CN207779949U - 用于薄膜电阻氢传感器标校实验的恒温气氛测试腔 - Google Patents

用于薄膜电阻氢传感器标校实验的恒温气氛测试腔 Download PDF

Info

Publication number
CN207779949U
CN207779949U CN201820245011.XU CN201820245011U CN207779949U CN 207779949 U CN207779949 U CN 207779949U CN 201820245011 U CN201820245011 U CN 201820245011U CN 207779949 U CN207779949 U CN 207779949U
Authority
CN
China
Prior art keywords
shell
sensor
film resistor
circuit boards
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201820245011.XU
Other languages
English (en)
Inventor
张毅
欧阳智江
庄志
周继昆
李翀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Engineering Research Institute China Academy of Engineering Physics
Original Assignee
General Engineering Research Institute China Academy of Engineering Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Engineering Research Institute China Academy of Engineering Physics filed Critical General Engineering Research Institute China Academy of Engineering Physics
Priority to CN201820245011.XU priority Critical patent/CN207779949U/zh
Application granted granted Critical
Publication of CN207779949U publication Critical patent/CN207779949U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本实用新型公开了一种用于薄膜电阻氢传感器标校实验的恒温气氛测试腔,包括壳体和置于所述壳体的内腔中的用于实时检测所述壳体内腔温度的温度传感器、用于为所述壳体内腔加热的电加热器、待标校的薄膜电阻氢气传感器,所述壳体上设有分别与所述壳体的内腔相通的进气口和出气口,所述恒温气氛测试腔的出气口与大气相通。本实用新型通过在壳体内腔内设置温度传感器、电加热器和薄膜电阻氢气传感器,使薄膜电阻氢气传感器处于温度可调的环境中,适用于薄膜电阻氢传感器标校实验。

Description

用于薄膜电阻氢传感器标校实验的恒温气氛测试腔
技术领域
本实用新型涉及一种用于薄膜电阻氢传感器标校实验的设备,尤其涉及一种用于薄膜电阻氢传感器标校实验的恒温气氛测试腔。
背景技术
氢气传感器种类繁多,不同种类传感器特性各异,因此各有优缺点。其中伴随半导体制备工艺成熟和后处理工艺不断完善,迅速发展起来一种薄膜电阻氢气传感器。
薄膜电阻氢气传感器的主要工作原理是当传感器暴露在氢气中,氢气吸附、渗透会使传感器中氢敏材料敏感层电阻变大,当传感器从氢气中移开,氢气会脱离氢敏材料,使氢敏电阻降低并恢复到零点电阻。由于其具有微型体积、量程大、重复性好、后端测试设备和测试技术成熟等优点具有很好的工程应用前景,但同时它具有强的非线性、温度敏感性等特性,这些特性使得国家标准中的气氛传感器标校方法不适用,因此薄膜电阻氢气传感器的标校一直是个难题。因为传感器标校方法直接关系到传感器的测量精度和标校准确性,为此针对其主要特性设计了专用标校装置,并研究了标校方法极大地提高了标校精度。
传感器的标定,就是通过实验建立起传感器输入量和输出量之间的关系,同时也可以确定出不同使用条件下的误差关系获得其静态特性。传感器的静态特性,具体讲主要指通过一系列实验数据描绘出传感器输入量和输出量之间的标定曲线,从中可以分析出重要静态特性指标,如线性度、迟滞误差、重复性误差和精度、灵敏度等。
从计量学的角度看,测量误差具有相当严格的定义,它表征了测量值与实际值之间的差异,一般无法直接获得实际测量值,但可以通过采用适当的标准值并利用统计学加以估算。通常方法是采用精度比设计指标高的装置作为标准值输出装置,比如计量部门一般先选定传感器工作范围内3~5个值,然后根据它们选用已配置好浓度的高纯气瓶在室温下给被测传感器提供标准氢气浓度值,依据传感器输出值来对传感器进行标定。这种传统方法仅适用于线性度高、响应速度快、温度不敏感的传感器,对薄膜电阻氢气传感器来说,主要存在3方面严重缺陷:1)统计样本数量远远不够,传感器较大的非线性性会引起极大的标校误差,采用此方法获取的标校曲线的标校精度低,因此也会给传感器测试带来极大的测量误差;2)室温下进行标定实验环境温度波动较大,针对薄膜电阻氢气传感器这类温度敏感性高的传感器,环境温度波动引起的测量误差甚至远远超过氢气响应本底值;3)此外,除静态指标外,传感器的响应时间、响应速度、气体选择性、温度特性等其他特性也无法通过标校实验装置来获取,还需要其他装置和实验来完成。基于以上原因,针对薄膜电阻氢气传感器设计的专用高精度标校装置和标校方法,对其各项性能和校准曲线的准确获取具有重要意义。
综上所述,由于薄膜电阻氢气传感器的传感芯片一般选用钯基合金做氢敏材料,具有良好的可逆性和气体选择性,但氢敏电阻值与外界氢气浓度值具有强的非线性关系,并且氢敏电阻值不但随氢气浓度变化还随外界温度值发生变化,温度灵敏度甚至高于氢气灵敏度,因此标校时必须降低温度和氢气浓度的耦合关系来提高标校精度,分别标定出氢气浓度和温度对传感器的响应曲线后,再采用温度补偿的方法便可极大提高氢气传感器标校及测量精度;但传统标校装置无法实现此目的。
实用新型内容
本实用新型的目的就在于为了解决上述问题而提供一种用于薄膜电阻氢传感器标校实验的恒温气氛测试腔。
本实用新型通过以下技术方案来实现上述目的:
一种用于薄膜电阻氢传感器标校实验的恒温气氛测试腔,包括壳体和置于所述壳体的内腔中的用于实时检测所述壳体内腔温度的温度传感器、用于为所述壳体内腔加热的电加热器、待标校的薄膜电阻氢气传感器,所述壳体上设有分别与所述壳体的内腔相通的进气口和出气口,所述恒温气氛测试腔的出气口与大气相通。
作为优选,所述恒温气氛测试腔还包括芯片安装电路板、转接板、连接板、隔热层和顶盖,所述电加热器为电热网,所述隔热层设于所述壳体的内腔内壁上,所述电热网设于所述隔热层的外侧,所述芯片安装电路板安装于所述壳体的内腔中央位置,所述薄膜电阻氢气传感器安装于所述芯片安装电路板上,所述芯片安装电路板的上表面设有双排排插底座或双排排插插针,所述转接板安装于所述芯片安装电路板的正上方,所述转接板的下表面设有与所述芯片安装电路板电性连接的双排排插插针或双排排插底座,所述温度传感器安装于转接板的下表面,所述顶盖安装于所述壳体的上端并设有连接板接口,所述连接板镶嵌于所述顶盖内,所述连接板的顶部和底部分别设有顶部焊盘和底部焊盘,所述顶部焊盘用于与外部设备连接,所述底部焊盘用于与所述转接板上的双排排插插针或双排排插底座以及所述温度传感器的输出信号线电性连接;所述壳体上的进气口位于所述芯片安装电路板的下方,所述壳体上的出气口位于所述连接板的上方。
进一步,所述芯片安装电路板和所述转接板上分别设有多个竖向的支撑柱过孔,多个竖向的支撑柱的下端固定设于所述壳体的内腔底部腔壁上,所述支撑柱的上端依次穿过所述芯片安装电路板和所述转接板上的所述支撑柱过孔,所述支撑柱外套装有绝缘套。
本实用新型的有益效果在于:
本实用新型通过在壳体内腔内设置温度传感器、电加热器和薄膜电阻氢气传感器,使薄膜电阻氢气传感器处于温度可调的环境中,适用于薄膜电阻氢传感器标校实验;通过将芯片安装电路板、转接板、连接板进行组合和电性连接,可以轻松将多路信号从恒温气氛测试腔中传送出来,无需使用体积庞大的转接器增大腔体体积,连接简便且成本低廉便宜;本恒温气氛测试腔与用于控制氢气浓度和流量的气体流量控制器、用于控制温度的温度控制器以及用于测量薄膜电阻氢气传感器的输出信号的电阻仪配合使用,能够标定氢气浓度标校曲线时可以极大降低外界温度干扰以及气体流动对标校的影响,从而确保准确获取传感单元输出电阻和氢气浓度标准值对应关系,从而便于准确分析薄膜电阻氢气传感器的各项静态指标,还可以获取薄膜电阻氢气传感器的温度标校曲线,分析出其温度特性,以便于今后采用温度补偿的方法实现高精度测量,还可以针对薄膜电阻氢气传感器的响应时间、分辨率、选择性等其他特性进行检测。
附图说明
图1是本实用新型所述用于薄膜电阻氢传感器标校实验的恒温气氛测试腔的剖视立体结构图;
图2是本实用新型所述用于薄膜电阻氢传感器标校实验的恒温气氛测试腔的连接板的立体结构图;
图3是本实用新型所述用于薄膜电阻氢传感器标校实验的恒温气氛测试腔的转接板的立体结构图;
图4是本实用新型所述用于薄膜电阻氢传感器标校实验的恒温气氛测试腔的芯片安装电路板的立体结构图。
具体实施方式
下面结合附图对本实用新型作进一步说明:
为了便于理解,下面将本实用新型所述用于薄膜电阻氢传感器标校实验的恒温气氛测试腔与用于控制氢气浓度和流量的气体流量控制器、用于控制温度的温度控制器以及用于测量薄膜电阻氢气传感器的输出信号的电阻仪配合使用的结构及其相关使用方法等进行具体说明。
如图1-图4所示,本实用新型所述恒温气氛测试腔包括壳体9和置于壳体9的内腔中的温度传感器17(图1中未示)、薄膜电阻氢气传感器18(图1中未示)、电热网3、芯片安装电路板5、转接板4、连接板13(图1中未示)和隔热层2,壳体9上设有分别与壳体9的内腔相通的进气口10和出气口1,进气口10位于芯片安装电路板5的下方,出气口1位于所述连接板的上方;隔热层2设于壳体9的内腔内壁上,电热网3设于隔热层2的外侧,电热网3与芯片安装电路板5保持一定空隙,便于气体渗透,芯片安装电路板5安装于壳体9的内腔中央位置,所述薄膜电阻氢气传感器18安装于芯片安装电路板5上,芯片安装电路板5的上表面设有双排排插底座19(也可以为双排排插插针),转接板4安装于芯片安装电路板5的正上方,转接板4的下表面设有与芯片安装电路板5电性连接的双排排插插针16(也可以为双排排插底座),双排排插插针16插入双排排插底座19内,芯片安装电路板5和转接板4上分别设有多个竖向的支撑柱过孔15,多个竖向的支撑柱11的下端固定设于壳体9的内腔底部腔壁上,支撑柱11的上端依次穿过芯片安装电路板5和转接板4上的支撑柱过孔15,支撑柱11外套装有绝缘套6;温度传感器17采用铠装的Pt100铂电阻并安装于转接板4的下表面,防止氢脆效应影响测温精度,顶盖7安装于壳体9的上端并设有连接板接口8,连接板13镶嵌于顶盖7内,连接板13的顶部和底部分别设有顶部焊盘12和底部焊盘14,顶部焊盘12与温度控制器和电阻仪电性连接,底部焊盘14与转接板4上的双排排插插针16以及温度传感器17的输出信号线电性连接;气体流量控制器的输出口与所述恒温气氛测试腔的进气口10连接,恒温气氛测试腔的进气口10高度必须低于芯片安装电路板5的位置,腔内端口径3mm,口径不能过大防止通入气体流动过猛,高度低可使通入气体缓慢渗透到芯片安装电路板5以上,防止气体通入时引起芯片安装电路板5上传感器阻值波动过大造成干扰,所述恒温气氛测试腔的出气口1与大气相通,温度传感器17的信号输出端和电热网3的电源输入端分别与所述温度控制器的信号输入端和加热控制输出端连接,所述薄膜电阻氢气传感器18的信号输出端与所述电阻仪的信号输入端连接。
为了更好地理解本实用新型,下面对本实用新型的制作和使用进行进一步描述:
首先,恒温气氛测试腔的组成方法是:a)将自带支撑座的恒温气氛测试腔的壳体9水平放置,采用2-3mm厚度的隔热纸参考恒温气氛测试腔内径和高度尺寸裁剪出合适的长方形形状,卷曲成圆筒状放入腔内,紧贴壳体9的内腔腔壁,且不能重叠,形成隔热层2;b)用标记笔伸入进气口10和出气口1中,在隔热层2的对应位置处打标记,然后将隔热层2开出与进气口10和出气口1内径大小匹配的孔,作为进出气通道;c)将加热丝带力均匀缠绕在加热网外壁上形成电热网3,在与进气口10和出气口1对应的位置处留下大空隙以便于进出气体,缠好后两端固定并各留出一段7-10mm长度线,以方便连接顶盖7上的连接板接口8上的电缆转接电路板;d)将隔热层2和电热网3制作好后依次放置在壳体9的内腔内,开孔处与进气口10和出气口1的位置对应,进气口10的位置必须低于芯片安装电路板5,这样可以有效消除通放气时气流波动对芯片的影响,也可降低不同流量差异带来的标定误差;e)将3只支撑柱11旋转进壳体9的底座上三个螺纹孔中,固定在壳体9的底座上,套上3只绝缘套6,支撑柱11是上下两端带螺纹的圆柱形铝合金杆,绝缘套6为内带园孔的胶木圆柱型柱体;f)将传薄膜电阻氢气传感器18插在芯片安装电路板5上,最多一次可安装10只薄膜电阻氢气传感器18,插好后将芯片安装电路板5放置于绝缘套6上;g)将转接板4上对应安装孔穿过伸出的支撑柱11,然后将转接板4与芯片安装电路板5上的对应插座对接,使用螺钉将转接板4固定在支撑柱11上,所述转接板4上对应传感器连线、内壁上的Pt100标准铂电阻即温度传感器17、以及电热网3连线,已提前焊接在连接板接口8处安装好的电缆转接电路板上,便于将腔体内部所有需要采集和测量的数据传出;f)采用1mm厚度聚四氟乙烯膜或者隔热纸裁剪出圆形图案,内部开2mm×40mm方孔,外径与顶盖7的内径相同,安装在顶盖7的内壁上,用于保温隔热;g)为达到更好的恒温效果,可以在壳体9的外壁上粘贴厚泡沫层。至此恒温气氛腔组装完成。
芯片安装电路板5、转接板4、连接板13均采用2mm后Pcb电路板制作,相互连接方法如下:a)将被测的薄膜电阻氢气传感器18插接在芯片安装电路板5上,一只薄膜电阻氢气传感器18上至少有2组电阻,一组是测氢电阻,另一组是测温电阻,因此薄膜电阻氢气传感器18上可见4个过孔,每2个过孔对应一组电阻,过孔处焊接上四芯插针;芯片安装电路板5上对应薄膜电阻氢气传感器18的过孔处事先焊接好插排底座,薄膜电阻氢气传感器18插上即可,无需焊线,减少传感器电缆线体积,使得传感器插接方便且一次可以同时安装多只薄膜电阻氢气传感器18同步标定,提高标定效率,标定完毕后便于在原接插孔处为传感器焊线将信号引出;b)将标准Pt100标准铂电阻即温度传感器17焊接在转接板4的下侧,用于测量转接板4与芯片安装电路板5之间的温度值;c)芯片安装电路板5两端焊接有2组双排排插底座19,对应转接板4上焊接好的2组双排排插插针16,薄膜电阻氢气传感器18与双排排插底座19联通,这样当薄膜电阻氢气传感器18安装完毕后,只需将芯片安装电路板5的双排排插底座19和转接板4上对应的双排排插插针16对接,即可将薄膜电阻氢气传感器18的输出信号引出至转接板4;d)连接板13嵌入在顶盖7的连接板接口8处,底部焊盘14用于连线转接板4上的双排排插插针16,顶部焊盘12用于连线外部的温度控制器和高精度的电阻仪,在连接板13上还需留出电热网3的连接通道和温度传感器17的连接通道。由于市面上难觅几十路信号的电路连接器,因此采用这三块电路板的设计,可以轻松将传多路信号从恒温气氛测试腔中传送出来,简便且便宜。
所述气体流量控制器采用三组份流量控制器,3只质量流量计集成在一起,通过电脑CPU精确控制配气浓度。其中,输出端的流量计总流量最大2000mL,输入端的两个流量计总流量最大8mL,最大配比比例1:100,因此H2、O2配气范围0.08mL~8mL。要求H2浓度范围40ppm~40000ppm时,浓度比例1:1000,O2浓度范围40ppm~20000ppm时,浓度比例1:500,配比浓度越低,总流量需要的越大,计算公式如下:
假设两种气体配气,假设需要配置H2浓度为x,将N2作为稀释气体,H2流量y和N2流量q总满足下式:
H2流量:y=(100x-0.004)×1.98+0.08(单位:mL)
N2流量:z=y/x-y(单位:mL)
总流量:q总=y+z(单位:mL)
更简单的计算方法是假设气体总流量在设备指标范围内,假设三种气体配比,假设总流量定为500mL(2000mL范围内),O2配气浓度0.5%,则O2流量为0.5%×500=2.50mL,H2配气浓度1%,则H2流量1%×500=5mL。
一般采用99.99%以上纯度的纯H2或者纯N2配气,当需要降低气体总流量又配置低浓度时,可以采用计量部门配比好的低浓度标准氢气作为配气源。
电脑计算并自动控制好流量后,通过连接气道将配比好浓度和流量的气体作为标准浓度气体输出给恒温气氛测试腔的进气口10,恒温气氛测试腔的出气口1通过软管与大气通,用于将腔内气体排放到大气中。
所述温度控制器和所述电阻仪则根据现有技术选择精度尽可能高的成熟产品即可,在此不作具体描述。
上述涉及方法的内容均为举例说明,不是本实用新型的保护对象。
上述实施例只是本实用新型的较佳实施例,并不是对本实用新型技术方案的限制,只要是不经过创造性劳动即可在上述实施例的基础上实现的技术方案,均应视为落入本实用新型专利的权利保护范围内。

Claims (3)

1.一种用于薄膜电阻氢传感器标校实验的恒温气氛测试腔,其特征在于:包括壳体和置于所述壳体的内腔中的用于实时检测所述壳体内腔温度的温度传感器、用于为所述壳体内腔加热的电加热器、待标校的薄膜电阻氢气传感器,所述壳体上设有分别与所述壳体的内腔相通的进气口和出气口,所述恒温气氛测试腔的出气口与大气相通。
2.根据权利要求1所述的用于薄膜电阻氢传感器标校实验的恒温气氛测试腔,其特征在于:所述恒温气氛测试腔还包括芯片安装电路板、转接板、连接板、隔热层和顶盖,所述电加热器为电热网,所述隔热层设于所述壳体的内腔内壁上,所述电热网设于所述隔热层的外侧,所述芯片安装电路板安装于所述壳体的内腔中央位置,所述薄膜电阻氢气传感器安装于所述芯片安装电路板上,所述芯片安装电路板的上表面设有双排排插底座或双排排插插针,所述转接板安装于所述芯片安装电路板的正上方,所述转接板的下表面设有与所述芯片安装电路板电性连接的双排排插插针或双排排插底座,所述温度传感器安装于转接板的下表面,所述顶盖安装于所述壳体的上端并设有连接板接口,所述连接板镶嵌于所述顶盖内,所述连接板的顶部和底部分别设有顶部焊盘和底部焊盘,所述顶部焊盘用于与外部设备连接,所述底部焊盘用于与所述转接板上的双排排插插针或双排排插底座以及所述温度传感器的输出信号线电性连接;所述壳体上的进气口位于所述芯片安装电路板的下方,所述壳体上的出气口位于所述连接板的上方。
3.根据权利要求2所述的用于薄膜电阻氢传感器标校实验的恒温气氛测试腔,其特征在于:所述芯片安装电路板和所述转接板上分别设有多个竖向的支撑柱过孔,多个竖向的支撑柱的下端固定设于所述壳体的内腔底部腔壁上,所述支撑柱的上端依次穿过所述芯片安装电路板和所述转接板上的所述支撑柱过孔,所述支撑柱外套装有绝缘套。
CN201820245011.XU 2018-02-11 2018-02-11 用于薄膜电阻氢传感器标校实验的恒温气氛测试腔 Active CN207779949U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820245011.XU CN207779949U (zh) 2018-02-11 2018-02-11 用于薄膜电阻氢传感器标校实验的恒温气氛测试腔

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820245011.XU CN207779949U (zh) 2018-02-11 2018-02-11 用于薄膜电阻氢传感器标校实验的恒温气氛测试腔

Publications (1)

Publication Number Publication Date
CN207779949U true CN207779949U (zh) 2018-08-28

Family

ID=63209830

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820245011.XU Active CN207779949U (zh) 2018-02-11 2018-02-11 用于薄膜电阻氢传感器标校实验的恒温气氛测试腔

Country Status (1)

Country Link
CN (1) CN207779949U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169293A (zh) * 2018-02-11 2018-06-15 中国工程物理研究院总体工程研究所 高精度薄膜电阻氢气传感器标校装置及标校方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169293A (zh) * 2018-02-11 2018-06-15 中国工程物理研究院总体工程研究所 高精度薄膜电阻氢气传感器标校装置及标校方法

Similar Documents

Publication Publication Date Title
US2594618A (en) Thermal flowmeter
US5511415A (en) Gas flow and temperature probe and gas flow and temperature monitor system including one or more such probes
US4648270A (en) Mass flowmeter
US8342018B2 (en) High accuracy battery-operated MEMS mass flow meter
US4644263A (en) Method and apparatus for measuring water in crude oil
JP2008089575A5 (zh)
CN207779948U (zh) 高精度薄膜电阻氢气传感器标校装置
CN207779949U (zh) 用于薄膜电阻氢传感器标校实验的恒温气氛测试腔
CN104501907B (zh) 具有自补偿电容式液位传感器的飞机燃油油量测控系统
CN108169293A (zh) 高精度薄膜电阻氢气传感器标校装置及标校方法
CN108445051A (zh) 一种在线式木材含水率检测装置
TWI666435B (zh) 露點傳感器的測試系統
CN108332313A (zh) 用于空气质检的柔性金属纳米线基除湿装置及空气检测仪
CN108548853A (zh) 一种强结构性土体持水特征曲线瞬态快速测试仪器及方法
CN205506786U (zh) 一种气体传感器的标定工装
CN201382927Y (zh) 气相色谱分析仪用阀柱一体加温装置
CN209589904U (zh) 一种高精度气体传感器阵列检测装置
CN115435930A (zh) 一种测量级间三维全参数高频探针
CN207866775U (zh) 一种滴定器
US2197564A (en) Aerological instrument
CN206311240U (zh) 灯具检测设备校准装置
CN206505074U (zh) 气敏陶瓷测试装置
CN101140251A (zh) 一种测试导电高分子复合材料阻温特性的装置
CN210400286U (zh) 一种标准物质应变测试模块
CN217133109U (zh) 一种微水湿度传感器校准测试实验平台

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant