CN207502833U - 虚拟现实显示光学系统及虚拟现实眼镜 - Google Patents

虚拟现实显示光学系统及虚拟现实眼镜 Download PDF

Info

Publication number
CN207502833U
CN207502833U CN201721706520.XU CN201721706520U CN207502833U CN 207502833 U CN207502833 U CN 207502833U CN 201721706520 U CN201721706520 U CN 201721706520U CN 207502833 U CN207502833 U CN 207502833U
Authority
CN
China
Prior art keywords
light
virtual reality
light guide
optical system
reality display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201721706520.XU
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Skyworth New World Technology Co Ltd
Original Assignee
Shenzhen Skyworth New World Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Skyworth New World Technology Co Ltd filed Critical Shenzhen Skyworth New World Technology Co Ltd
Priority to CN201721706520.XU priority Critical patent/CN207502833U/zh
Application granted granted Critical
Publication of CN207502833U publication Critical patent/CN207502833U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本实用新型提供一种虚拟现实显示光学系统及虚拟现实眼镜。该虚拟现实显示光学系统包括光源模组、光导模组、透明的透射式空间光调制器和具有将平面波转换为球面波的曲面反射镜。光导模组包括水平光导和垂直光导。该曲面反射镜包括全反射膜。光源模组位于垂直光导的入射光路上,水平光导位于垂直光导的出射光路上,空间光调制器位于水平光导的出射光路上,曲面反射镜位于空间光调制器的出射光路上。该虚拟现实显示光学系统的空间光调制器无需放置在曲面反射镜的近焦面处,结构紧凑、体积小、重量轻;及基于视网膜成像原理,能够在整个显示视场范围内清晰成像,近视或远视用户不需要佩戴校正眼镜也可清晰地接收到待显示图像信息。

Description

虚拟现实显示光学系统及虚拟现实眼镜
技术领域
本实用新型涉及光学显示技术领域,具体而言,涉及一种虚拟现实显示光学系统及虚拟现实眼镜。
背景技术
目前虚拟现实显示光学系统一般目视光学系统原理,是将显示屏置于聚焦透镜(如球面透镜或非球面透镜或菲涅尔透镜)的焦面位置,利用基本的几何光学原理,即焦内的点物经透镜后成放大正立的虚像,在用户眼前投射显示屏的放大正立的虚像。采用此方法的虚拟现实显示设备需将显示屏放置在聚焦透镜的近焦面处,体积较大、重量较重佩戴舒适性较差。并且,对于近视或远视用户需要佩戴近视或远视校正眼镜才能看清该虚拟现实显示设备的显示内容,或者需要在该虚拟现实显示设备增加额外的调焦镜片才能使近视或远视用户不佩戴近视或远视校正眼镜也能看清该虚拟现实显示设备的显示内容。
实用新型内容
有鉴于此,本实用新型的目的在于提供一种体积小、重量轻且能使近视或远视用户不佩戴校正眼镜也能看清显示内容的虚拟现实显示光学系统及虚拟现实眼镜,以解决上述问题。
为实现上述目的,本实用新型提供如下技术方案:
本实用新型较佳实施例提供一种虚拟现实显示光学系统,包括:光源模组、光导模组、空间光调制器和具有平面波转换为球面波的曲面反射镜,所述光导模组包括水平光导和垂直光导,所述空间光调制器为透明的透射式的,所述曲面反射镜包括全反射膜;
所述光源模组位于所述垂直光导的入射光路上,所述水平光导位于所述垂直光导的出射光路上,所述空间光调制器位于所述水平光导的出射光路上,所述曲面反射镜位于所述空间光调制器的出射光路上;
所述光源模组提供的准直或近准直照明光束分别经过所述垂直光导和水平光导进行垂直方向和水平方向地传输与扩展后,形成准直宽光束或近准直宽光束,所述空间光调制器根据待显示图像信息对所述准直宽光束或近准直宽光束进行光能量的像素级地调制,得到与待显示图像像素点对应的准直细光束或近准直细光束,所述曲面反射镜对所述与待显示图像像素点对应的准直细光束或近准直细光束进行反射会聚在人眼视网膜上直接成像。
可选地,所述光源模组包括光发射单元、光准直器、光合束器、耦合光纤和准直镜组。
可选地,所述光源模组还包括消散斑器件。
可选地,所述水平光导包括至少两个的倾斜棱镜,或者包括至少两个倾斜排列的可透可反平面镜。
可选地,所述水平光导由反射元件和衍射元件构成,所述衍射元件位于所述反射元件和空间光调制器之间。
可选地,所述水平光导还包括可透可反层,所述可透可反层位于所述反射元件和衍射元件之间。
可选地,所述水平光导由基底和衍射元件构成,所述基底远离衍射元件的一侧起反射作用。
可选地,所述虚拟现实显示光学系统还包括至少一个缩小光束出射角度的角控微结构元件。
可选地,所述角控微结构元件有两个,其中一个角控微结构元件设置于所述水平光导和空间光调制器之间,另一个角控微结构元件设置于垂直光导和水平光导之间。
本实用新型另一较佳实施例提供一种虚拟现实眼镜,包括上述的虚拟现实显示光学系统。
本实用新型提供的虚拟现实显示光学系统通过对光源模组、光导模组、空间光调制器和曲面反射镜的巧妙集成与设计,使得空间光调制器(显示屏)无需放置在曲面反射镜(聚焦透镜)的近焦面处,结构更紧凑、体积更小、重量更轻,佩戴更舒适;及基于视网膜成像原理,能够在整个显示视场范围内清晰成像,对于近视或远视用户而言不需要佩戴近视或远视校正眼镜都可清晰地接收到待显示图像信息。
本实用新型提供的虚拟现实眼镜包括上述虚拟现实显示光学系统,因而具有类似的有益效果。
附图说明
为了更清楚地说明本实用新型实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。应当理解,以下附图仅示出了本实用新型的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本实用新型较佳实施例提供的一种虚拟现实显示光学系统的结构示意图。
图2为本实用新型较佳实施例提供的一种光源模组的结构示意图。
图3为本实用新型较佳实施例提供的一种水平光导的结构示意图。
图4为本实用新型较佳实施例提供的另一种水平光导的结构示意图。
图5为图4所示的水平光导对光线进行传输和扩展的原理图。
图6为本实用新型较佳实施例提供的另一种水平光导的结构示意图。
图7为图6所示的水平光导对光线进行传输和扩展的原理图。
图8为本实用新型较佳实施例提供的另一种水平光导的结构示意图。
图9为待显示图像的显示区域与图1所示的光导模组的结构关系图。
图10为非矩形的待显示图像显示区域的尺寸示意图。
图11本实用新型较佳实施例提供的一种虚拟现实显示光学系统与传统虚拟现实显示光学系统的对比图。
图12为本实用新型较佳实施例提供的另一种虚拟现实显示光学系统的结构示意图。
图13为本实用新型较佳实施例提供的另一种虚拟现实显示光学系统的结构示意图。
图14为本实用新型较佳实施例提供的另一种虚拟现实显示光学系统的结构示意图。
图15为本实用新型较佳实施例提供的另一种虚拟现实显示光学系统的结构示意图。
图16为本实用新型较佳实施例提供的另一种虚拟现实显示光学系统的结构示意图。
图17为本实用新型较佳实施例提供的另一种虚拟现实显示光学系统的结构示意图。
图18为图17所示的虚拟现实显示光学系统进行人眼虚像成像的光路示意图。
图标:1-虚拟现实显示光学系统;10-光源模组;20-光导模组;30-空间光调制器;40-曲面反射镜;11-光发射单元;12-光准直器;13-光合束器;14-耦合光纤;15-准直镜组;16-消散斑器件;21-垂直光导;22-水平光导;221-倾斜棱镜;222-可透可反平面镜;223-反射元件;224-衍射元件;225-可透可反层;226-基底;50-角控微结构元件;60-红外发射装置;70-红外摄像模组;80-红外衍射元件。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本实用新型的一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本实用新型实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本实用新型的实施例的详细描述并非旨在限制要求保护的本实用新型的范围,而是仅仅表示本实用新型的选定实施例。基于本实用新型的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。在本实用新型的描述中,术语“第一”、“第二”、“第三”、“第四”等仅用于区分描述,而不能理解为只是或暗示相对重要性。
请参考图1,图1为本实用新型实施例提供的一种虚拟现实显示光学系统1的结构示意图。如图1所示,所述虚拟现实显示光学系统1包括:光源模组10、光导模组20、空间光调制器30和曲面反射镜40。
光源模组10位于光导模组20的入射光路上,为光导模组20提供准直或近准直照明光束。可选地,请参阅图2,在本实施例中,光源模组10包括光发射单元11、光准直器12、光合束器13、耦合光纤14和准直镜组15。光发射单元11可以采用激光光源、LED光源等。可选的,在本实施例中,该光发射单元11为LD激光光源,如激光发生装置。该激光发射装置可以包快红色激光发射单元11、绿色激光发生单元和蓝色激光发射单元11。在其它实施方式中,激光发生装置中各个激光发生单元的颜色可以根据实际需要进行设置,以满足实际情况的需要,在此不做限制。光准直器12可以选用公知技术中的为光学准直透镜,用于缩小由激光发生装置发射的光束的发散角。光合束器13可以选用公知技术中的合光棱镜,在此不做具体说明。耦合光纤14可以是多模光纤或单模光纤。耦合光纤14的输入端可以熔融球透镜,用于增大耦合光纤14能够耦合的激光光束的口径,使得经过光合束器13后的合束光束易于耦合进耦合光纤14中。耦合光纤14的输出端可以加工成锥形,用于减小输出端出射光束的束腰半径,增大出射光束的数值孔径,使得耦合光纤14输出小光斑大出射角的光束。准直镜组15用于对耦合光纤14输出的小光斑大出射角的光束进行准直,以获得方向性较好的准直光束或近准直光束。通常情况下,经过准直镜组15后,可以获得出射角度在0°~0.5°范围内的准直光束或近准直光束。在具体实施中,设置耦合光纤14输出的光束的束腰位于准直镜组15的焦平面位置或附近,从而获得准直光束或近准直光束。
当发射单元为激光光源时,光源模组10还可以包括消散斑器件16。消散斑器件16通过改变激光的瞬时相位从而干扰激光束的相干特性,从而削弱激光存在的散斑效应,使得光源模组10提供的光束能量分布更均匀。消散斑器件16可以选用公知技术中的液晶相位调制器或振动相位板,在此不做限制。
光导模组20包括垂直光导21和水平光导22。垂直光导21用于对进入所述垂直光导21的光束进行垂直方向地传输与扩展。水平光导22用于对进入水平光导22的光束进行水平方向地传输与扩展。光源模组10输出的准直光束或近准直光束通过垂直光导21和水平光导22分别进行垂直方向和水平方向的扩展后形成准直宽光束或近准直宽光束。
水平光导22的结构可以有多种。例如,水平光导22可以包括至少两个的倾斜棱镜221,如图1所示。或者如图3所示,水平光导22可以包括至少两个倾斜排列的可透可反平面镜222。每个倾斜排列的可透可反平面镜222可以通过一些透明的安装件固定。或者水平光导22可以同时包括倾斜棱镜221和倾斜排列的可透可反平面镜222。
又例如,如图4所示,水平光导22可以是由反射元件223和衍射元件224构成,所述衍射元件224位于所述反射元件223和空间光调制器30之间。图5为图4所示的水平光导22对光线进行传输和扩展的原理图。如图5所示,进入水平光导22的光线被反射元件223反射到衍射元件224,一部分光线被衍射元件224透射衍射进入空间光调制器30,另一部分光线被衍射元件224反射到反射元件223后,再次被反射元件223反射到衍射元件224。再次被反射元件223反射到衍射元件224的光线的一部分被衍射元件224透射衍射进入空间光调制器30,另一部分被衍射元件224反射到反射元件223。以此类推,进入水平光导22的光束就实现了水平方向地传输和扩展。
再例如,如图6所示,水平光导22还包括可透可反层225,所述可透可反层225位于所述反射元件223和衍射元件224之间。图7为图6所示的水平光导22对光线进行传输和扩展的原理图。如图7所示,进入水平光导22的光线被反射元件223反射到可透可反层225,一部分光线穿过可透可反层225进入衍射元件224,另一部分光线被可透可反层225反射到反射元件223。进入衍射元件224的光线被衍射元件224透射衍射进入空间光调制器30。被可透可反层225反射到反射元件223的光线被反射元件223再次反射到可透可反层225后,一部分光线穿过可透可反层225进入衍射元件224,另一部分光线被可透可反层225反射到反射元件223。进入衍射元件224的光线被衍射元件224透射衍射进入空间光调制器30。以此类推,进入水平光导22的光束就实现了水平方向地传输和扩展。
再例如,如图8所示,水平光导22还可以是由基底226和衍射元件224构成。该衍射元件224可以是刻在基底226朝向空间光调制器30一侧的具有衍射功能的图案。或者该衍射元件224是在透明基板上刻蚀有衍射图案的元件,该衍射元件224和基底226光学胶合。此时,基底226远离所述衍射元件224的一侧起反射作用,与图4中的反射元件223类似。由于进入该水平光导22的光线的传输和扩展原理与图4类似,因此在此不作更多说明。
可选地,在图4、图6、图8所示的水平光导22中,衍射元件224的出射光轴和空间光调制器30的光轴实质上共轴或平行,使得曲面反射镜40易于设计。实质上平行或共轴是指接近平行或共轴。当衍射元件224的出射光轴和空间光调制器30的光轴在可接受范围内有小角度的偏差,也是实质上平行或共轴。
垂直光导21的结构可以与水平光导22的结构相同,放置方式不同。即垂直光导21的结构可以是如图1、图2、图4、图6、图8所示,或是由倾斜棱镜221和倾斜排列的可透可反平面镜222共同组成。
当水平光导22和垂直光导21为图1或图2所示的结构时,水平光导22和垂直光导21所包括的倾斜棱镜221或倾斜排列的可透可反平面镜222的数量分别由预先设定的待显示图像的显示区域在水平方向和垂直方向的尺寸,及水平光导22和垂直光导21的高度决定。例如,如图9所示,预先设定的待显示图像的显示区域的形状为矩形,其长边为a和宽边为b。其中,定义水平方向为矩形的长边方向,垂直方向为矩形的宽边方向。水平光导22的高度为h1,垂直光导21的高度为h2。则水平光导22所包括的倾斜棱镜221或倾斜排列的可透可反平面镜222的数量应不少于a/h1,垂直光导21所包括的倾斜棱镜221或倾斜排列的可透可反平面镜222的数量应不少于b/h2。垂直光导21和水平光导22的高度很大程度上决定了虚拟现实显示光学系统1的的尺寸和体积,垂直光导21和水平光导22的高度越小,虚拟现实显示光学系统1的的尺寸和体积越小,所需要的倾斜棱镜221或倾斜排列的可透可反平面镜222的数量越多,制造、加工、装配等工艺要求也越高。在实际实施过程中,垂直光导21和水平光导22的高度和所包括的倾斜棱镜221或倾斜排列的可透可反平面镜222的数量可以根据关注重点不同进行综合选择。
需要说明的是,预先设定的待显示图像的显示区域并没有限制为矩形,其还可以是圆形、椭圆形或别的形状,如图10所示。对于横截面形状为非矩形的情况,上述的垂直方向和水平方向的尺寸是指能够完全包络该横截面形状的最小矩形的长边a和宽边b。
由于使用了光导模组20对光源模组10输出的光束进行垂直和水平两个方向的光束口径的扩展,因此光源模组10无需输出准直宽光束或近准直宽光束,使得光源模组10的光学系统结构更简单。同时,如图11所示,与传统虚拟现实显示光学系统1相比,本实用新型提供的虚拟现实显示光学系统1无需将空间光调制器30(显示屏)放置在曲面反射镜40(聚焦透镜)的近焦面处,因此结构更紧凑、体积更小、重量更轻,提升佩戴舒适性。图11中,2表示传统虚拟现实显示光学系统1,A表示显示屏,B表示聚焦透镜。
请再次参考图1,空间光调制器30用于根据待显示图像信息对光导模组20输出的准直宽光束或近准直宽光束进行光能量的像素级地调制,得到与待显示图像像素点对应的准直细光束或近准直细光束。所述空间光调制器30为透明的透射式的像素级的光调制器件。当光源模组10输出单波长光束时,空间光调制器30主要由垂直偏光片、TFT玻璃、液晶和水平偏光片构成。当光源模组10输出多种波长(例如红、绿、蓝三种波长)的光束时,空间光调制器30主要由垂直偏光片、TFT玻璃、液晶、彩色滤光片和水平偏光片构成。空间光调制器30的每一个像素由与每种波长对应的子像素(例如由红、绿、蓝三个子像素)组成,彩色滤光片包含了每种波长对应颜色滤光片(例如包含了红、绿、蓝三种颜色滤光片),分别对光源模组10输出的多种(例如三种)波长的合束光束取样后进行混色形成彩色显示画面。
请再次参考图1,曲面反射镜40具有将平面波转换为球面波的光调制功能。所述曲面反射镜40包括全反射膜。曲面反射镜40对空间光调制器30调制后的与待显示图像像素点对应的准直细光束或近准直细光束进行反射会聚,使与待显示图像像素点对应的准直细光束或近准直细光束具有不同的会聚角度。具有不同的会聚角度的与待显示图像像素点对应的准直细光束或近准直细光束在人眼视网膜上直接成像。
由于空间光调制器30对承载了待显示图像信息的准直宽光束的像素级的调制、曲面反射镜40对空间光调制器30调制后的像素级准直细光束的会聚及曲面反射镜40会聚后的会聚光束在人眼的成像过程是一种视网膜成像,因此在整个显示视场范围内可以清晰成像。并且,对于近视或远视用户而言不需要佩戴近视或远视校正眼镜都可清晰地接收到待显示图像信息,提高了佩戴舒适性。此外,由于曲面反射镜40是反射会聚,因而当光源模组10输出多种波长时,经曲面反射镜40调制后的球面波会聚位置相同,从而人眼所观察到的虚拟图像不存在色差。
从图1可以看出,曲面反射镜40的实际工作面只有一个。因此,曲面反射镜40的结构除了图1所示,还可以如图12、图13和图14所示。
如图15所示,上述虚拟现实显示光学系统1还可以包括角控微结构元件50。角控微结构元件50是一种对入射角度敏感的光学元件,当光束的入射矢量与角控微结构元件50的工作平面的法线的夹角符合设计角度值时,光束才可以穿过角控微结构元件50。光源模组10输出的准直光束或近准直光束并不只有一个方向(例如如上所述输出的是0°~0.5°范围内的准直光束或近准直光束),会影响到人眼接收到的虚拟显示图像的分辨率。通过设置角控微结构元件50可以缩小经过角控微结构元件50的光束的出射角度,从而提高虚拟显示图像的分辨率。例如,角控微结构元件50设计的角度范围为-0.1°~0.1°,实际实施过程中,角控微结构元件50的角度设计值可以根据实际应用对视觉效果的要求进行设计选取。
显而易见,角控微结构元件50可以设置在光源模组10到曲面反射镜40之间的任一位置处。例如,将角控微结构元件50设置在光源模组10和垂直光导21之间,用于对光源模组10输出的光束进行选取;将角控微结构元件50设置在垂直光导21和水平光导22之间,用于对垂直光导21输出的光束进行选取;将角控微结构元件50设置在水平光导22和空间光调制器30之间,用于对水平光导22输出的光束进行选取;将角控微结构元件50设置在空间光调制器30和曲面反射镜40之间,用于对空间光调制器30输出的光束进行选取。可选地,在本实施例中,角控微结构元件50设置在水平光导22和空间光调制器30之间。
同理,角控微结构元件50还可以不止一个,例如两个、三个、四个等。当角控微结构元件50不止一个时,每个角控微结构元件50可以间隔设置。例如,所述角控微结构元件50有两个,其中一个角控微结构元件50设置于所述水平光导22和空间光调制器30之间,另一个角控微结构元件50设置于垂直光导21和水平光导22之间。
在实际实施过程中,角控微结构元件50可以是先制作具有微结构图案的母版,将母版上的图案以图形转印方法将微结构图案转印到特制的软膜上,再将软膜形式的角控微结构元件50以光学胶贴覆在光源模组10、水平光导22、垂直光导21、空间光调制器30或光学相位调制模组等的平面上,降低角控微结构元件50的装配复杂程度。例如,当角控微结构元件50设置在水平光导22和空间光调制器30之间时,可以将角控微结构元件50贴服在水平光导22靠近空间光调制器30一侧的平面上。
如图16所示,在一种可能实现的方式中,上述虚拟现实显示光学系统1还包括红外发射装置60和红外摄像模组70。红外发射装置60可以是红外LED光源或红外LD光源等红外光源,在此不做限制。红外发射装置60可放置于显示光学系统的任何一处。实际实施过程中,只需确保红外发射装置60发出的光束可以覆盖人眼范围且不会对投影成像的视野造成遮挡即可。红外摄像模组70用于接收人眼红外图像并对图像数据进行存储。红外摄像模组70还可以与处理器相连,处理器能够根据存储的数据进行眼球检测,识别出眼球所处的位置、注视方向状态等,并根据眼球的注视方向等信息执行不同的眼控操作。例如,如果识别到人眼在设定的时间内注视点保持在图像界面的某个控件位置,进行此控件对应的系统操作等。
如图17所示,在另一种可能实现的方式中,上述虚拟现实显示光学系统1还包括红外衍射元件80,红外衍射元件80设置于所述曲面反射镜40靠近人眼的一侧,同时,设置红外摄像模组70的光轴LK与红外衍射元件80的出射光轴OG实质上平行或共轴。通过设置红外衍射元件80及使红外摄像模组70的光轴LK与红外衍射元件80的出射光轴OG实质上平行或共轴,以形成人眼虚像,并使该人眼虚像距外摄像模组的距离落在外摄像模组的工作范围内,以被外摄像模组获取,如图18所示。从而实现了外摄像模组不用正对人眼就可以获得清晰的正眼图像,可用于眼球跟踪、虹膜识别身份验证等。其中,正眼图像是指等效于以正对人眼的拍摄角度拍摄的人眼图像。
为了满足某些特定的功能需求,可选择性的对上述虚拟现实显示光学系统1的部件进行增镀增透膜,加硬膜,防雾膜等功能性膜层,在此不做限制。
本实用新型实施例还提供一种虚拟现实眼镜,该虚拟现实眼镜包括上述的虚拟现实显示光学系统1。在实际实施时,该虚拟现实眼镜还可以包括头戴、眼罩、遮光件及将上述虚拟现实显示光学系统1所包括的元器件连接起来的结构件。所述遮光件用于防止环境光线经过光导模组20、空间光调制器30、光学相位调制模组40和角控微结构元件50等透射入人眼。所述眼罩用于罩设于人眼,防止环境光线直接入眼。
本实用新型实施例提供的虚拟现实显示光学系统1通过对光源模组10、光导模组20、空间光调制器30和曲面反射镜40的巧妙集成与设计,使得空间光调制器30(显示屏)无需放置在曲面反射镜40(聚焦透镜)的近焦面处,结构更紧凑、体积更小、重量更轻,佩戴更舒适;及基于视网膜成像原理,能够在整个显示视场范围内清晰成像,对于近视或远视用户而言不需要佩戴近视或远视校正眼镜都可清晰地接收到待显示图像信息。同时,本实用新型实施例提供的虚拟现实显示光学系统1还可以包括红外发射装置60和红外摄像模组70,以获得人眼红外图像;以及通过设置红外衍射元件80,使外摄像模组不用正对人眼就可以获得清晰的正眼图像,可用于眼球跟踪、虹膜识别身份验证等。
本实用新型提供的虚拟现实眼镜包括上述虚拟现实显示光学系统1,因而具有类似的有益效果。
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
以上所述仅为本实用新型的优选实施例而已,并不用于限制本实用新型,对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (10)

1.一种虚拟现实显示光学系统,其特征在于,包括:光源模组、光导模组、空间光调制器和具有平面波转换为球面波的曲面反射镜,所述光导模组包括水平光导和垂直光导,所述空间光调制器为透明的透射式的,所述曲面反射镜包括全反射膜;
所述光源模组位于所述垂直光导的入射光路上,所述水平光导位于所述垂直光导的出射光路上,所述空间光调制器位于所述水平光导的出射光路上,所述曲面反射镜位于所述空间光调制器的出射光路上;
所述光源模组提供的准直或近准直照明光束分别经过所述垂直光导和水平光导进行垂直方向和水平方向地传输与扩展后,形成准直宽光束或近准直宽光束,所述空间光调制器根据待显示图像信息对所述准直宽光束或近准直宽光束进行光能量的像素级地调制,得到与待显示图像像素点对应的准直细光束或近准直细光束,所述曲面反射镜对所述与待显示图像像素点对应的准直细光束或近准直细光束进行反射会聚在人眼视网膜上直接成像。
2.根据权利要求1所述的虚拟现实显示光学系统,其特征在于,所述光源模组包括光发射单元、光准直器、光合束器、耦合光纤和准直镜组。
3.根据权利要求2所述的虚拟现实显示光学系统,其特征在于,所述光源模组还包括消散斑器件。
4.根据权利要求1所述的虚拟现实显示光学系统,其特征在于,所述水平光导包括至少两个的倾斜棱镜,或者包括至少两个倾斜排列的可透可反平面镜。
5.根据权利要求1所述的虚拟现实显示光学系统,其特征在于,所述水平光导由反射元件和衍射元件构成,所述衍射元件位于所述反射元件和空间光调制器之间。
6.根据权利要求5所述的虚拟现实显示光学系统,其特征在于,所述水平光导还包括可透可反层,所述可透可反层位于所述反射元件和衍射元件之间。
7.根据权利要求1所述的虚拟现实显示光学系统,其特征在于,所述水平光导由基底和衍射元件构成,所述基底远离衍射元件的一侧起反射作用。
8.根据权利要求1-7任一项所述的虚拟现实显示光学系统,其特征在于,所述虚拟现实显示光学系统还包括至少一个缩小光束出射角度的角控微结构元件。
9.根据权利要求8所述的虚拟现实显示光学系统,其特征在于,所述角控微结构元件有两个,其中一个角控微结构元件设置于所述水平光导和空间光调制器之间,另一个角控微结构元件设置于垂直光导和水平光导之间。
10.一种虚拟现实眼镜,其特征在于,包括权利要求1-9任一项所述的虚拟现实显示光学系统。
CN201721706520.XU 2017-12-08 2017-12-08 虚拟现实显示光学系统及虚拟现实眼镜 Active CN207502833U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201721706520.XU CN207502833U (zh) 2017-12-08 2017-12-08 虚拟现实显示光学系统及虚拟现实眼镜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201721706520.XU CN207502833U (zh) 2017-12-08 2017-12-08 虚拟现实显示光学系统及虚拟现实眼镜

Publications (1)

Publication Number Publication Date
CN207502833U true CN207502833U (zh) 2018-06-15

Family

ID=62509397

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201721706520.XU Active CN207502833U (zh) 2017-12-08 2017-12-08 虚拟现实显示光学系统及虚拟现实眼镜

Country Status (1)

Country Link
CN (1) CN207502833U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107797290A (zh) * 2017-12-08 2018-03-13 深圳创维新世界科技有限公司 虚拟现实显示光学系统及虚拟现实眼镜
CN109375469A (zh) * 2018-11-13 2019-02-22 深圳创维新世界科技有限公司 空间投影显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107797290A (zh) * 2017-12-08 2018-03-13 深圳创维新世界科技有限公司 虚拟现实显示光学系统及虚拟现实眼镜
CN109375469A (zh) * 2018-11-13 2019-02-22 深圳创维新世界科技有限公司 空间投影显示装置
CN109375469B (zh) * 2018-11-13 2023-10-31 深圳创维新世界科技有限公司 空间投影显示装置

Similar Documents

Publication Publication Date Title
CN107831593A (zh) 增强现实显示光学系统及增强现实眼镜
CN107797290A (zh) 虚拟现实显示光学系统及虚拟现实眼镜
US9274338B2 (en) Increasing field of view of reflective waveguide
CN108051917A (zh) 增强现实显示光学系统及增强现实显示方法
CN107329273B (zh) 一种近眼显示装置
CN107807448A (zh) 虚拟现实显示光学系统
CN107422484B (zh) 棱镜式ar显示装置
CN207488622U (zh) 增强现实显示光学系统及增强现实眼镜
WO2017181864A1 (zh) 一种近眼显示系统
WO2019033748A1 (zh) 一种基于双自由曲面反射的成像系统及增强现实装置
CN104678555B (zh) 屈光度矫正的齿形镶嵌平面波导光学器件
US20130250431A1 (en) Two-dimensional exit-pupil expansion
CN209400804U (zh) 增强现实光学模组及头戴式显示装置
CN104423044A (zh) 虚像显示装置
CN105589200A (zh) 影像显示装置和头戴式显示器
CN106646885A (zh) 一种投影物镜及三维显示装置
CN105158903B (zh) 显示器
CN108803020A (zh) 一种近眼显示系统及头戴显示设备
WO2020124627A1 (zh) 一种近眼显示系统及眼镜式虚拟显示器
CN207502833U (zh) 虚拟现实显示光学系统及虚拟现实眼镜
CN207502834U (zh) 增强现实显示光学系统
CN207611200U (zh) 虚拟现实显示光学系统
CN208283655U (zh) 一种光学系统及增强现实设备
CN106646884A (zh) 一种投影物镜及三维显示装置
JP2021076839A (ja) ニアアイ光学システム

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant