CN207336908U - Imaging lens system group - Google Patents

Imaging lens system group Download PDF

Info

Publication number
CN207336908U
CN207336908U CN201721494117.5U CN201721494117U CN207336908U CN 207336908 U CN207336908 U CN 207336908U CN 201721494117 U CN201721494117 U CN 201721494117U CN 207336908 U CN207336908 U CN 207336908U
Authority
CN
China
Prior art keywords
lens
system group
lens system
imaging lens
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201721494117.5U
Other languages
Chinese (zh)
Inventor
宋博
闻人建科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sunny Optics Co Ltd
Original Assignee
Zhejiang Sunny Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sunny Optics Co Ltd filed Critical Zhejiang Sunny Optics Co Ltd
Priority to CN201721494117.5U priority Critical patent/CN207336908U/en
Application granted granted Critical
Publication of CN207336908U publication Critical patent/CN207336908U/en
Priority to PCT/CN2018/100479 priority patent/WO2019091170A1/en
Priority to US16/843,626 priority patent/US11460671B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

This application discloses a kind of imaging lens system group, which is sequentially included along optical axis by thing side to image side:The first lens with positive light coke, its image side surface are concave surface;The second lens with focal power;The 3rd lens with focal power;The 4th lens with focal power;The 5th lens with focal power;The 6th lens with positive light coke, its thing side are concave surface;The 7th lens with focal power;The 8th lens with negative power, its thing side are concave surface.Wherein, total effective focal length f of imaging lens system group and the Entry pupil diameters EPD of imaging lens system group meet f/EPD≤2.0.

Description

Imaging lens system group
Technical field
This application involves a kind of imaging lens system group, more specifically, this application involves it is a kind of including eight lens have it is big Visual field, the imaging lens system group of large aperture.
Background technology
With the common photosensitive member such as photosensitive coupling element (CCD) or Complimentary Metal-Oxide semiconductor element (CMOS) The raising of part performance and the reduction of size so that the pixel number increase of photo-sensitive cell and pixel dimension reduce, hence for matching The high image quality of the imaging lens system group of set and miniaturization propose the requirement of higher.
The reduction of pixel dimension means that within the identical time for exposure thang-kng amount of imaging system will diminish.However, figure Picture sensor and environmental background etc. have certain system noise, have certain demand to the thang-kng amount of imaging system.Only when having When effect light-inletting quantity is enough, imaging system could obtain preferable image quality.In general, eight chip optical imaging systems can be right Big light-inletting quantity carries out effectively aberration correction, but the optics total length people not to the utmost of imaging system is caused since lens numbers are more Meaning, it is impossible to meet the slimming demand of the portable electronic products such as smart mobile phone.
Therefore, the application proposes that one kind is applicable to portable electronic product, has ultra-thin large aperture, good image quality Eight chip optical imaging systems.
Utility model content
This application provides be applicable to portable electronic product, can at least solve or part solve it is of the prior art The imaging lens system group of above-mentioned at least one shortcoming, for example, high-aperture lenses.
On the one hand, this application provides such a imaging lens system group, the lens group along optical axis by thing side to image side according to Sequence includes:The first lens with positive light coke, its image side surface can be concave surface;The second lens with focal power;With light focus 3rd lens of degree;The 4th lens with focal power;The 5th lens with focal power;The 6th with positive light coke is saturating Mirror, its thing side can be concave surface;The 7th lens with focal power;The 8th lens with negative power, its thing side can be Concave surface.Wherein, total effective focal length f of imaging lens system group and the Entry pupil diameters EPD of imaging lens system group can meet f/EPD≤2.0.
In one embodiment, on the optics total length TTL of imaging lens system group and the imaging surface of imaging lens system group effectively The half ImgH of pixel region diagonal line length can meet TTL/ImgH≤1.6.
In one embodiment, the full filed angle FOV of imaging lens system group can meet 75 ° of 85 ° of < FOV <.
In one embodiment, imaging lens system group may also include diaphragm, which may be disposed at the second lens and the 3rd Between lens.
In one embodiment, total effective focal length f of the effective focal length f2 of the second lens and imaging lens system group can meet- 10 < f2/f < 25.
In one embodiment, total effective focal length f of the effective focal length f4 of the 4th lens and imaging lens system group can meet- 45 < f4/f < 25.
In one embodiment, total effective focal length f of the effective focal length f7 of the 7th lens and imaging lens system group can meet- 30 < f7/f < 50.
In one embodiment, the song of the image side surface of 11 and the 6th lens of radius of curvature R of the thing side of the 6th lens Rate radius R12 can meet 4 < R11/R12 < 10.
In one embodiment, the first lens in the center thickness CT1 on optical axis and the second lens on optical axis Heart thickness CT2 can meet 2 < CT1/CT2 < 6.
In one embodiment, the optics total length TTL of imaging lens system group, effective picture on the imaging surface of imaging lens system group The Entry pupil diameters EPD of the half ImgH of plain region diagonal line length, total effective focal length f of imaging lens system group and imaging lens system group can Meet 0.5 < (TTL/ImgH)/(f/EPD)≤1.5.
In one embodiment, the effective focal length f7 of the 7th lens and the effective focal length f8 of the 8th lens can meet -65 < f7/f8 < 45.
In one embodiment, the effective focal length f7 of the 7th lens and the radius of curvature R 6 of the 3rd lens image side surface can expire - 25 < f7/R6 < 20 of foot.
On the other hand, this application provides such a imaging lens system group, the lens group is along optical axis by thing side to image side Sequentially include:The first lens with positive light coke, its image side surface can be concave surface;The second lens with focal power;With light 3rd lens of focal power;The 4th lens with focal power;The 5th lens with focal power;The 6th with positive light coke is saturating Mirror, its thing side can be concave surface;The 7th lens with focal power;The 8th lens with negative power, its thing side can be Concave surface.Wherein, the first lens can meet 2 in the center thickness CT1 on optical axis and the second lens in the center thickness CT2 on optical axis < CT1/CT2 < 6.
Another aspect, present invention also provides such a imaging lens system group, the lens group is along optical axis by thing side to picture Side sequentially includes:The first lens with positive light coke, its image side surface can be concave surface;The second lens with focal power;Have 3rd lens of focal power;The 4th lens with focal power;The 5th lens with focal power;The 6th with positive light coke Lens, its thing side can be concave surface;The 7th lens with focal power;The 8th lens with negative power, its thing side can For concave surface.Wherein, the radius of curvature R 11 of the thing side of the 6th lens and the radius of curvature R 12 of the image side surface of the 6th lens can expire 4 < R11/R12 < 10 of foot.
Another aspect, present invention also provides such a imaging lens system group, the lens group is along optical axis by thing side to picture Side sequentially includes:The first lens with positive light coke, its image side surface can be concave surface;The second lens with focal power;Have 3rd lens of focal power;The 4th lens with focal power;The 5th lens with focal power;The 6th with positive light coke Lens, its thing side can be concave surface;The 7th lens with focal power;The 8th lens with negative power, its thing side can For concave surface.Wherein, which may also include diaphragm, which may be disposed between the second lens and the 3rd lens.
The application employs multi-disc (for example, eight) lens, by each power of lens of reasonable distribution, face type, each Spacing etc. on axis between the center thickness of mirror and each lens so that above-mentioned imaging lens system group has super-thin small, macropore At least one beneficial effects such as footpath, good machinability, high image quality.
Brief description of the drawings
With reference to attached drawing, by the detailed description of following non-limiting embodiment, other features of the application, purpose and excellent Point will be apparent.In the accompanying drawings:
Fig. 1 shows the structure diagram of the imaging lens system group according to the embodiment of the present application 1;
Fig. 2A to Fig. 2 D respectively illustrates chromatic curve on the axis of the imaging lens system group of embodiment 1, astigmatism curve, distortion song Line and ratio chromatism, curve;
Fig. 3 shows the structure diagram of the imaging lens system group according to the embodiment of the present application 2;
Fig. 4 A to Fig. 4 D respectively illustrate chromatic curve on the axis of the imaging lens system group of embodiment 2, astigmatism curve, distortion song Line and ratio chromatism, curve;
Fig. 5 shows the structure diagram of the imaging lens system group according to the embodiment of the present application 3;
Fig. 6 A to Fig. 6 D respectively illustrate chromatic curve on the axis of the imaging lens system group of embodiment 3, astigmatism curve, distortion song Line and ratio chromatism, curve;
Fig. 7 shows the structure diagram of the imaging lens system group according to the embodiment of the present application 4;
Fig. 8 A to Fig. 8 D respectively illustrate chromatic curve on the axis of the imaging lens system group of embodiment 4, astigmatism curve, distortion song Line and ratio chromatism, curve;
Fig. 9 shows the structure diagram of the imaging lens system group according to the embodiment of the present application 5;
Figure 10 A to Figure 10 D respectively illustrate chromatic curve on the axis of the imaging lens system group of embodiment 5, astigmatism curve, distortion Curve and ratio chromatism, curve;
Figure 11 shows the structure diagram of the imaging lens system group according to the embodiment of the present application 6;
Figure 12 A to Figure 12 D respectively illustrate chromatic curve on the axis of the imaging lens system group of embodiment 6, astigmatism curve, distortion Curve and ratio chromatism, curve;
Figure 13 shows the structure diagram of the imaging lens system group according to the embodiment of the present application 7;
Figure 14 A to Figure 14 D respectively illustrate chromatic curve on the axis of the imaging lens system group of embodiment 7, astigmatism curve, distortion Curve and ratio chromatism, curve;
Figure 15 shows the structure diagram of the imaging lens system group according to the embodiment of the present application 8;
Figure 16 A to Figure 16 D respectively illustrate chromatic curve on the axis of the imaging lens system group of embodiment 8, astigmatism curve, distortion Curve and ratio chromatism, curve;
Figure 17 shows the structure diagram of the imaging lens system group according to the embodiment of the present application 9;
Figure 18 A to Figure 18 D respectively illustrate chromatic curve on the axis of the imaging lens system group of embodiment 9, astigmatism curve, distortion Curve and ratio chromatism, curve;
Figure 19 shows the structure diagram of the imaging lens system group according to the embodiment of the present application 10;
Figure 20 A to Figure 20 D respectively illustrate chromatic curve on the axis of the imaging lens system group of embodiment 10, astigmatism curve, abnormal Varied curve and ratio chromatism, curve;
Figure 21 shows the structure diagram of the imaging lens system group according to the embodiment of the present application 11;
Figure 22 A to Figure 22 D respectively illustrate chromatic curve on the axis of the imaging lens system group of embodiment 11, astigmatism curve, abnormal Varied curve and ratio chromatism, curve;
Figure 23 shows the structure diagram of the imaging lens system group according to the embodiment of the present application 12;
Figure 24 A to Figure 24 D respectively illustrate chromatic curve on the axis of the imaging lens system group of embodiment 12, astigmatism curve, abnormal Varied curve and ratio chromatism, curve.
Embodiment
The various aspects of the application are made more detailed description by the application in order to better understand by refer to the attached drawing.Should Understand, these describe the description of the simply illustrative embodiments to the application in detail, rather than limit the application in any way Scope.In the specification, the identical element of identical reference numbers.Stating "and/or" includes associated institute Any and all combinations of one or more of list of items.
It should be noted that in the present specification, the statement of first, second, third, etc. is only used for a feature and another spy Sign distinguishes, and does not indicate that any restrictions to feature.Therefore, in the case of without departing substantially from teachings of the present application, hereinafter The first lens discussed are also known as the second lens or the 3rd lens.
In the accompanying drawings, for convenience of description, thickness, the size and dimension of lens are somewhat exaggerated.Specifically, attached drawing Shown in sphere or aspherical shape be illustrated by way of example.That is, sphere or aspherical shape is not limited to attached drawing In the sphere that shows or aspherical shape.Attached drawing is merely illustrative and and non-critical drawn to scale.
Herein, near axis area refers to the region near optical axis.If lens surface is convex surface and does not define convex surface position When putting, then it represents that the lens surface is extremely convex surface less than near axis area;If lens surface is concave surface and does not define the concave surface position When, then it represents that the lens surface is extremely concave surface less than near axis area.It is known as thing side near the surface of object in each lens, It is known as image side surface near the surface of imaging surface in each lens.
It will also be appreciated that term " comprising ", " including ", " having ", "comprising" and/or " including ", when in this theory Represent there is stated feature, element and/or component when being used in bright book, but do not preclude the presence or addition of one or more Further feature, element, component and/or combinations thereof.In addition, ought the statement of such as " ... at least one " appear in institute When after the list of row feature, whole listed feature, rather than the individual component in modification list are modified.In addition, work as description originally During the embodiment of application, represented " one or more embodiments of the application " using "available".Also, term " exemplary " It is intended to refer to example or illustration.
Unless otherwise defined, otherwise all terms (including technical terms and scientific words) used herein be respectively provided with The application one skilled in the art's is generally understood that identical implication.It will also be appreciated that term (such as in everyday words Term defined in allusion quotation) implication consistent with their implications in the context of correlation technique should be interpreted as having, and It will not explained with idealization or excessively formal sense, unless clearly so limiting herein.
It should be noted that in the case where there is no conflict, the feature in embodiment and embodiment in the application can phase Mutually combination.Describe the application in detail below with reference to the accompanying drawings and in conjunction with the embodiments.
The feature of the application, principle and other aspects are described in detail below.
Such as eight lens with focal power are included according to the imaging lens system group of the application illustrative embodiments, i.e. First lens, the second lens, the 3rd lens, the 4th lens, the 5th lens, the 6th lens, the 7th lens and the 8th lens.This eight Piece lens are along optical axis from thing side to image side sequential.
In the exemplary embodiment, the first lens can have positive light coke, its image side surface can be concave surface;Second lens have There are positive light coke or negative power;3rd lens have positive light coke or negative power;4th lens have positive light coke or negative Focal power;5th lens have positive light coke or negative power;6th lens can have positive light coke, its thing side can be recessed Face;7th lens have positive light coke or negative power;8th lens can have negative power, its thing side is concave surface.
In the exemplary embodiment, the thing side of the first lens can be convex surface.
In the exemplary embodiment, the thing side of the second lens can be convex surface, and image side surface can be concave surface.
In the exemplary embodiment, at least one in the thing side and image side surface of the 3rd lens is convex surface, for example, The image side surface of 3rd lens can be convex surface.
In the exemplary embodiment, the image side surface of the 6th lens can be convex surface.
In the exemplary embodiment, the thing side of the 7th lens can be concave surface, and image side surface can be convex surface.
In the exemplary embodiment, the imaging lens system group of the application can meet conditional f/EPD≤2.0, wherein, f is The total effective focal length of imaging lens system group, EPD are the Entry pupil diameters of imaging lens system group.More specifically, f and EPD can further meet 1.35≤f/EPD≤1.98.The rationally light-inletting quantity of control imaging lens system group, can effectively balance the low order aberration of imaging system.
In the exemplary embodiment, the imaging lens system group of the application can meet conditional TTL/ImgH≤1.6, wherein, TTL be imaging lens system group optics total length (that is, the imaging surface at the center of the thing side of the first lens to imaging lens system group is in light Distance on axis), ImgH is the half of effective pixel area diagonal line length on imaging surface.More specifically, TTL and ImgH are further It can meet 1.24≤TTL/ImgH≤1.58.By rationally controlling the ratio of TTL and ImgH, to ensure the miniaturization of imaging system Characteristic.
In the exemplary embodiment, the imaging lens system group of the application can meet 75 ° of 85 ° of < FOV < of conditional, wherein, FOV is the full filed angle of imaging lens system group.More specifically, FOV can further meet 77.5 °≤FOV≤82.6 °.Pass through control Full filed angle FOV, can efficiently control the areas imaging of imaging system.
In the exemplary embodiment, the imaging lens system group of the application can meet the < f2/f of conditional -10 < 25, wherein, F2 is the effective focal length of the second lens, and f is total effective focal length of imaging lens system group.More specifically, f2 and f can further meet- 10 < f2/f < 23, for example, -9.64≤f2/f≤22.31.By rationally controlling the second power of lens scope so that into As the rational spherical aberration of system generation, to balance the low order aberration of imaging system.
In the exemplary embodiment, the imaging lens system group of the application can meet the < f4/f of conditional -45 < 25, wherein, F4 is the effective focal length of the 4th lens, and f is total effective focal length of imaging lens system group.More specifically, f4 and f can further meet- 44 < f4/f < 23, for example, -43.38≤f4/f≤22.03., can be effective by rationally controlling the 4th power of lens scope Ground controls the coma of imaging system.
In the exemplary embodiment, the imaging lens system group of the application can meet the < f7/f of conditional -30 < 50, wherein, F7 is the effective focal length of the 7th lens, and f is total effective focal length of imaging lens system group.More specifically, f7 and f can further meet- 24 < f7/f < 42, for example, -23.66≤f7/f≤41.98., can be effective by rationally controlling the 7th power of lens scope Ground controls the curvature of field of imaging system.
In the exemplary embodiment, the imaging lens system group of the application can meet 4 < R11/R12 < 10 of conditional, wherein, R11 is the radius of curvature of the thing side of the 6th lens, and R12 is the radius of curvature of the image side surface of the 6th lens.More specifically, R11 It can further meet 4.85≤R11/R12≤9.94 with R12.The rationally overbending direction and bending degree of the 6th lens of control, can The curvature of field of imaging system is efficiently controlled, lifts the image quality of imaging system.
In the exemplary embodiment, the imaging lens system group of the application can meet 2 < CT1/CT2 < 6 of conditional, wherein, CT1 is the first lens in the center thickness on optical axis, and CT2 is the second lens in the center thickness on optical axis.More specifically, CT1 It can further meet 2.47≤CT1/CT2≤5.12 with CT2.The rationally ratio of the center thickness of the first lens of control and the second lens Value, may be such that imaging system obtains good machinability.
In the exemplary embodiment, the imaging lens system group of the application can meet 0.5 < of conditional (TTL/ImgH)/(f/ EPD)≤1.5, wherein, TTL is the optics total length of imaging lens system group, and ImgH is effective pixel area diagonal line length on imaging surface Half, f be imaging lens system group total effective focal length, EPD be imaging lens system group Entry pupil diameters.More specifically, TTL, ImgH, F and EPD can further meet 0.72≤(TTL/ImgH)/(f/EPD)≤1.15.By the ratio for controlling TTL, ImgH and f, EPD Value, to ensure that imaging system has ultra-thin, large aperture characteristic.
In the exemplary embodiment, the imaging lens system group of the application can meet the < f7/f8 of conditional -65 < 45, wherein, F7 is the effective focal length of the 7th lens, and f8 is the effective focal length of the 8th lens.More specifically, f7 and f8 can further meet -63 < f7/f8 < 43, for example, -60.82≤f7/f8≤42.78.Rationally the 7th lens of control and the ratio of the 8th lens effective focal length Value, effectively can control the astigmatism amount of system in the reasonable scope.
In the exemplary embodiment, the imaging lens system group of the application can meet the < f7/R6 of conditional -25 < 20, wherein, F7 is the effective focal length of the 7th lens, and R6 is the radius of curvature of the image side surface of the 3rd lens.More specifically, f7 and R6 further may be used Meet -24 < f7/R6 < 17, for example, -23.90≤f7/R6≤16.39.
In the exemplary embodiment, above-mentioned imaging lens system group, which may also include, is arranged between the second lens and the 3rd lens Diaphragm, to lift the image quality of lens group.
Alternatively, above-mentioned imaging lens system group may also include optical filter for correcting color error ratio and/or for guard bit In the protective glass of the photo-sensitive cell on imaging surface.
Multi-disc eyeglass, such as described above eight can be used according to the imaging lens system group of the above embodiment of the application Piece.Pass through spacing on the axis between each power of lens of reasonable distribution, face type, the center thickness of each lens and each lens Deng, can effectively the volume of reducing glass group, reduce lens group susceptibility and improve the machinability of lens group so that shooting Lens group is more advantageous to producing and processing and being applicable to portable electronic product.Meanwhile pass through the imaging lens system of above-mentioned configuration Group, also has the beneficial effect such as ultra-thin, large aperture, high image quality.
In presently filed embodiment, the minute surface of each lens is aspherical mirror.The characteristics of non-spherical lens is:From Lens centre to lens perimeter, curvature be consecutive variations.With having the sphere of constant curvature from lens centre to lens perimeter Lens are different, and non-spherical lens has more preferably radius of curvature characteristic, and there is improvement to distort aberration and improve the excellent of astigmatic image error Point.After non-spherical lens, the aberration occurred when imaging can be eliminated as much as possible, so as to improve image quality.
However, it will be understood by those of skill in the art that without departing from this application claims technical solution situation Under, the lens numbers for forming imaging lens system group can be changed, to obtain each result and advantage described in this specification.For example, Although being described in embodiments by taking eight lens as an example, which is not limited to include eight lens. If desired, the imaging lens system group may also include the lens of other quantity.
The specific embodiment for the imaging lens system group for being applicable to the above embodiment is further described with reference to the accompanying drawings.
Embodiment 1
Imaging lens system group referring to Fig. 1 to Fig. 2 D descriptions according to the embodiment of the present application 1.Fig. 1 is shown according to this Shen Please embodiment 1 imaging lens system group structure diagram.
As shown in Figure 1, according to the imaging lens system group of the application illustrative embodiments along optical axis by thing side to image side sequentially Including:It is first lens E1, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th lens E6, the 7th saturating Mirror E7, the 8th lens E8 and imaging surface S17.
First lens E1 has positive light coke, its thing side S1 is convex surface, and image side surface S2 is concave surface;Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface;3rd lens E3 has positive light coke, its thing side S5 is Concave surface, image side surface S6 are convex surface;4th lens E4 has negative power, its thing side S7 is convex surface, and image side surface S8 is concave surface;The Five lens E5 have positive light coke, its thing side S9 is convex surface, and image side surface S10 is convex surface;6th lens E6 has positive light coke, Its thing side S11 is concave surface, and image side surface S12 is convex surface;7th lens E7 has negative power, its thing side S13 is concave surface, as Side S14 is convex surface;8th lens E8 has negative power, its thing side S15 is concave surface, and image side surface S16 is concave surface.From thing The light of body sequentially through each surface S1 to S16 and is ultimately imaged on imaging surface S17.
Alternatively, the imaging lens system group in the present embodiment, which further includes, is arranged between the second lens E2 and the 3rd lens E3 Diaphragm STO.
Table 1 shows surface type, radius of curvature, thickness, material and the circle of each lens of the imaging lens system group of embodiment 1 Coefficient is bored, wherein, the unit of radius of curvature and thickness is millimeter (mm).
Table 1
As shown in Table 1, the thing side of any one lens in the first lens E1 to the 8th lens E8 and image side surface are It is aspherical.In the present embodiment, the face type x of each non-spherical lens is available but is not limited to following aspherical formula and is defined:
Wherein, x be it is aspherical along optical axis direction when being highly the position of h, away from aspheric vertex of surface apart from rise;C is Aspherical paraxial curvature, c=1/R (that is, paraxial curvature c is the inverse of 1 mean curvature radius R of upper table);K for circular cone coefficient ( Provided in table 1);Ai is the correction factor of aspherical i-th-th ranks.Table 2 below is given available for each aspherical in embodiment 1 The high order term coefficient A of minute surface S1-S164、A6、A8、A10、A12、A14、A16、A18And A20
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 8.5886E-04 -2.1473E-03 1.8965E-03 1.0452E-03 -3.6155E-03 3.3201E- 03 -1.5200E-03 3.4732E-04 -3.2747E- 05
S2 -2.7810E-02 6.2108E-02 -8.0208E-02 7.0162E-02 -4.1483E-02 1.5522E- 02 -3.3211E-03 3.2489E-04 -5.6616E- 06
S3 -1.0570E-01 3.4738E-02 1.5408E-01 -5.0365E-01 8.0426E-01 - 7.5885E- 01 4.2875E-01 -1.3341E- 01 1.7497E-02
S4 -8.0862E-02 -3.8579E-02 5.3233E-01 -2.0010E+00 4.5366E+00 -6.4322E +00 5.5937E+00 -2.7232E+ 00 5.7107E-01
S5 -1.0700E-03 -2.6583E-01 1.2946E+00 -4.2862E+00 8.9748E+00 -1.1970E +01 9.8617E+00 -4.5690E+ 00 9.1139E-01
S6 6.2762E-02 -7.0295E-01 2.2976E+00 -5.0095E+00 7.4323E+00 -7.3943E +00 4.7367E+00 -1.7685E+ 00 2.9293E-01
S7 1.9345E-01 -1.3529E+00 3.7316E+00 -6.8347E+00 8.3223E+00 -6.5672E +00 3.1981E+00 -8.6153E- 01 9.6898E-02
S8 3.0481E-01 -1.4390E+00 3.4010E+00 -5.3002E+00 5.4408E+00 -3.6611E +00 1.5619E+00 -3.8453E- 01 4.2181E-02
S9 2.1927E-01 -8.7917E-01 1.8829E+00 -2.4579E+00 2.0451E+00 -1.0965E +00 3.6886E-01 -7.0942E- 02 5.9445E-03
S10 2.6143E-03 -1.6573E-01 2.5351E-01 -1.5797E-01 3.3891E-02 1.2797E- 02 -9.5076E-03 2.1968E-03 -1.9202E- 04
S11 4.8603E-02 -1.0400E-01 8.2001E-02 -2.6670E-02 -3.9947E-02 5.6194E- 02 -3.0262E-02 7.7042E-03 -7.6013E- 04
S12 7.3830E-02 -2.1772E-01 3.1788E-01 -3.0583E-01 1.8183E-01 - 6.5203E- 02 1.3743E-02 -1.5668E- 03 7.4415E-05
S13 2.2371E-01 -4.7305E-01 5.2207E-01 -4.1151E-01 2.1024E-01 - 6.5364E- 02 1.1890E-02 -1.1580E- 03 4.6189E-05
S14 2.7156E-01 -3.5241E-01 2.5669E-01 -1.3345E-01 4.9502E-02 - 1.2429E- 02 1.9704E-03 -1.7618E- 04 6.7386E-06
S15 1.1571E-02 -7.9185E-02 7.7459E-02 -3.6334E-02 9.9240E-03 - 1.6523E- 03 1.6508E-04 -9.0767E- 06 2.1014E-07
S16 -7.3146E-02 2.1674E-02 -3.6900E-03 8.7609E-04 -3.4110E-04 8.2677E- 05 -1.0693E-05 7.0730E-07 -1.9052E- 08
Table 2
Table 3 provides the effective focal length f1 to f8 of each lens in embodiment 1, total effective focal length f of imaging lens system group, shooting thoroughly Microscope group optics total length TTL (that is, from the center of the thing side S1 of the first lens E1 to imaging surface S17 on optical axis away from From), the half ImgH of the effective pixel area diagonal line length and maximum angle of half field-of view FOV of imaging lens system group on imaging surface S17.
f1(mm) 4.50 f7(mm) -46.83
f2(mm) -10.53 f8(mm) -2.35
f3(mm) 12.59 f(mm) 4.53
f4(mm) -61.19 TTL(mm) 5.50
f5(mm) 40.12 ImgH(mm) 3.77
f6(mm) 3.42 FOV(°) 78.6
Table 3
Imaging lens system group in embodiment 1 meets:
F/EPD=1.71, wherein, f is total effective focal length of imaging lens system group, and EPD is the Entry pupil diameters of imaging lens system group;
TTL/ImgH=1.46, wherein, TTL is the optics total length of imaging lens system group, and ImgH is effective on imaging surface S17 The half of pixel region diagonal line length;
F2/f=-2.32, wherein, f2 is the effective focal length of the second lens E2, and f is total effective focal length of imaging lens system group;
F4/f=-13.50, wherein, f4 is the effective focal length of the 4th lens E4, and f is total effective focal length of imaging lens system group;
F7/f=-10.33, wherein, f7 is the effective focal length of the 7th lens E7, and f is total effective focal length of imaging lens system group;
R11/R12=7.75, wherein, R11 is the radius of curvature of the thing side S11 of the 6th lens E6, and R12 is the 6th lens The radius of curvature of the image side surface S12 of E6;
CT1/CT2=4.53, wherein, CT1 for the first lens E1 in the center thickness on optical axis, CT2 is the second lens E2 In the center thickness on optical axis;
(TTL/ImgH)/(f/EPD)=0.85, wherein, TTL is the optics total length of imaging lens system group, and ImgH is imaging The half of effective pixel area diagonal line length on the S17 of face, f are total effective focal length of imaging lens system group, and EPD is imaging lens system group Entry pupil diameters;
F7/f8=19.92, wherein, f7 is the effective focal length of the 7th lens E7, and f8 is the effective focal length of the 8th lens E8;
F7/R6=6.81, wherein, f7 is the effective focal length of the 7th lens E7, and R6 is the image side surface S6's of the 3rd lens E3 Radius of curvature.
Fig. 2A shows chromatic curve on the axis of the imaging lens system group of embodiment 1, its represent different wave length light via Converging focal point after lens group deviates.Fig. 2 B show the astigmatism curve of the imaging lens system group of embodiment 1, it represents meridianal image surface Bending and sagittal image surface bending.Fig. 2 C show the distortion curve of the imaging lens system group of embodiment 1, it represents different visual angles situation Under distortion sizes values.Fig. 2 D show the ratio chromatism, curve of the imaging lens system group of embodiment 1, it represents light via lens The deviation of different image heights after group on imaging surface.Understood according to Fig. 2A to Fig. 2 D, the imaging lens system group given by embodiment 1 It can realize good image quality.
Embodiment 2
Imaging lens system group referring to Fig. 3 to Fig. 4 D descriptions according to the embodiment of the present application 2.In the present embodiment and following reality Apply in example, for brevity, by clipped description similar to Example 1.Fig. 3 is shown according to the embodiment of the present application 2 The structure diagram of imaging lens system group.
As shown in figure 3, according to the imaging lens system group of the application illustrative embodiments along optical axis by thing side to image side sequentially Including:It is first lens E1, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th lens E6, the 7th saturating Mirror E7, the 8th lens E8 and imaging surface S17.
First lens E1 has positive light coke, its thing side S1 is convex surface, and image side surface S2 is concave surface;Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface;3rd lens E3 has positive light coke, its thing side S5 is Concave surface, image side surface S6 are convex surface;4th lens E4 has positive light coke, its thing side S7 is convex surface, and image side surface S8 is convex surface;The Five lens E5 have positive light coke, its thing side S9 is concave surface, and image side surface S10 is convex surface;6th lens E6 has positive light coke, Its thing side S11 is concave surface, and image side surface S12 is convex surface;7th lens E7 has negative power, its thing side S13 is concave surface, as Side S14 is convex surface;8th lens E8 has negative power, its thing side S15 is concave surface, and image side surface S16 is concave surface.From thing The light of body sequentially through each surface S1 to S16 and is ultimately imaged on imaging surface S17.
Alternatively, the imaging lens system group in the present embodiment, which further includes, is arranged between the second lens E2 and the 3rd lens E3 Diaphragm STO.
Table 4 shows surface type, radius of curvature, thickness, material and the circle of each lens of the imaging lens system group of embodiment 2 Coefficient is bored, wherein, the unit of radius of curvature and thickness is millimeter (mm).Table 5 is shown available for each aspherical in embodiment 2 The high order term coefficient of minute surface, wherein, each aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.Table 6 is shown Effective focal length f1 to f8, total effective focal length f, the optics of imaging lens system group of imaging lens system group of each lens are total in embodiment 2 The half ImgH of effective pixel area diagonal line length and the maximum angle of half field-of view of imaging lens system group on length TTL, imaging surface S17 FOV。
Table 4
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.2955E-03 -4.0303E-03 5.0713E-03 -1.5162E- 03 -2.9843E- 03 3.7938E-03 -1.9269E-03 4.6549E-04 - 4.5487E- 05
S2 -2.7204E-02 5.9210E-02 -7.3851E-02 6.1954E-02 -3.4337E- 02 1.1336E-02 -1.7820E-03 8.2376E-06 2.1874E- 05
S3 -1.0630E-01 3.3132E-02 1.4412E-01 -4.4025E- 01 6.6736E-01 -6.0158E-01 3.2552E-01 -9.6928E- 02 1.2119E- 02
S4 -7.7572E-02 -6.1847E-02 5.9983E-01 -2.0940E+ 00 4.5736E+00 -6.3531E+00 5.4566E+00 -2.6343E+ 00 5.4903E- 01
S5 7.5542E-03 -3.1809E-01 1.4814E+00 -4.6569E+ 00 9.3142E+00 -1.1927E+01 9.4805E+00 -4.2580E+ 00 8.2727E- 01
S6 6.3017E-02 -7.2623E-01 2.4088E+00 -5.3047E+ 00 7.9219E+00 -7.9111E+00 5.0735E+00 -1.8914E+ 00 3.1205E- 01
S7 1.9192E-01 -1.3488E+00 3.7286E+00 -6.8547E+ 00 8.3850E+00 -6.6532E+00 3.2628E+00 -8.8779E- 01 1.0139E- 01
S8 3.0504E-01 -1.4336E+00 3.3847E+00 -5.2849E+ 00 5.4494E+00 -3.6912E+00 1.5876E+00 -3.9432E- 01 4.3658E- 02
S9 2.2399E-01 -9.0582E-01 1.9519E+00 -2.5588E+ 00 2.1371E+00 -1.1513E+00 3.9048E-01 -7.6193E- 02 6.5418E- 03
S10 1.4899E-03 -1.6062E-01 2.3594E-01 -1.1465E- 01 -2.9012E- 02 6.5053E-02 -3.4189E-02 8.3831E-03 - 8.3023E- 04
S11 4.4031E-02 -9.1718E-02 6.1222E-02 -3.2334E- 03 -5.6587E- 02 6.3047E-02 -3.1607E-02 7.7277E-03 - 7.3889E- 04
S12 7.4221E-02 -2.1427E-01 3.0770E-01 -2.9345E- 01 1.7322E-01 -6.1514E-02 1.2776E-02 -1.4242E- 03 6.5330E- 05
S13 2.2395E-01 -4.7080E-01 5.1804E-01 -4.1026E- 01 2.1193E-01 -6.6990E-02 1.2480E-02 -1.2583E- 03 5.2890E- 05
S14 2.7276E-01 -3.5611E-01 2.6034E-01 -1.3585E- 01 5.0567E-02 -1.2743E-02 2.0289E-03 -1.8238E- 04 7.0252E- 06
S15 1.1468E-02 -8.1706E-02 8.1395E-02 -3.9003E- 02 1.0916E-02 -1.8670E-03 1.9206E-04 -1.0895E- 05 2.6081E- 07
S16 -7.2480E-02 2.1938E-02 -3.6893E-03 8.0384E-04 -3.1144E- 04 7.7140E-05 -1.0152E-05 6.8082E-07 - 1.8538E- 08
Table 5
Table 6
Fig. 4 A show chromatic curve on the axis of the imaging lens system group of embodiment 2, its represent different wave length light via Converging focal point after lens group deviates.Fig. 4 B show the astigmatism curve of the imaging lens system group of embodiment 2, it represents meridianal image surface Bending and sagittal image surface bending.Fig. 4 C show the distortion curve of the imaging lens system group of embodiment 2, it represents different visual angles situation Under distortion sizes values.Fig. 4 D show the ratio chromatism, curve of the imaging lens system group of embodiment 2, it represents light via lens The deviation of different image heights after group on imaging surface.Understood according to Fig. 4 A to Fig. 4 D, the imaging lens system group given by embodiment 2 It can realize good image quality.
Embodiment 3
The imaging lens system group according to the embodiment of the present application 3 is described referring to Fig. 5 to Fig. 6 D.Fig. 5 is shown according to this Apply for the structure diagram of the imaging lens system group of embodiment 3.
As shown in figure 5, according to the imaging lens system group of the application illustrative embodiments along optical axis by thing side to image side sequentially Including:It is first lens E1, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th lens E6, the 7th saturating Mirror E7, the 8th lens E8 and imaging surface S17.
First lens E1 has positive light coke, its thing side S1 is convex surface, and image side surface S2 is concave surface;Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface;3rd lens E3 has positive light coke, its thing side S5 is Concave surface, image side surface S6 are convex surface;4th lens E4 has positive light coke, its thing side S7 is concave surface, and image side surface S8 is convex surface;The Five lens E5 have negative power, its thing side S9 is concave surface, and image side surface S10 is convex surface;6th lens E6 has positive light coke, Its thing side S11 is concave surface, and image side surface S12 is convex surface;7th lens E7 has negative power, its thing side S13 is concave surface, as Side S14 is convex surface;8th lens E8 has negative power, its thing side S15 is concave surface, and image side surface S16 is concave surface.From thing The light of body sequentially through each surface S1 to S16 and is ultimately imaged on imaging surface S17.
Alternatively, the imaging lens system group in the present embodiment, which further includes, is arranged between the second lens E2 and the 3rd lens E3 Diaphragm STO.
Table 7 shows surface type, radius of curvature, thickness, material and the circle of each lens of the imaging lens system group of embodiment 3 Coefficient is bored, wherein, the unit of radius of curvature and thickness is millimeter (mm).Table 8 is shown available for each aspherical in embodiment 3 The high order term coefficient of minute surface, wherein, each aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.Table 9 is shown Effective focal length f1 to f8, total effective focal length f, the optics of imaging lens system group of imaging lens system group of each lens are total in embodiment 3 The half ImgH of effective pixel area diagonal line length and the maximum angle of half field-of view of imaging lens system group on length TTL, imaging surface S17 FOV。
Table 7
Table 8
f1(mm) 4.44 f7(mm) -97.22
f2(mm) -9.97 f8(mm) -2.27
f3(mm) 12.08 f(mm) 4.53
f4(mm) 37.74 TTL(mm) 4.64
f5(mm) -100.02 ImgH(mm) 3.73
f6(mm) 3.48 FOV(°) 78.4
Table 9
Fig. 6 A show chromatic curve on the axis of the imaging lens system group of embodiment 3, its represent different wave length light via Converging focal point after lens group deviates.Fig. 6 B show the astigmatism curve of the imaging lens system group of embodiment 3, it represents meridianal image surface Bending and sagittal image surface bending.Fig. 6 C show the distortion curve of the imaging lens system group of embodiment 3, it represents different visual angles situation Under distortion sizes values.Fig. 6 D show the ratio chromatism, curve of the imaging lens system group of embodiment 3, it represents light via lens The deviation of different image heights after group on imaging surface.Understood according to Fig. 6 A to Fig. 6 D, the imaging lens system group given by embodiment 3 It can realize good image quality.
Embodiment 4
The imaging lens system group according to the embodiment of the present application 4 is described referring to Fig. 7 to Fig. 8 D.Fig. 7 is shown according to this Apply for the structure diagram of the imaging lens system group of embodiment 4.
As shown in fig. 7, according to the imaging lens system group of the application illustrative embodiments along optical axis by thing side to image side sequentially Including:It is first lens E1, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th lens E6, the 7th saturating Mirror E7, the 8th lens E8 and imaging surface S17.
First lens E1 has positive light coke, its thing side S1 is convex surface, and image side surface S2 is concave surface;Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface;3rd lens E3 has positive light coke, its thing side S5 is Concave surface, image side surface S6 are convex surface;4th lens E4 has negative power, its thing side S7 is convex surface, and image side surface S8 is concave surface;The Five lens E5 have positive light coke, its thing side S9 is convex surface, and image side surface S10 is convex surface;6th lens E6 has positive light coke, Its thing side S11 is concave surface, and image side surface S12 is convex surface;7th lens E7 has positive light coke, its thing side S13 is concave surface, as Side S14 is convex surface;8th lens E8 has negative power, its thing side S15 is concave surface, and image side surface S16 is concave surface.From thing The light of body sequentially through each surface S1 to S16 and is ultimately imaged on imaging surface S17.
Alternatively, the imaging lens system group in the present embodiment, which further includes, is arranged between the second lens E2 and the 3rd lens E3 Diaphragm STO.
Table 10 show the surface types of each lens of the imaging lens system group of embodiment 4, radius of curvature, thickness, material and Circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).Table 11 is shown available for each non-in embodiment 4 The high order term coefficient of spherical mirror surface, wherein, each aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.Table 12 Show effective focal length f1 to f8, total effective focal length f, the light of imaging lens system group of imaging lens system group of each lens in embodiment 4 Maximum half of the half ImgH of effective pixel area diagonal line length and imaging lens system group on total length TTL, imaging surface S17 is learned to regard Rink corner FOV.
Table 10
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 9.5371E-04 -3.1817E-03 4.3482E-03 -1.8532E-03 -1.8125E-03 2.8103E- 03 -1.5189E-03 3.7870E-04 - 3.7750E- 05
S2 -2.7604E-02 6.4584E-02 -8.9819E-02 8.6017E-02 -5.6051E-02 2.3525E- 02 -5.9395E-03 7.9656E-04 - 4.1791E- 05
S3 -1.0698E-01 4.1594E-02 1.2792E-01 -4.4246E-01 7.1504E-01 - 6.7504E- 01 3.7914E-01 -1.1663E-01 1.5038E- 02
S4 -8.4503E-02 -1.4209E-02 4.4744E-01 -1.8347E+00 4.3666E+00 -6.3808E +00 5.6559E+00 -2.7865E+00 5.8850E- 01
S5 -8.0220E-03 -1.8936E-01 9.0778E-01 -3.1362E+00 6.8267E+00 -9.4272E +00 8.0091E+00 -3.8101E+00 7.7751E- 01
S6 6.2941E-02 -7.0197E-01 2.2907E+00 -4.9836E+00 7.3712E+00 -7.3053E +00 4.6586E+00 -1.7303E+00 2.8488E- 01
S7 1.9265E-01 -1.3516E+00 3.7328E+00 -6.8414E+00 8.3325E+00 -6.5767E +00 3.2043E+00 -8.6423E-01 9.7443E- 02
S8 3.0478E-01 -1.4387E+00 3.4005E+00 -5.3010E+00 5.4441E+00 -3.6665E +00 1.5665E+00 -3.8664E-01 4.2595E- 02
S9 2.1887E-01 -8.7984E-01 1.8852E+00 -2.4621E+00 2.0510E+00 -1.1020E +00 3.7207E-01 -7.1980E-02 6.0863E- 03
S10 2.9566E-03 -1.6388E-01 2.5016E-01 -1.5332E-01 2.7830E-02 1.8162E- 02 -1.2281E-02 2.9564E-03 - 2.7701E- 04
S11 4.6423E-02 -9.6819E-02 7.2316E-02 -1.8905E-02 -4.3921E-02 5.7477E- 02 -3.0445E-02 7.6784E-03 - 7.5093E- 04
S12 7.6714E-02 -2.2576E-01 3.2799E-01 -3.1634E-01 1.9043E-01 - 6.9810E- 02 1.5219E-02 -1.8226E-03 9.2852E- 05
S13 2.1520E-01 -4.5862E-01 5.0773E-01 -4.0313E-01 2.0817E-01 - 6.5743E- 02 1.2243E-02 -1.2346E-03 5.1888E- 05
S14 2.8096E-01 -3.6248E-01 2.6604E-01 -1.3968E-01 5.2393E-02 - 1.3311E- 02 2.1366E-03 -1.9366E-04 7.5267E- 06
S15 2.1290E-02 -1.0170E-01 9.8207E-02 -4.6731E-02 1.3069E-02 - 2.2406E- 03 2.3169E-04 -1.3267E-05 3.2257E- 07
S16 -7.5294E-02 2.3261E-02 -3.9773E-03 6.8605E-04 -2.2951E-04 5.6583E- 05 -7.4708E-06 5.0095E-07 - 1.3679E- 08
Table 11
f1(mm) 4.44 f7(mm) 100.03
f2(mm) -9.96 f8(mm) -2.26
f3(mm) 12.55 f(mm) 4.52
f4(mm) -150.97 TTL(mm) 5.50
f5(mm) 58.38 ImgH(mm) 3.75
f6(mm) 3.61 FOV(°) 78.2
Table 12
Fig. 8 A show chromatic curve on the axis of the imaging lens system group of embodiment 4, its represent different wave length light via Converging focal point after lens group deviates.Fig. 8 B show the astigmatism curve of the imaging lens system group of embodiment 4, it represents meridianal image surface Bending and sagittal image surface bending.Fig. 8 C show the distortion curve of the imaging lens system group of embodiment 4, it represents different visual angles situation Under distortion sizes values.Fig. 8 D show the ratio chromatism, curve of the imaging lens system group of embodiment 4, it represents light via lens The deviation of different image heights after group on imaging surface.Understood according to Fig. 8 A to Fig. 8 D, the imaging lens system group given by embodiment 4 It can realize good image quality.
Embodiment 5
The imaging lens system group according to the embodiment of the present application 5 is described referring to Fig. 9 to Figure 10 D.Fig. 9 is shown according to this Apply for the structure diagram of the imaging lens system group of embodiment 5.
As shown in figure 9, according to the imaging lens system group of the application illustrative embodiments along optical axis by thing side to image side sequentially Including:It is first lens E1, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th lens E6, the 7th saturating Mirror E7, the 8th lens E8 and imaging surface S17.
First lens E1 has positive light coke, its thing side S1 is convex surface, and image side surface S2 is concave surface;Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface;3rd lens E3 has positive light coke, its thing side S5 is Concave surface, image side surface S6 are convex surface;4th lens E4 has negative power, its thing side S7 is convex surface, and image side surface S8 is concave surface;The Five lens E5 have positive light coke, its thing side S9 is convex surface, and image side surface S10 is convex surface;6th lens E6 has positive light coke, Its thing side S11 is concave surface, and image side surface S12 is convex surface;7th lens E7 has negative power, its thing side S13 is concave surface, as Side S14 is convex surface;8th lens E8 has negative power, its thing side S15 is concave surface, and image side surface S16 is concave surface.From thing The light of body sequentially through each surface S1 to S16 and is ultimately imaged on imaging surface S17.
Alternatively, the imaging lens system group in the present embodiment, which further includes, is arranged between the second lens E2 and the 3rd lens E3 Diaphragm STO.
Table 13 show the surface types of each lens of the imaging lens system group of embodiment 5, radius of curvature, thickness, material and Circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).Table 14 is shown available for each non-in embodiment 5 The high order term coefficient of spherical mirror surface, wherein, each aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.Table 15 Show effective focal length f1 to f8, total effective focal length f, the light of imaging lens system group of imaging lens system group of each lens in embodiment 5 Maximum half of the half ImgH of effective pixel area diagonal line length and imaging lens system group on total length TTL, imaging surface S17 is learned to regard Rink corner FOV.
Table 13
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -5.9655E-04 4.3365E-03 -1.7058E-02 3.1307E-02 -3.1808E-02 1.9121E-02 -6.7539E- 03 1.2934E-03 - 1.0491E- 04
S2 -3.3357E-02 7.6078E-02 -1.0436E-01 1.0034E-01 -6.6726E-02 2.9133E-02 -7.8845E- 03 1.1927E-03 - 7.7332E- 05
S3 -1.0372E-01 3.9535E-02 1.2940E-01 -4.4164E-01 6.9309E-01 -6.2900E- 01 3.3752E-01 -9.8903E-02 1.2144E- 02
S4 -7.2823E-02 -4.6095E-02 5.6512E-01 -2.1784E+00 4.9177E+00 -6.7856E+ 00 5.6508E+00 -2.6061E+00 5.1321E- 01
S5 -4.5950E-04 -2.7272E-01 1.2739E+00 -3.9833E+00 7.8692E+00 -9.8756E+ 00 7.6409E+00 -3.3202E+00 6.2018E- 01
S6 6.2325E-02 -6.8315E-01 2.1912E+00 -4.6816E+00 6.8169E+00 -6.6394E+ 00 4.1361E+00 -1.4883E+00 2.3519E- 01
S7 1.9491E-01 -1.3534E+00 3.7322E+00 -6.8567E+00 8.4074E+00 -6.7145E+ 00 3.3313E+00 -9.2329E-01 1.0842E- 01
S8 3.0384E-01 -1.4410E+00 3.4041E+00 -5.3026E+00 5.4416E+00 -3.6585E+ 00 1.5574E+00 -3.8159E-01 4.1463E- 02
S9 2.1863E-01 -8.7699E-01 1.8773E+00 -2.4501E+00 2.0381E+00 -1.0924E+ 00 3.6744E-01 -7.0696E-02 5.9310E- 03
S10 3.2345E-03 -1.6557E-01 2.4793E-01 -1.5147E-01 3.0532E-02 1.3589E-02 -9.6206E- 03 2.2436E-03 - 2.0292E- 04
S11 5.3398E-02 -1.2180E-01 1.1339E-01 -6.2046E-02 -1.3682E-02 4.3620E-02 -2.6556E- 02 7.0942E-03 - 7.1664E- 04
S12 7.3342E-02 -2.1264E-01 3.1098E-01 -2.9885E-01 1.7771E-01 -6.4147E- 02 1.3746E-02 -1.6155E-03 8.0611E- 05
S13 2.2685E-01 -4.7835E-01 5.3230E-01 -4.2494E-01 2.2036E-01 -6.9870E- 02 1.3072E-02 -1.3275E-03 5.6462E- 05
S14 2.7142E-01 -3.5191E-01 2.5558E-01 -1.3232E-01 4.8872E-02 -1.2223E- 02 1.9307E-03 -1.7200E-04 6.5524E- 06
S15 1.2419E-02 -8.5358E-02 8.5394E-02 -4.1013E-02 1.1450E-02 -1.9471E- 03 1.9882E-04 -1.1195E-05 2.6634E- 07
S16 -7.7602E-02 2.4645E-02 -5.2011E-03 1.5461E-03 -5.5990E-04 1.2846E-04 -1.6407E- 05 1.0948E-06 - 3.0027E- 08
Table 14
f1(mm) 4.84 f7(mm) -46.16
f2(mm) -13.87 f8(mm) -2.35
f3(mm) 12.86 f(mm) 4.49
f4(mm) -194.71 TTL(mm) 5.50
f5(mm) 60.21 ImgH(mm) 3.77
f6(mm) 3.39 FOV(°) 79.3
Table 15
Figure 10 A show chromatic curve on the axis of the imaging lens system group of embodiment 5, its represent different wave length light via Converging focal point after lens group deviates.Figure 10 B show the astigmatism curve of the imaging lens system group of embodiment 5, it represents meridian picture Face is bent and sagittal image surface bending.Figure 10 C show the distortion curve of the imaging lens system group of embodiment 5, it represents different visual angles In the case of distortion sizes values.Figure 10 D show the ratio chromatism, curve of the imaging lens system group of embodiment 5, it represents light warp By the deviation of the different image heights after lens group on imaging surface.Understood according to Figure 10 A to Figure 10 D, taking the photograph given by embodiment 5 As lens group can realize good image quality.
Embodiment 6
The imaging lens system group according to the embodiment of the present application 6 is described referring to Figure 11 to Figure 12 D.Figure 11 shows basis The structure diagram of the imaging lens system group of the embodiment of the present application 6.
As shown in figure 11, according to the imaging lens system group of the application illustrative embodiments along optical axis by thing side to image side sequentially Including:It is first lens E1, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th lens E6, the 7th saturating Mirror E7, the 8th lens E8 and imaging surface S17.
First lens E1 has positive light coke, its thing side S1 is convex surface, and image side surface S2 is concave surface;Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface;3rd lens E3 has positive light coke, its thing side S5 is Concave surface, image side surface S6 are convex surface;4th lens E4 has negative power, its thing side S7 is convex surface, and image side surface S8 is concave surface;The Five lens E5 have positive light coke, its thing side S9 is convex surface, and image side surface S10 is concave surface;6th lens E6 has positive light coke, Its thing side S11 is concave surface, and image side surface S12 is convex surface;7th lens E7 has negative power, its thing side S13 is concave surface, as Side S14 is convex surface;8th lens E8 has negative power, its thing side S15 is concave surface, and image side surface S16 is concave surface.From thing The light of body sequentially through each surface S1 to S16 and is ultimately imaged on imaging surface S17.
Alternatively, the imaging lens system group in the present embodiment, which further includes, is arranged between the second lens E2 and the 3rd lens E3 Diaphragm STO.
Table 16 show the surface types of each lens of the imaging lens system group of embodiment 6, radius of curvature, thickness, material and Circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).Table 17 is shown available for each non-in embodiment 6 The high order term coefficient of spherical mirror surface, wherein, each aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.Table 18 Show effective focal length f1 to f8, total effective focal length f, the light of imaging lens system group of imaging lens system group of each lens in embodiment 6 Maximum half of the half ImgH of effective pixel area diagonal line length and imaging lens system group on total length TTL, imaging surface S17 is learned to regard Rink corner FOV.
Table 16
Table 17
f1(mm) 4.56 f7(mm) -58.84
f2(mm) -12.13 f8(mm) -2.38
f3(mm) 13.48 f(mm) 4.46
f4(mm) -27.75 TTL(mm) 5.50
f5(mm) 23.85 ImgH(mm) 3.77
f6(mm) 3.38 FOV(°) 79.5
Table 18
Figure 12 A show chromatic curve on the axis of the imaging lens system group of embodiment 6, its represent different wave length light via Converging focal point after lens group deviates.Figure 12 B show the astigmatism curve of the imaging lens system group of embodiment 6, it represents meridian picture Face is bent and sagittal image surface bending.Figure 12 C show the distortion curve of the imaging lens system group of embodiment 6, it represents different visual angles In the case of distortion sizes values.Figure 12 D show the ratio chromatism, curve of the imaging lens system group of embodiment 6, it represents light warp By the deviation of the different image heights after lens group on imaging surface.Understood according to Figure 12 A to Figure 12 D, taking the photograph given by embodiment 6 As lens group can realize good image quality.
Embodiment 7
The imaging lens system group according to the embodiment of the present application 7 is described referring to Figure 13 to Figure 14 D.Figure 13 shows basis The structure diagram of the imaging lens system group of the embodiment of the present application 7.
As shown in figure 13, according to the imaging lens system group of the application illustrative embodiments along optical axis by thing side to image side sequentially Including:It is first lens E1, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th lens E6, the 7th saturating Mirror E7, the 8th lens E8 and imaging surface S17.
First lens E1 has positive light coke, its thing side S1 is convex surface, and image side surface S2 is concave surface;Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface;3rd lens E3 has positive light coke, its thing side S5 is Concave surface, image side surface S6 are convex surface;4th lens E4 has negative power, its thing side S7 is convex surface, and image side surface S8 is concave surface;The Five lens E5 have positive light coke, its thing side S9 is convex surface, and image side surface S10 is concave surface;6th lens E6 has positive light coke, Its thing side S11 is concave surface, and image side surface S12 is convex surface;7th lens E7 has negative power, its thing side S13 is concave surface, as Side S14 is convex surface;8th lens E8 has negative power, its thing side S15 is concave surface, and image side surface S16 is concave surface.From thing The light of body sequentially through each surface S1 to S16 and is ultimately imaged on imaging surface S17.
Alternatively, the imaging lens system group in the present embodiment, which further includes, is arranged between the second lens E2 and the 3rd lens E3 Diaphragm STO.
Table 19 show the surface types of each lens of the imaging lens system group of embodiment 7, radius of curvature, thickness, material and Circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).Table 20 is shown available for each non-in embodiment 7 The high order term coefficient of spherical mirror surface, wherein, each aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.Table 21 Show effective focal length f1 to f8, total effective focal length f, the light of imaging lens system group of imaging lens system group of each lens in embodiment 7 Maximum half of the half ImgH of effective pixel area diagonal line length and imaging lens system group on total length TTL, imaging surface S17 is learned to regard Rink corner FOV.
Table 19
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 6.5400E-03 -1.6727E-02 3.5854E-02 -5.0862E-02 4.6677E-02 -2.6974E-02 9.4548E-03 -1.8175E-03 1.4408E -04
S2 -5.0085E-02 1.1672E-01 -1.5133E-01 1.3418E-01 -8.1803E-02 3.3385E-02 -8.7439E- 03 1.3350E-03 - 9.0947E -05
S3 -7.4827E-02 3.7887E-02 -2.6713E-02 4.2004E-02 -7.0994E-02 7.0488E-02 -3.8444E- 02 1.1008E-02 - 1.2983E -03
S4 -2.9573E-02 -7.6737E-02 1.6332E-01 -2.1996E-01 2.3411E-01 -2.0396E-01 1.3382E-01 -5.3315E-02 9.3625E -03
S5 -6.1997E-03 -8.4195E-02 2.3586E-01 -5.3356E-01 7.4776E-01 -6.4636E-01 3.3665E-01 -9.6735E-02 1.1722E -02
S6 1.5393E-01 -9.8286E-01 2.6308E+00 -4.5434E+00 5.2393E+00 -3.9877E+00 1.9189E+00 -5.2830E-01 6.3405E -02
S7 1.7406E-01 -1.1283E+00 2.7362E+00 -4.3218E+00 4.5720E+00 -3.1924E+00 1.4092E+00 -3.5403E-01 3.8338E -02
S8 1.7761E-01 -7.6274E-01 1.5010E+00 -1.9243E+00 1.5679E+00 -8.0645E-01 2.5835E-01 -4.7891E-02 4.0901E -03
S9 1.4871E-01 -4.9931E-01 9.5909E-01 -1.0998E+00 7.3768E-01 -2.8359E-01 5.7947E-02 -4.7283E-03 - 5.5753E -05
S10 -3.8847E-02 5.3279E-02 -1.6260E-01 3.2378E-01 -3.4528E-01 2.0805E-01 -7.1905E- 02 1.3475E-02 - 1.0749E -03
S11 -1.8797E-03 7.6391E-03 -3.5534E-02 3.3444E-02 -4.0511E-02 3.7505E-02 -1.9271E- 02 4.9620E-03 - 4.9691E -04
S12 6.8107E-02 -1.4657E-01 1.4969E-01 -1.1205E-01 5.0912E-02 -1.1427E-02 5.3579E-04 2.2506E-04 - 2.9721E -05
S13 2.3114E-01 -3.7251E-01 2.6909E-01 -1.3289E-01 3.9072E-02 -3.8174E-03 -9.2643E- 04 2.7027E-04 - 1.9553E -05
S14 2.8890E-01 -3.6405E-01 2.3776E-01 -1.0393E-01 3.0973E-02 -6.0953E-03 7.4686E-04 -5.0690E-05 1.4194E -06
S15 6.7164E-02 -1.8462E-01 1.5580E-01 -7.0447E-02 1.9642E-02 -3.4926E-03 3.8743E-04 -2.4490E-05 6.7366E -07
S16 -8.7622E-02 1.8052E-02 6.7305E-04 -2.8729E-04 -2.4356E-04 9.7119E-05 -1.5020E- 05 1.1188E-06 - 3.3553E -08
Table 20
f1(mm) 5.49 f7(mm) -44.89
f2(mm) -24.14 f8(mm) -2.53
f3(mm) 12.62 f(mm) 4.35
f4(mm) -10.71 TTL(mm) 5.50
f5(mm) 10.90 ImgH(mm) 3.55
f6(mm) 3.32 FOV(°) 77.5
Table 21
Figure 14 A show chromatic curve on the axis of the imaging lens system group of embodiment 7, its represent different wave length light via Converging focal point after lens group deviates.Figure 14 B show the astigmatism curve of the imaging lens system group of embodiment 7, it represents meridian picture Face is bent and sagittal image surface bending.Figure 14 C show the distortion curve of the imaging lens system group of embodiment 7, it represents different visual angles In the case of distortion sizes values.Figure 14 D show the ratio chromatism, curve of the imaging lens system group of embodiment 7, it represents light warp By the deviation of the different image heights after lens group on imaging surface.Understood according to Figure 14 A to Figure 14 D, taking the photograph given by embodiment 7 As lens group can realize good image quality.
Embodiment 8
The imaging lens system group according to the embodiment of the present application 8 is described referring to Figure 15 to Figure 16 D.Figure 15 shows basis The structure diagram of the imaging lens system group of the embodiment of the present application 8.
As shown in figure 15, according to the imaging lens system group of the application illustrative embodiments along optical axis by thing side to image side sequentially Including:It is first lens E1, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th lens E6, the 7th saturating Mirror E7, the 8th lens E8 and imaging surface S17.
First lens E1 has positive light coke, its thing side S1 is convex surface, and image side surface S2 is concave surface;Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface;3rd lens E3 has positive light coke, its thing side S5 is Convex surface, image side surface S6 are convex surface;4th lens E4 has negative power, its thing side S7 is convex surface, and image side surface S8 is concave surface;The Five lens E5 have positive light coke, its thing side S9 is convex surface, and image side surface S10 is concave surface;6th lens E6 has positive light coke, Its thing side S11 is concave surface, and image side surface S12 is convex surface;7th lens E7 has negative power, its thing side S13 is concave surface, as Side S14 is convex surface;8th lens E8 has negative power, its thing side S15 is concave surface, and image side surface S16 is concave surface.From thing The light of body sequentially through each surface S1 to S16 and is ultimately imaged on imaging surface S17.
Alternatively, the imaging lens system group in the present embodiment, which further includes, is arranged between the second lens E2 and the 3rd lens E3 Diaphragm STO.
Table 22 show the surface types of each lens of the imaging lens system group of embodiment 8, radius of curvature, thickness, material and Circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).Table 23 is shown available for each non-in embodiment 8 The high order term coefficient of spherical mirror surface, wherein, each aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.Table 24 Show effective focal length f1 to f8, total effective focal length f, the light of imaging lens system group of imaging lens system group of each lens in embodiment 8 Maximum half of the half ImgH of effective pixel area diagonal line length and imaging lens system group on total length TTL, imaging surface S17 is learned to regard Rink corner FOV.
Table 22
Table 23
f1(mm) 5.87 f7(mm) -97.92
f2(mm) -24.48 f8(mm) -2.63
f3(mm) 11.16 f(mm) 4.14
f4(mm) -8.42 TTL(mm) 5.45
f5(mm) 8.65 ImgH(mm) 3.44
f6(mm) 3.27 FOV(°) 78.4
Table 24
Figure 16 A show chromatic curve on the axis of the imaging lens system group of embodiment 8, its represent different wave length light via Converging focal point after lens group deviates.Figure 16 B show the astigmatism curve of the imaging lens system group of embodiment 8, it represents meridian picture Face is bent and sagittal image surface bending.Figure 16 C show the distortion curve of the imaging lens system group of embodiment 8, it represents different visual angles In the case of distortion sizes values.Figure 16 D show the ratio chromatism, curve of the imaging lens system group of embodiment 8, it represents light warp By the deviation of the different image heights after lens group on imaging surface.Understood according to Figure 16 A to Figure 16 D, taking the photograph given by embodiment 8 As lens group can realize good image quality.
Embodiment 9
The imaging lens system group according to the embodiment of the present application 9 is described referring to Figure 17 to Figure 18 D.Figure 17 shows basis The structure diagram of the imaging lens system group of the embodiment of the present application 9.
As shown in figure 17, according to the imaging lens system group of the application illustrative embodiments along optical axis by thing side to image side sequentially Including:It is first lens E1, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th lens E6, the 7th saturating Mirror E7, the 8th lens E8 and imaging surface S17.
First lens E1 has positive light coke, its thing side S1 is convex surface, and image side surface S2 is concave surface;Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface;3rd lens E3 has positive light coke, its thing side S5 is Convex surface, image side surface S6 are convex surface;4th lens E4 has negative power, its thing side S7 is convex surface, and image side surface S8 is concave surface;The Five lens E5 have positive light coke, its thing side S9 is convex surface, and image side surface S10 is concave surface;6th lens E6 has positive light coke, Its thing side S11 is concave surface, and image side surface S12 is convex surface;7th lens E7 has positive light coke, its thing side S13 is concave surface, as Side S14 is convex surface;8th lens E8 has negative power, its thing side S15 is concave surface, and image side surface S16 is concave surface.From thing The light of body sequentially through each surface S1 to S16 and is ultimately imaged on imaging surface S17.
Alternatively, the imaging lens system group in the present embodiment, which further includes, is arranged between the second lens E2 and the 3rd lens E3 Diaphragm STO.
Table 25 show the surface types of each lens of the imaging lens system group of embodiment 9, radius of curvature, thickness, material and Circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).Table 26 is shown available for each non-in embodiment 9 The high order term coefficient of spherical mirror surface, wherein, each aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.Table 27 Show effective focal length f1 to f8, total effective focal length f, the light of imaging lens system group of imaging lens system group of each lens in embodiment 9 Maximum half of the half ImgH of effective pixel area diagonal line length and imaging lens system group on total length TTL, imaging surface S17 is learned to regard Rink corner FOV.
Table 25
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.1744E-02 -1.9888E-02 3.7203E-02 -5.4181E-02 5.2462E-02 -3.1715E-02 1.1485E-02 -2.2488E-03 1.7846E- 04
S2 -5.9188E-02 1.5138E-01 -1.9929E-01 1.7487E-01 -1.0212E-01 3.7091E-02 -7.5485E- 03 6.5225E-04 1.8126E- 06
S3 -7.8302E-02 6.5293E-02 -9.0976E-02 1.4679E-01 -1.9309E-01 1.5584E-01 -7.3716E- 02 1.9258E-02 - 2.1637E- 03
S4 -1.5024E-02 -1.9634E-01 6.0759E-01 -1.2269E+00 1.6635E+00 -1.5015E+00 8.5800E-01 -2.7820E-01 3.8975E- 02
S5 1.5390E-02 -1.7212E-01 5.8129E-01 -1.4079E+00 2.1608E+00 -2.0864E+00 1.2248E+00 -3.9829E-01 5.5017E- 02
S6 1.4337E-01 -7.1698E-01 1.5908E+00 -2.3373E+00 2.3649E+00 -1.6408E+00 7.4729E-01 -2.0069E-01 2.3989E- 02
S7 9.2800E-02 -5.8667E-01 1.0600E+00 -1.1609E+00 7.5827E-01 -2.6120E-01 2.7102E-02 9.0109E-03 - 2.2167E- 03
S8 1.5549E-01 -5.5891E-01 9.4076E-01 -1.0984E+00 8.6182E-01 -4.6816E-01 1.8372E-01 -4.7891E-02 6.0094E- 03
S9 7.0956E-02 -6.3793E-02 -1.4140E-01 5.3551E-01 -7.8454E-01 6.0719E-01 -2.6061E- 01 5.9021E-02 - 5.5343E- 03
S10 -3.5478E-02 1.3032E-01 -3.7496E-01 6.4297E-01 -6.5645E-01 4.0340E-01 -1.4802E- 01 3.0106E-02 - 2.6149E- 03
S11 -4.7776E-02 1.6641E-01 -3.4933E-01 4.0046E-01 -3.1290E-01 1.7053E-01 -6.0599E- 02 1.2248E-02 - 1.0426E- 03
S12 1.0432E-01 -2.3244E-01 2.1920E-01 -1.3764E-01 5.1965E-02 -7.3890E-03 -1.6635E- 03 7.4403E-04 - 7.7260E- 05
S13 3.3907E-01 -5.2625E-01 3.8498E-01 -1.7198E-01 3.4892E-02 3.5847E-03 -3.2056E- 03 5.7492E-04 - 3.5072E- 05
S14 3.3959E-01 -4.3985E-01 2.9580E-01 -1.3689E-01 4.4838E-02 -1.0101E-02 1.4780E-03 -1.2537E-04 4.6357E- 06
S15 7.2662E-02 -2.7268E-01 2.5475E-01 -1.2305E-01 3.5913E-02 -6.6026E-03 7.5134E-04 -4.8466E-05 1.3553E- 06
S16 -9.9448E-02 2.9300E-03 2.5877E-02 -1.3995E-02 3.7806E-03 -6.1092E-04 6.0017E-05 -3.3191E-06 7.9393E- 08
Table 26
f1(mm) 7.10 f7(mm) 161.30
f2(mm) -37.03 f8(mm) -2.65
f3(mm) 9.10 f(mm) 3.84
f4(mm) -7.58 TTL(mm) 5.32
f5(mm) 8.24 ImgH(mm) 3.44
f6(mm) 3.13 FOV(°) 82.6
Table 27
Figure 18 A show chromatic curve on the axis of the imaging lens system group of embodiment 9, its represent different wave length light via Converging focal point after lens group deviates.Figure 18 B show the astigmatism curve of the imaging lens system group of embodiment 9, it represents meridian picture Face is bent and sagittal image surface bending.Figure 18 C show the distortion curve of the imaging lens system group of embodiment 9, it represents different visual angles In the case of distortion sizes values.Figure 18 D show the ratio chromatism, curve of the imaging lens system group of embodiment 9, it represents light warp By the deviation of the different image heights after lens group on imaging surface.Understood according to Figure 18 A to Figure 18 D, taking the photograph given by embodiment 9 As lens group can realize good image quality.
Embodiment 10
The imaging lens system group according to the embodiment of the present application 10 is described referring to Figure 19 to Figure 20 D.Figure 19 shows root According to the structure diagram of the imaging lens system group of the embodiment of the present application 10.
As shown in figure 19, according to the imaging lens system group of the application illustrative embodiments along optical axis by thing side to image side sequentially Including:It is first lens E1, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th lens E6, the 7th saturating Mirror E7, the 8th lens E8 and imaging surface S17.
First lens E1 has positive light coke, its thing side S1 is convex surface, and image side surface S2 is concave surface;Second lens E2 has Positive light coke, its thing side S3 are convex surface, and image side surface S4 is concave surface;3rd lens E3 has positive light coke, its thing side S5 is Concave surface, image side surface S6 are convex surface;4th lens E4 has negative power, its thing side S7 is concave surface, and image side surface S8 is concave surface;The Five lens E5 have positive light coke, its thing side S9 is convex surface, and image side surface S10 is convex surface;6th lens E6 has positive light coke, Its thing side S11 is concave surface, and image side surface S12 is convex surface;7th lens E7 has negative power, its thing side S13 is concave surface, as Side S14 is convex surface;8th lens E8 has negative power, its thing side S15 is concave surface, and image side surface S16 is concave surface.From thing The light of body sequentially through each surface S1 to S16 and is ultimately imaged on imaging surface S17.
Alternatively, the imaging lens system group in the present embodiment, which further includes, is arranged between the second lens E2 and the 3rd lens E3 Diaphragm STO.
Table 28 show the surface types of each lens of the imaging lens system group of embodiment 10, radius of curvature, thickness, material and Circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).Table 29 is shown available for each non-in embodiment 10 The high order term coefficient of spherical mirror surface, wherein, each aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.Table 30 Show effective focal length f1 to f8, total effective focal length f, the light of imaging lens system group of imaging lens system group of each lens in embodiment 10 Maximum half of the half ImgH of effective pixel area diagonal line length and imaging lens system group on total length TTL, imaging surface S17 is learned to regard Rink corner FOV.
Table 28
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.3490E-03 -1.8975E-02 4.8288E-02 -7.1079E-02 6.4955E-02 -3.7161E-02 1.2934E- 02 -2.5186E-03 2.1075E- 04
S2 -2.2112E-02 2.6682E-02 -1.3968E-02 3.0379E-03 -1.9430E-03 2.8701E-03 - 1.8230E- 03 5.5065E-04 - 6.8511E- 05
S3 -1.3148E-01 1.3939E-01 -1.9207E-01 2.4951E-01 -2.3558E-01 1.5255E-01 - 6.5103E- 02 1.9194E-02 - 3.4181E- 03
S4 -7.6492E-02 9.4342E-02 -4.4730E-01 1.4755E+00 -2.9530E+00 3.7254E+00 -2.8654E +00 1.2284E+00 - 2.2172E- 01
S5 -1.0978E-02 -2.1028E-01 1.0060E+00 -3.2253E+00 6.5228E+00 -8.3896E+00 6.6807E+ 00 -3.0016E+00 5.8249E- 01
S6 6.0813E-02 -6.8049E-01 2.1648E+00 -4.6282E+00 6.7594E+00 -6.5986E+00 4.1286E+ 00 -1.5021E+00 2.4259E- 01
S7 1.9943E-01 -1.3797E+00 3.7490E+00 -6.7991E+00 8.2170E+00 -6.4144E+00 3.0615E+ 00 -7.9394E-01 8.2985E- 02
S8 2.9754E-01 -1.3995E+00 3.2739E+00 -5.0213E+00 5.0568E+00 -3.3187E+00 1.3671E+ 00 -3.1986E-01 3.2605E- 02
S9 2.0467E-01 -8.0886E-01 1.7449E+00 -2.3244E+00 2.0071E+00 -1.1405E+00 4.1610E- 01 -8.8762E-02 8.4134E- 03
S10 -1.1395E-03 -1.2859E-01 1.6142E-01 -6.5531E-02 7.7685E-03 -1.5645E-02 2.0540E- 02 -8.9237E-03 1.3177E- 03
S11 3.9514E-02 -1.0637E-01 1.0319E-01 -9.5311E-02 6.3693E-02 -2.7052E-02 7.3729E- 03 -1.4152E-03 1.6620E- 04
S12 6.0843E-02 -1.6018E-01 1.9649E-01 -1.6326E-01 8.2918E-02 -2.3772E-02 3.4381E- 03 -1.6401E-04 - 6.1042E- 06
S13 1.8072E-01 -3.5537E-01 3.3637E-01 -2.1392E-01 7.8408E-02 -1.1963E-02 - 8.8430E- 04 5.0439E-04 - 4.4587E- 05
S14 2.3995E-01 -2.9180E-01 1.9866E-01 -9.6315E-02 3.3402E-02 -7.8555E-03 1.1688E- 03 -9.8361E-05 3.5503E- 06
S15 1.6458E-02 -6.0754E-02 4.9329E-02 -1.9708E-02 4.6188E-03 -6.6260E-04 5.7212E- 05 -2.7288E-06 5.5144E- 08
S16 -5.8665E-02 1.5719E-02 -3.0401E-03 8.1089E-04 -2.4196E-04 4.6047E-05 - 4.9599E- 06 2.8235E-07 - 6.6700E- 09
Table 29
Table 30
Figure 20 A show chromatic curve on the axis of the imaging lens system group of embodiment 10, it represents the light warp of different wave length Deviateed by the converging focal point after lens group.Figure 20 B show the astigmatism curve of the imaging lens system group of embodiment 10, it represents meridian Curvature of the image and sagittal image surface bending.Figure 20 C show the distortion curve of the imaging lens system group of embodiment 10, it represents that difference regards Distortion sizes values in the case of angle.Figure 20 D show the ratio chromatism, curve of the imaging lens system group of embodiment 10, it represents light Via the deviation of the different image heights after lens group on imaging surface.Understood according to Figure 20 A to Figure 20 D, given by embodiment 10 Imaging lens system group can realize good image quality.
Embodiment 11
The imaging lens system group according to the embodiment of the present application 11 is described referring to Figure 21 to Figure 22 D.Figure 21 shows root According to the structure diagram of the imaging lens system group of the embodiment of the present application 11.
As shown in figure 21, according to the imaging lens system group of the application illustrative embodiments along optical axis by thing side to image side sequentially Including:It is first lens E1, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th lens E6, the 7th saturating Mirror E7, the 8th lens E8 and imaging surface S17.
First lens E1 has positive light coke, its thing side S1 is convex surface, and image side surface S2 is concave surface;Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface;3rd lens E3 has negative power, its thing side S5 is Concave surface, image side surface S6 are convex surface;4th lens E4 has positive light coke, its thing side S7 is convex surface, and image side surface S8 is concave surface;The Five lens E5 have positive light coke, its thing side S9 is convex surface, and image side surface S10 is convex surface;6th lens E6 has positive light coke, Its thing side S11 is concave surface, and image side surface S12 is convex surface;7th lens E7 has negative power, its thing side S13 is concave surface, as Side S14 is convex surface;8th lens E8 has negative power, its thing side S15 is concave surface, and image side surface S16 is concave surface.From thing The light of body sequentially through each surface S1 to S16 and is ultimately imaged on imaging surface S17.
Alternatively, the imaging lens system group in the present embodiment, which further includes, is arranged between the second lens E2 and the 3rd lens E3 Diaphragm STO.
Table 31 show the surface types of each lens of the imaging lens system group of embodiment 11, radius of curvature, thickness, material and Circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).Table 32 is shown available for each non-in embodiment 11 The high order term coefficient of spherical mirror surface, wherein, each aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.Table 33 Show effective focal length f1 to f8, total effective focal length f, the light of imaging lens system group of imaging lens system group of each lens in embodiment 11 Maximum half of the half ImgH of effective pixel area diagonal line length and imaging lens system group on total length TTL, imaging surface S17 is learned to regard Rink corner FOV.
Table 31
Table 32
f1(mm) 4.28 f7(mm) -53.21
f2(mm) -15.93 f8(mm) -2.24
f3(mm) -100.02 f(mm) 4.61
f4(mm) 72.04 TTL(mm) 5.50
f5(mm) 21.40 ImgH(mm) 3.77
f6(mm) 3.44 FOV(°) 77.8
Table 33
Figure 22 A show chromatic curve on the axis of the imaging lens system group of embodiment 11, it represents the light warp of different wave length Deviateed by the converging focal point after lens group.Figure 22 B show the astigmatism curve of the imaging lens system group of embodiment 11, it represents meridian Curvature of the image and sagittal image surface bending.Figure 22 C show the distortion curve of the imaging lens system group of embodiment 11, it represents that difference regards Distortion sizes values in the case of angle.Figure 22 D show the ratio chromatism, curve of the imaging lens system group of embodiment 11, it represents light Via the deviation of the different image heights after lens group on imaging surface.Understood according to Figure 22 A to Figure 22 D, given by embodiment 11 Imaging lens system group can realize good image quality.
Embodiment 12
The imaging lens system group according to the embodiment of the present application 12 is described referring to Figure 23 to Figure 24 D.Figure 23 shows root According to the structure diagram of the imaging lens system group of the embodiment of the present application 12.
As shown in figure 23, according to the imaging lens system group of the application illustrative embodiments along optical axis by thing side to image side sequentially Including:It is first lens E1, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th lens E6, the 7th saturating Mirror E7, the 8th lens E8 and imaging surface S17.
First lens E1 has positive light coke, its thing side S1 is convex surface, and image side surface S2 is concave surface;Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface;3rd lens E3 has positive light coke, its thing side S5 is Concave surface, image side surface S6 are convex surface;4th lens E4 has negative power, its thing side S7 is convex surface, and image side surface S8 is concave surface;The Five lens E5 have positive light coke, its thing side S9 is convex surface, and image side surface S10 is convex surface;6th lens E6 has positive light coke, Its thing side S11 is concave surface, and image side surface S12 is convex surface;7th lens E7 has negative power, its thing side S13 is concave surface, as Side S14 is convex surface;8th lens E8 has negative power, its thing side S15 is concave surface, and image side surface S16 is convex surface.From thing The light of body sequentially through each surface S1 to S16 and is ultimately imaged on imaging surface S17.
Alternatively, the imaging lens system group in the present embodiment, which further includes, is arranged between the second lens E2 and the 3rd lens E3 Diaphragm STO.
Table 34 show the surface types of each lens of the imaging lens system group of embodiment 12, radius of curvature, thickness, material and Circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).Table 35 is shown available for each non-in embodiment 12 The high order term coefficient of spherical mirror surface, wherein, each aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.Table 36 Show effective focal length f1 to f8, total effective focal length f, the light of imaging lens system group of imaging lens system group of each lens in embodiment 12 Maximum half of the half ImgH of effective pixel area diagonal line length and imaging lens system group on total length TTL, imaging surface S17 is learned to regard Rink corner FOV.
Table 34
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.1900E-05 5.7036E-03 -1.2398E-02 1.5688E-02 -1.2846E-02 6.6033E-03 -2.0723E-03 3.5456E-04 - 2.4609E -05
S2 2.5736E-02 -7.1904E-02 1.0461E-01 -1.0083E- 01 6.4824E-02 -2.7428E- 02 7.3099E-03 -1.1020E-03 7.0935E -05
S3 4.0233E-03 -1.2999E-01 1.8248E-01 -1.6610E- 01 1.9993E-01 -2.8472E- 01 2.6926E-01 -1.3372E-01 2.6276E -02
S4 2.6648E-03 -1.7368E-01 8.2638E-01 -3.3442E+ 00 9.0883E+00 -1.5060E+ 01 1.4692E+01 -7.6935E+00 1.6575E +00
S5 4.4922E-02 -1.5435E-01 3.0077E-01 -5.4617E- 01 5.8684E-01 -1.4562E- 01 -2.7819E-01 2.4572E-01 - 5.9804E -02
S6 1.0266E-01 -4.6409E-01 1.4415E+00 -4.4743E+ 00 1.0865E+01 -1.7491E+ 01 1.7242E+01 -9.3676E+00 2.1300E +00
S7 6.3688E-02 -3.3433E-01 6.2083E-01 -9.1508E- 01 1.0361E+00 -7.4968E- 01 3.1776E-01 -7.1996E-02 6.7473E -03
S8 1.2637E-01 -4.1427E-01 7.2566E-01 -9.4070E- 01 8.3794E-01 -4.7016E- 01 1.5690E-01 -2.8393E-02 2.1441E -03
S9 -4.8798E-03 -1.0123E-02 7.5315E-02 -1.0076E- 01 5.8658E-02 -1.4800E- 02 3.1034E-04 5.2318E-04 - 6.7874E -05
S10 -4.2233E-02 -1.0273E-05 2.7655E-02 -4.7199E- 02 7.7800E-02 -7.7481E- 02 4.0514E-02 -1.0408E-02 1.0405E -03
S11 1.9879E-02 -6.0799E-02 1.0027E-01 -1.2833E- 01 9.8888E-02 -4.4876E- 02 1.1882E-02 -1.6992E-03 1.0112E -04
S12 1.7212E-02 -3.2340E-02 5.5607E-02 -7.0610E- 02 4.7653E-02 -1.7275E- 02 3.4152E-03 -3.4633E-04 1.4010E -05
S13 -2.9266E-02 1.2706E-01 -1.3414E-01 6.9423E-02 -2.3344E-02 5.5824E-03 -8.9720E-04 8.3471E-05 - 3.3101E -06
S14 -9.9691E-02 2.4593E-01 -2.2328E-01 1.1228E-01 -3.5013E-02 6.9231E-03 -8.4933E-04 5.9929E-05 - 1.9041E -06
S15 -3.3555E-02 1.2156E-01 -1.4417E-01 9.4123E-02 -3.6292E-02 8.5065E-03 -1.1938E-03 9.2560E-05 - 3.0614E -06
S16 3.7267E-02 -4.5457E-02 2.0142E-02 -5.2170E- 03 8.6805E-04 -9.4588E- 05 6.5274E-06 -2.5651E-07 4.3018E -09
Table 35
f1(mm) 4.62 f7(mm) -20.03
f2(mm) -7.96 f8(mm) -3.07
f3(mm) 20.76 f(mm) 4.35
f4(mm) -20.93 TTL(mm) 5.50
f5(mm) 7.42 ImgH(mm) 3.88
f6(mm) 5.10 FOV(°) 81.6
Table 36
Figure 24 A show chromatic curve on the axis of the imaging lens system group of embodiment 12, it represents the light warp of different wave length Deviateed by the converging focal point after lens group.Figure 24 B show the astigmatism curve of the imaging lens system group of embodiment 12, it represents meridian Curvature of the image and sagittal image surface bending.Figure 24 C show the distortion curve of the imaging lens system group of embodiment 12, it represents that difference regards Distortion sizes values in the case of angle.Figure 24 D show the ratio chromatism, curve of the imaging lens system group of embodiment 12, it represents light Via the deviation of the different image heights after lens group on imaging surface.Understood according to Figure 24 A to Figure 24 D, given by embodiment 12 Imaging lens system group can realize good image quality.
To sum up, embodiment 1 to embodiment 12 meets the relation shown in table 3 below 7 respectively.
Table 37
The application also provides a kind of camera device, its electronics photo-sensitive cell can be photosensitive coupling element (CCD) or complementation Property matal-oxide semiconductor element (CMOS).Camera device can be the independent picture pick-up device of such as digital camera or The photographing module being integrated on the mobile electronic devices such as mobile phone, tablet computer.The imaging device is equipped with described above Imaging lens system group.
Above description is only the preferred embodiment of the application and the explanation to institute's application technology principle.People in the art Member should be appreciated that invention scope involved in the application, however it is not limited to the technology that the particular combination of above-mentioned technical characteristic forms Scheme, while should also cover in the case where not departing from the inventive concept, carried out by above-mentioned technical characteristic or its equivalent feature The other technical solutions for being combined and being formed.Such as features described above has similar work(with (but not limited to) disclosed herein The technical solution that the technical characteristic of energy is replaced mutually and formed.

Claims (24)

1. imaging lens system group, it is characterised in that sequentially included by thing side to image side along optical axis:
The first lens with positive light coke, its image side surface are concave surface;
The second lens with focal power;
The 3rd lens with focal power;
The 4th lens with focal power;
The 5th lens with focal power;
The 6th lens with positive light coke, its thing side are concave surface;
The 7th lens with focal power;
The 8th lens with negative power, its thing side are concave surface;And
Wherein, total effective focal length f of the imaging lens system group and Entry pupil diameters EPD of the imaging lens system group meet f/EPD≤ 2.0。
2. imaging lens system group according to claim 1, it is characterised in that the optics total length TTL of the imaging lens system group Meet TTL/ImgH≤1.6 with the half ImgH of effective pixel area diagonal line length on the imaging surface of the imaging lens system group.
3. imaging lens system group according to claim 2, it is characterised in that the full filed angle FOV of the imaging lens system group expires 75 ° of 85 ° of < FOV < of foot.
4. imaging lens system group according to claim 2, it is characterised in that the imaging lens system group further includes diaphragm, described Diaphragm is arranged between second lens and the 3rd lens.
5. imaging lens system group according to any one of claim 1 to 4, it is characterised in that second lens it is effective Focal length f2 meets -10 < f2/f < 25.
6. imaging lens system group according to any one of claim 1 to 4, it is characterised in that the 4th lens it is effective Focal length f4 meets -45 < f4/f < 25.
7. imaging lens system group according to any one of claim 1 to 4, it is characterised in that the 7th lens it is effective Focal length f7 meets -30 < f7/f < 50.
8. imaging lens system group according to any one of claim 1 to 4, it is characterised in that the thing side of the 6th lens The radius of curvature R 11 in face and the radius of curvature R 12 of the image side surface of the 6th lens meet 4 < R11/R12 < 10.
9. imaging lens system group according to any one of claim 1 to 4, it is characterised in that first lens are in described Center thickness CT1 on optical axis meets 2 < CT1/CT2 < 6 with second lens in the center thickness CT2 on the optical axis.
10. imaging lens system group according to any one of claim 1 to 4, it is characterised in that meet 0.5 < (TTL/ ImgH)/(f/EPD)≤1.5。
11. imaging lens system group according to any one of claim 1 to 4, it is characterised in that the 7th lens it is effective Focal length f7 and the effective focal length f8 of the 8th lens meet -65 < f7/f8 < 45.
12. imaging lens system group according to any one of claim 1 to 4, it is characterised in that the 7th lens it is effective Focal length f7 and the radius of curvature R 6 of the 3rd lens image side surface meet -25 < f7/R6 < 20.
13. imaging lens system group, it is characterised in that sequentially included by thing side to image side along optical axis:
The first lens with positive light coke, its image side surface are concave surface;
The second lens with focal power;
The 3rd lens with focal power;
The 4th lens with focal power;
The 5th lens with focal power;
The 6th lens with positive light coke, its thing side are concave surface;
The 7th lens with focal power;
The 8th lens with negative power, its thing side are concave surface;And
Wherein, first lens in the center thickness CT1 on the optical axis and second lens on the optical axis Heart thickness CT2 meets 2 < CT1/CT2 < 6.
14. imaging lens system group according to claim 13, it is characterised in that the effective focal length f2 of second lens and institute The total effective focal length f for stating imaging lens system group meets -10 < f2/f < 25.
15. imaging lens system group according to claim 13, it is characterised in that the effective focal length f4 of the 4th lens and institute The total effective focal length f for stating imaging lens system group meets -45 < f4/f < 25.
16. imaging lens system group according to claim 13, it is characterised in that the effective focal length f7 of the 7th lens and institute The total effective focal length f for stating imaging lens system group meets -30 < f7/f < 50.
17. imaging lens system group according to claim 13, it is characterised in that the effective focal length f7 of the 7th lens and institute The effective focal length f8 for stating the 8th lens meets -65 < f7/f8 < 45.
18. imaging lens system group according to claim 13, it is characterised in that the effective focal length f7 of the 7th lens and institute The radius of curvature R 6 for stating the 3rd lens image side surface meets -25 < f7/R6 < 20.
19. imaging lens system group according to claim 13, it is characterised in that the curvature of the thing side of the 6th lens half Footpath R11 and the radius of curvature R 12 of the image side surface of the 6th lens meet 4 < R11/R12 < 10.
20. the imaging lens system group according to any one of claim 13 to 19, it is characterised in that the imaging lens system group Full filed angle FOV meets 75 ° of 85 ° of < FOV <.
21. the imaging lens system group according to any one of claim 13 to 19, it is characterised in that the imaging lens system group is also Including diaphragm, the diaphragm is arranged between second lens and the 3rd lens.
22. the imaging lens system group according to any one of claim 13 to 19, it is characterised in that meet 0.5 < (TTL/ ImgH)/(f/EPD)≤1.5,
Wherein, TTL is the optics total length of the imaging lens system group, and ImgH is effective picture on the imaging surface of the imaging lens system group The half of plain region diagonal line length, f is total effective focal length of the imaging lens system group, and EPD is the imaging lens system group Entry pupil diameters.
23. imaging lens system group according to claim 22, it is characterised in that meet f/EPD≤2.0.
24. imaging lens system group according to claim 22, it is characterised in that meet TTL/ImgH≤1.6.
CN201721494117.5U 2017-11-10 2017-11-10 Imaging lens system group Active CN207336908U (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201721494117.5U CN207336908U (en) 2017-11-10 2017-11-10 Imaging lens system group
PCT/CN2018/100479 WO2019091170A1 (en) 2017-11-10 2018-08-14 Camera lens set
US16/843,626 US11460671B2 (en) 2017-11-10 2020-04-08 Camera lens assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201721494117.5U CN207336908U (en) 2017-11-10 2017-11-10 Imaging lens system group

Publications (1)

Publication Number Publication Date
CN207336908U true CN207336908U (en) 2018-05-08

Family

ID=62427552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201721494117.5U Active CN207336908U (en) 2017-11-10 2017-11-10 Imaging lens system group

Country Status (1)

Country Link
CN (1) CN207336908U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019091170A1 (en) * 2017-11-10 2019-05-16 浙江舜宇光学有限公司 Camera lens set
TWI684024B (en) * 2018-07-04 2020-02-01 大立光電股份有限公司 Photographing optical lens assembly, imaging apparatus and electronic device
CN112130281A (en) * 2018-05-29 2020-12-25 三星电机株式会社 Optical imaging system
JP6894569B1 (en) * 2020-09-29 2021-06-30 ジョウシュウシ レイテック オプトロニクス カンパニーリミテッド Imaging optical lens

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019091170A1 (en) * 2017-11-10 2019-05-16 浙江舜宇光学有限公司 Camera lens set
CN112130281A (en) * 2018-05-29 2020-12-25 三星电机株式会社 Optical imaging system
US11644643B2 (en) 2018-05-29 2023-05-09 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US11675163B2 (en) 2018-05-29 2023-06-13 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US11960145B2 (en) 2018-05-29 2024-04-16 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
TWI684024B (en) * 2018-07-04 2020-02-01 大立光電股份有限公司 Photographing optical lens assembly, imaging apparatus and electronic device
US11137576B2 (en) 2018-07-04 2021-10-05 Largan Precision Co., Ltd. Photographing optical lens assembly, imaging apparatus and electronic device
US11927729B2 (en) 2018-07-04 2024-03-12 Largan Precision Co., Ltd. Photographing optical lens assembly, imaging apparatus and electronic device
JP6894569B1 (en) * 2020-09-29 2021-06-30 ジョウシュウシ レイテック オプトロニクス カンパニーリミテッド Imaging optical lens

Similar Documents

Publication Publication Date Title
CN107643586A (en) Imaging lens system group
CN207424361U (en) Optical imaging lens
CN207424360U (en) Optical imaging lens
CN108152934A (en) Optical imaging lens
CN207424362U (en) Optical imaging lens
CN107741630A (en) Optical imaging lens
CN107367827A (en) Optical imaging lens
CN107957619A (en) Optical imaging lens
CN109870788A (en) Imaging lens system group
CN107436481A (en) Imaging lens system group
CN108873272A (en) Optical imaging lens
CN108873253A (en) Pick-up lens
CN207123646U (en) Optical imaging lens
CN107843977A (en) Optical imaging lens
CN109031628A (en) Optical imagery eyeglass group
CN107490841A (en) Imaging lens system group
CN107219613A (en) Optical imaging lens
CN110346919A (en) Optical imaging lens
CN107092077A (en) Optical imaging system
CN209690597U (en) Imaging lens system group
CN208506350U (en) Pick-up lens
CN109283665A (en) Imaging lens
CN109683287A (en) Optical imaging lens
CN207336905U (en) Pick-up lens
CN207336908U (en) Imaging lens system group

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant