM模式的有效折射率。因此将氧化铟锡(ITO)和狭缝波导进行组合来实现实现TE(横电)模和TM(横磁)模的分离就很有必要。
实用新型内容
有鉴于此,本实用新型的公开了一种偏振分束器,具有结构简洁、高消光比、高性能等优点。
本实用新型的提供一种偏振分束器,包括两个波导芯,两个所述波导芯分别为条形波导和J形波导;
所述条形波导包括有依次连接的狭缝波导和第一输出波导,所述狭缝波导包括有上覆盖层、狭缝和下覆盖层,所述狭缝位于上覆盖层和下覆盖层之间,所述狭缝采用的材料是氧化铟锡,所述上覆盖层、下覆盖层和第一输出波导采用的材料均为硅;
所述J形波导包括有依次连接的输入波导和第二输出波导,所述第二输出波导为弧形波导,所述J形波导采用的材料为硅;
所述条形波导与所述J形波导之间平行交错设置且存在间隔,在条形波导或J形波导侧面的长度垂直方向上,所述狭缝波导和输入波导交错重叠的部分及之间的间隔形成耦合区。
进一步地,还包括位于所述条形波导顶部及底部、所述J形波导顶部及底部、所述条形波导和所述J形波导之间的包层,以及位于包层底部的衬底。
进一步地,所述条形波导及J形波导折射率均大于所述包层折射率。
进一步地,所述包层的材料为二氧化硅。
进一步地,所述条形波导的高度为340nm,所述条形波导的宽度为312nm;所述狭缝的高度为1nm-20nm;所述J形波导的高度为340nm,所述J形波导的宽度为300nm;所述第二输出波导是度数为半径为2μm的弧形波导;所述条形波导与J形波导之间的间隔是200nm;所述耦合区长度为5.6μm。
进一步地,所述狭缝波导材料氧化铟锡的载流子浓度为2.0*1020cm-3—6.5*1020cm-3,所述狭缝波导材料氧化铟锡的介电常数接近零。
本实用新型提供的技术方案带来的有益效果是:该偏振分束器通过设置狭缝波导及填充氧化铟锡ITO材料,减小了耦合波导的长度,实现了尺寸优化,且插入损耗低、偏振消光比高。
附图说明
图1是本实用新型实施例的条形波导及J形波导的结构示意图;
图2是本实用新型实施例的耦合区横截面的示意图;
图3是本实用新型实施例的输入光信号的TE模的能量分布图;
图4是本实用新型实施例的输入光信号的TM模的能量分布图;
图5是本实用新型实施例的消光比与波长的关系曲线;
图6是本实用新型实施例的插入损耗与波长的关系曲线。
图中:1、条形波导 11、狭缝波导 111、上覆盖层 112、狭缝 113、下覆盖层 12、第一输出波导 2、J形波导 21、输入波导 22、第二输出波导 3、包层 4、衬底 5、耦合区。
具体实施方式
为使本实用新型的目的、技术方案和优点更加清楚,下面将结合附图对本实用新型实施方式作进一步地描述。
请参考图1和图2,本实用新型的实施例公开了一种偏振分束器,该偏振分束器由两个波导芯构成,两个波导芯分别为条形波导1和J形波导2。
所述条形波导1包括有狭缝波导11和第一输出波导12,其中,狭缝波导11包括有上覆盖层111、狭缝112和下覆盖层113,狭缝112位于上覆盖层111和下覆盖层113之间,所述上覆盖层111和所述下覆盖层113采用的材料是硅,狭缝112采用的材料是氧化铟锡,即ITO,所述第一输出波导12采用的材料是硅。
所述J形波导2包括有输入波导21和第二输出波导22,所述第二输出波导22为弧形波导,且其弯曲方向背对条形波导1方向,所述J形波导2采用的材料是硅,即其中的输入波导21和第二输出波导22采用的材料均为硅。
请继续参考图1,所述条形波导1与所述J形波导2之间存在间隔w3。狭缝波导11和输入波导21平行交错设置,在条形波导1或J形波导2侧面的长度垂直方向上,所述狭缝波导11和输入波导21交错重叠的部分以及之间的间隔形成耦合区5,所述耦合区5对应在图1中显示的虚线框区域,从而实现对光信号的耦合,将横电TE模从所述J形波导2的输入波导21输入,耦合至所述条形波导1的狭缝波导11并从所述第一输出波导12输出。
本实用新型的实施例提供的偏振分束器还包括有包层3,所述包层3位于所述条形波导1顶部及底部、所述J形波导2顶部及底部、所述条形波导1和所述J形波导2之间,所述包层3底部设有衬底4;特别地,所述条形波导1及J形波导2折射率均大于所述包层3折射率。
由于波导的折射率高才能满足全反射的条件,因此包层3的折射率略小于条形波导1和J形波导2的折射率,可以减弱条形波导1和J形波导2对光场的束缚,提高与周围条形波导1和J形波导2的耦合强度,同时可使耦合区5的长度不会太长。
在本实施例中,各部分的尺寸为:
请继续参考图1和图2,所述条形波导1的高度h1为340nm,所述条形波导1的宽度w1为312nm;所述狭缝112的高度h3为10nm;所述J形波导2的高度h2为340nm,所述J形波导2的宽度w2为300nm;所述J形波导2的第二输出波导21是度数为半径r为2μm的弧形波导;所述条形波导1与J形波导2之间的间隔w3是200nm;所述偏振分束器的耦合区5长度为5.6μm。所述条形波导1的高度和J形波导2的高度相同,但宽度不同,因此所述条形波导1和J形波导2之间是非对称的。
请参考图3和图4,可以分别看出光信号中的TE和TM模在本实施例所述的偏振分束器中的传输过程中的能量分布。具体的,光信号在本实施例所述的偏振分束器中的传输过程如下:包含TE和TM模的输入信号从J形波导2的输入波导21输入,J型波导2与条形波导1中的TE模式满足相位匹配条件,故TE模式的光场能量从J型波导2耦合至条形波导1,而TM模式具有较大相位失配,无法进行高效的光耦合,大部分TM模式能量仍沿J形波导2传播,小部分耦合至条形波导1的TM模式能量被狭缝112中的ITO吸收。所以在通过耦合区后,TE和TM模被分离,光信号中的TE模大多从条形波导1中的第一输出波导12中输出,光信号中的TM模大多从J形波导2的第二输出波导22中输出。
请参考图5和图6,光信号经耦合区5耦合之后,最后在第一输出波导12和第二输出波导22的输出端口可以获得高偏振消光比的TE和TM模光信号。
TM的消光比:即在TM模的输出波导输出的TM能量和输出的TE能量的比值。
TE的消光比:即在TE模的输出波导输出的TE能量和输出TM能量的比值。
由此,消光比越大越好,TM的消光比越大,说明输出TM中含TE少,同理TE的消光比越大,说明输出TE中含TM少,而插入损耗代表光信号在传播过程中的能量损失,因此插入损耗是越小越好。
请继续参考图5,可以看出,在波长1550nm处,TE模的消光比可以达到22.18db,TM模的消光比可以达到16.15db。TE的消光比相对较高,在波长1520nm-1580范围内,TE的消光比都可以达到22db以上。
请继续参考图6,可以看出,在波长1550nm处,TE模的插入损耗是0.69db,TM模的插入损耗是2.02db。
由此可见,本实施例的偏振分束器TE模的消光比和TM模的消光比数值相对较高,而TE模的插入损耗和TM模的插入损耗相对较小,因此对于光信号中的TE模和TM模分离效果较好。
本实用新型中所描述的具体实施例仅仅是对本实用新型精神作举例说明。本实用新型所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本实用新型的精神或者超越所附权利要求书所定义的范围。
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。
以上所述仅为本实用新型的较佳实施例,并不用以限制本实用新型,凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (6)

1.一种偏振分束器,包括两个波导芯,其特征在于:
两个所述波导芯分别为条形波导和J形波导;
所述条形波导包括有依次连接的狭缝波导和第一输出波导,所述狭缝波导包括有上覆盖层、狭缝和下覆盖层,所述狭缝位于上覆盖层和下覆盖层之间,所述狭缝采用的材料是氧化铟锡,所述上覆盖层、下覆盖层和第一输出波导采用的材料均为硅;
所述J形波导包括有依次连接的输入波导和第二输出波导,所述第二输出波导为弧形波导,所述J形波导采用的材料为硅;
所述条形波导与所述J形波导之间平行交错设置且存在间隔,在条形波导或J形波导侧面的长度垂直方向上,所述狭缝波导和输入波导交错重叠的部分及之间的间隔形成耦合区。
2.如权利要求1所述的一种偏振分束器,其特征在于:还包括位于所述条形波导顶部及底部、所述J形波导顶部及底部、所述条形波导和所述J形波导之间的包层,以及位于包层底部的衬底。
3.如权利要求2所述的一种偏振分束器,其特征在于:所述条形波导及J形波导折射率均大于所述包层折射率。
4.如权利要求2所述的一种偏振分束器,其特征在于:所述包层的材料为二氧化硅。
5.如权利要求1所述的一种偏振分束器,其特征在于:所述条形波导的高度为340nm,所述条形波导的宽度为312nm;所述狭缝的高度为1nm-20nm;所述J形波导的高度为340nm,所述J形波导的宽度为300nm;所述第二输出波导是度数为半径为2μm的弧形波导;所述条形波导与J形波导之间的间隔是200nm;所述耦合区长度为5.6μm。
6.如权利要求1所述的一种偏振分束器,其特征在于:所述狭缝材料氧化铟锡的载流子浓度为2.0*1020cm-3—6.5*1020cm-3,所述狭缝材料氧化铟锡的介电常数接近零。
CN201820162844.XU 2018-01-31 2018-01-31 一种偏振分束器 Expired - Fee Related CN207780388U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820162844.XU CN207780388U (zh) 2018-01-31 2018-01-31 一种偏振分束器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820162844.XU CN207780388U (zh) 2018-01-31 2018-01-31 一种偏振分束器

Publications (1)

Publication Number Publication Date
CN207780388U true CN207780388U (zh) 2018-08-28

Family

ID=63211860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820162844.XU Expired - Fee Related CN207780388U (zh) 2018-01-31 2018-01-31 一种偏振分束器

Country Status (1)

Country Link
CN (1) CN207780388U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108563030A (zh) * 2018-01-31 2018-09-21 中国地质大学(武汉) 一种偏振分束器
CN109001858A (zh) * 2018-08-31 2018-12-14 中国地质大学(武汉) 一种基于表面等离子体亚波长光栅的偏振分束器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108563030A (zh) * 2018-01-31 2018-09-21 中国地质大学(武汉) 一种偏振分束器
CN109001858A (zh) * 2018-08-31 2018-12-14 中国地质大学(武汉) 一种基于表面等离子体亚波长光栅的偏振分束器
CN109001858B (zh) * 2018-08-31 2023-02-24 中国地质大学(武汉) 一种基于表面等离子体亚波长光栅的偏振分束器

Similar Documents

Publication Publication Date Title
CN108563030A (zh) 一种偏振分束器
CN106104334B (zh) 悬置式脊形氧化物波导
CN204536588U (zh) 偏振分束旋转器
CN102841407B (zh) 一种波导型偏振光分束器
CN105093408B (zh) 一种基于模式演变原理的硅基纳米线偏振分束器
US9891453B2 (en) Integratable planar waveguide type non-reciprocal polarization rotator
CN105759355A (zh) 一种片上集成型偏振分束器及其偏振分束方法
CN204302526U (zh) 偏振分束旋转器
CN105866885B (zh) 偏振分束旋转器
Xu et al. A compact TE-pass polarizer for silicon-based slot waveguides
CN207780388U (zh) 一种偏振分束器
CN101833172B (zh) 一种偏振光耦合及分光的方法及耦合分光器件
Xiao et al. Compact polarization rotator for silicon-based slot waveguide structures
CN113740960B (zh) 一种偏振分束器
Wang et al. Ultrabroadband silicon-on-insulator polarization beam splitter based on cascaded mode-sorting asymmetric Y-junctions
Wang et al. Design of a compact polarization splitter composed of a multiple-slotted waveguide and a silicon nanowire
CN203311029U (zh) 一种实现光偏振分束和旋转的集成器件
Hu et al. Mach–Zehnder modulator based on a tapered waveguide and carrier plasma dispersion in photonic crystal
CN216083169U (zh) 一种偏振分束器
Thomas et al. Plasmonic modulators for near-infrared photonics on a silicon-on-insulator platform
CN210038225U (zh) 一种支持te和tm模式传输的紧凑型波导
CN103558660A (zh) 一种实现光偏振分束和旋转的集成器件
Tang et al. Novel approach for controllable polarization beam splitter: design and simulation
Xiao et al. Electro-optic polymer assisted optical switch based on silicon slot structure
CN206594334U (zh) 金属‑类光子晶体混合波导耦合器

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180828

Termination date: 20220131