CN107741630A - Optical imaging lens - Google Patents

Optical imaging lens Download PDF

Info

Publication number
CN107741630A
CN107741630A CN201711172644.9A CN201711172644A CN107741630A CN 107741630 A CN107741630 A CN 107741630A CN 201711172644 A CN201711172644 A CN 201711172644A CN 107741630 A CN107741630 A CN 107741630A
Authority
CN
China
Prior art keywords
lens
optical imaging
imaging lens
thing side
negative power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711172644.9A
Other languages
Chinese (zh)
Other versions
CN107741630B (en
Inventor
叶丽慧
贺凌波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sunny Optics Co Ltd
Original Assignee
Zhejiang Sunny Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sunny Optics Co Ltd filed Critical Zhejiang Sunny Optics Co Ltd
Priority to CN201711172644.9A priority Critical patent/CN107741630B/en
Publication of CN107741630A publication Critical patent/CN107741630A/en
Priority to PCT/CN2018/100480 priority patent/WO2019100768A1/en
Priority to US16/644,965 priority patent/US11662555B2/en
Application granted granted Critical
Publication of CN107741630B publication Critical patent/CN107741630B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

This application discloses a kind of optical imaging lens, the camera lens is sequentially included along optical axis by thing side to image side:First lens, the second lens, the 3rd lens, the 4th lens, the 5th lens, the 6th lens, the 7th lens and the 8th lens.Wherein, the first lens have positive light coke, and its thing side is convex surface;Second lens have negative power;3rd lens have positive light coke;4th lens have positive light coke or negative power, and its thing side is concave surface, and image side surface is convex surface;5th lens have positive light coke or negative power;6th lens have positive light coke or negative power, and its thing side is convex surface;7th lens have positive light coke or negative power;And the 8th lens there is negative power.

Description

Optical imaging lens
Technical field
The application is related to a kind of optical imaging lens, more specifically, the application is related to a kind of optics for including eight lens Imaging lens.
Background technology
In recent years, with the fast development for carrying electronic product for possessing imaging function, to miniaturized optical system It is required that also increasingly improve.The photo-sensitive cell of general imaging lens is mainly photosensitive coupling element (CCD) or Complimentary Metal-Oxide Two kinds of semiconductor element (CMOS), with the progress of manufacture of semiconductor technology so that photo-sensitive cell pixel number increases and pixel chi Very little reduction, so as to which the high image quality to the imaging lens to match and miniaturization propose higher requirement.
As requirement of the miniaturization imaging lens on pixel and image quality is lifted, imaging lens gradually towards large aperture, Big visual angle, big imaging scope and high-resolution direction are developed.Existing camera lens is difficult to meet simultaneously image quality and small-sized The demand lifting of change, there is provided optical imaging lens that are a kind of while having miniaturization, large aperture and high image quality concurrently are current Beforehand research direction.
The content of the invention
This application provides be applicable to portable type electronic product, can at least solve or part solve it is of the prior art The optical imaging lens of above-mentioned at least one shortcoming, for example, large aperture imaging lens.
On the one hand, this application provides such a optical imaging lens, the camera lens along optical axis by thing side to image side according to Sequence includes:First lens, the second lens, the 3rd lens, the 4th lens, the 5th lens, the 6th lens, the 7th lens and the 8th are saturating Mirror.Wherein, the first lens can have positive light coke, and its thing side can be convex surface;Second lens can have negative power;3rd is saturating Mirror can have positive light coke;4th lens have positive light coke or negative power, and its thing side can be concave surface, and image side surface can be convex Face;5th lens have positive light coke or negative power;6th lens have positive light coke or negative power, and its thing side can be Convex surface;7th lens can have positive light coke or negative power;And the 8th lens there is negative power.
In one embodiment, total the effective focal length f and optical imaging lens of optical imaging lens Entry pupil diameters EPD F/EPD≤2.0 can be met.
In one embodiment, the center of the thing side of the first lens to the imaging surface of optical imaging lens on optical axis Distance TTL and optical imaging lens imaging surface on the half ImgH of effective pixel area diagonal line length can meet TTL/ImgH ≤1.65。
In one embodiment, the full filed angle FOV of optical imaging lens can meet 70 °≤FOV≤81 °.
In one embodiment, total effective focal length f of the effective focal length f1 of the first lens and optical imaging lens can expire 0.5 < f1/f < 1.0 of foot.
In one embodiment, total effective focal length f of the effective focal length f2 of the second lens and optical imaging lens can expire Foot -3.5≤f2/f≤- 1.5.
In one embodiment, total effective focal length f of the effective focal length f3 of the 3rd lens and optical imaging lens can expire Foot 1.5≤f3/f≤3.0.
In one embodiment, total effective focal length f of the effective focal length f8 of the 8th lens and optical imaging lens can expire Foot -5.0≤f8/f≤- 1.0.
In one embodiment, the curvature of the image side surface of the lens of radius of curvature R 3 and second of the thing side of the second lens Radius R4 can meet 1.5≤R3/R4≤3.0.
In one embodiment, the curvature of the image side surface of the lens of radius of curvature R 1 and the 3rd of the thing side of the first lens Radius R6 can meet -0.5 < R1/R6 < 0.
In one embodiment, the 3rd lens in the center thickness CT3 on optical axis and the 4th lens on optical axis Heart thickness CT4 can meet 1.0 < CT3/CT4 < 2.5.
In one embodiment, the curvature of the thing side of the lens of radius of curvature R 9 and the 6th of the thing side of the 5th lens Radius R11 can meet -2.5 < R9/R11 < 0.
In one embodiment, the song of the image side surface of the lens of radius of curvature R 15 and the 8th of the thing side of the 8th lens Rate radius R16 can meet (R15-R16)/(R15+R16) < 1.0.
In one embodiment, the first lens in the center thickness CT1 on optical axis and the second lens on optical axis Heart thickness CT2 can meet 2.0 < CT1/CT2 < 4.0.
On the other hand, present invention also provides such a optical imaging lens, the camera lens is along optical axis by thing side to picture Side sequentially includes:First lens, the second lens, the 3rd lens, the 4th lens, the 5th lens, the 6th lens, the 7th lens and Eight lens.Wherein, the first lens can have positive light coke, and its thing side can be convex surface;Second lens can have negative power;The Three lens can have positive light coke;4th lens, the 5th lens and the 7th lens are respectively provided with positive light coke or negative power;6th Lens have positive light coke or negative power, and its thing side can be convex surface;8th lens can have negative power.Wherein, optics Total the effective focal length f and optical imaging lens of imaging lens Entry pupil diameters EPD can meet f/EPD≤2.0.
In one embodiment, the thing side of the second lens can be convex surface, and the image side surface of the second lens is concave surface.
In one embodiment, the image side surface of the 3rd lens can be convex surface.
In one embodiment, the thing side of the 4th lens can be concave surface, and image side surface can be convex surface.
In one embodiment, the thing side of the 5th lens can be concave surface.
The application employs multi-disc (for example, eight) lens, by each power of lens of reasonable distribution, face type, each Spacing etc. on axle between the center thickness of mirror and each lens so that above-mentioned optical imaging lens have ultra-thin, miniaturization, big At least one beneficial effects such as aperture, big visual angle, high image quality.
Brief description of the drawings
With reference to accompanying drawing, by the detailed description of following non-limiting embodiment, other features of the application, purpose and excellent Point will be apparent.In the accompanying drawings:
Fig. 1 shows the structural representation of the optical imaging lens according to the embodiment of the present application 1;
Fig. 2A to Fig. 2 D respectively illustrates chromatic curve on the axle of the optical imaging lens of embodiment 1, astigmatism curve, distortion Curve and ratio chromatism, curve;
Fig. 3 shows the structural representation of the optical imaging lens according to the embodiment of the present application 2;
Fig. 4 A to Fig. 4 D respectively illustrate chromatic curve on the axle of the optical imaging lens of embodiment 2, astigmatism curve, distortion Curve and ratio chromatism, curve;
Fig. 5 shows the structural representation of the optical imaging lens according to the embodiment of the present application 3;
Fig. 6 A to Fig. 6 D respectively illustrate chromatic curve on the axle of the optical imaging lens of embodiment 3, astigmatism curve, distortion Curve and ratio chromatism, curve;
Fig. 7 shows the structural representation of the optical imaging lens according to the embodiment of the present application 4;
Fig. 8 A to Fig. 8 D respectively illustrate chromatic curve on the axle of the optical imaging lens of embodiment 4, astigmatism curve, distortion Curve and ratio chromatism, curve;
Fig. 9 shows the structural representation of the optical imaging lens according to the embodiment of the present application 5;
Figure 10 A to Figure 10 D respectively illustrate chromatic curve on the axle of the optical imaging lens of embodiment 5, astigmatism curve, abnormal Varied curve and ratio chromatism, curve;
Figure 11 shows the structural representation of the optical imaging lens according to the embodiment of the present application 6;
Figure 12 A to Figure 12 D respectively illustrate chromatic curve on the axle of the optical imaging lens of embodiment 6, astigmatism curve, abnormal Varied curve and ratio chromatism, curve;
Figure 13 shows the structural representation of the optical imaging lens according to the embodiment of the present application 7;
Figure 14 A to Figure 14 D respectively illustrate chromatic curve on the axle of the optical imaging lens of embodiment 7, astigmatism curve, abnormal Varied curve and ratio chromatism, curve;
Figure 15 shows the structural representation of the optical imaging lens according to the embodiment of the present application 8;
Figure 16 A to Figure 16 D respectively illustrate chromatic curve on the axle of the optical imaging lens of embodiment 8, astigmatism curve, abnormal Varied curve and ratio chromatism, curve;
Figure 17 shows the structural representation of the optical imaging lens according to the embodiment of the present application 9;
Figure 18 A to Figure 18 D respectively illustrate chromatic curve on the axle of the optical imaging lens of embodiment 9, astigmatism curve, abnormal Varied curve and ratio chromatism, curve;
Figure 19 shows the structural representation of the optical imaging lens according to the embodiment of the present application 10;
Figure 20 A to Figure 20 D respectively illustrate chromatic curve on the axle of the optical imaging lens of embodiment 10, astigmatism curve, Distortion curve and ratio chromatism, curve;
Figure 21 shows the structural representation of the optical imaging lens according to the embodiment of the present application 11;
Figure 22 A to Figure 22 D respectively illustrate chromatic curve on the axle of the optical imaging lens of embodiment 11, astigmatism curve, Distortion curve and ratio chromatism, curve;
Figure 23 shows the structural representation of the optical imaging lens according to the embodiment of the present application 12;
Figure 24 A to Figure 24 D respectively illustrate chromatic curve on the axle of the optical imaging lens of embodiment 12, astigmatism curve, Distortion curve and ratio chromatism, curve;
Figure 25 shows the structural representation of the optical imaging lens according to the embodiment of the present application 13;
Figure 26 A to Figure 26 D respectively illustrate chromatic curve on the axle of the optical imaging lens of embodiment 13, astigmatism curve, Distortion curve and ratio chromatism, curve.
Embodiment
In order to more fully understand the application, refer to the attached drawing is made into more detailed description to the various aspects of the application.Should Understand, these describe the description of the simply illustrative embodiments to the application in detail, rather than limit the application in any way Scope.In the specification, identical reference numbers identical element.Stating "and/or" includes associated institute Any and all combinations of one or more of list of items.
It should be noted that in this manual, the statement of first, second, third, etc. is only used for a feature and another spy Sign makes a distinction, and does not indicate that any restrictions to feature.Therefore, in the case of without departing substantially from teachings of the present application, hereinafter The first lens discussed are also known as the second lens or the 3rd lens.
In the accompanying drawings, for convenience of description, thickness, the size and dimension of lens are somewhat exaggerated.Specifically, accompanying drawing Shown in sphere or aspherical shape be illustrated by way of example.That is, sphere or aspherical shape is not limited to accompanying drawing In the sphere that shows or aspherical shape.Accompanying drawing is merely illustrative and and non-critical drawn to scale.
Herein, near axis area refers to the region near optical axis.If lens surface is convex surface and does not define the convex surface position When putting, then it represents that the lens surface is extremely convex surface less than near axis area;If lens surface is concave surface and does not define the concave surface position When, then it represents that the lens surface is extremely concave surface less than near axis area.It is referred to as thing side near the surface of object in each lens, It is referred to as image side surface near the surface of imaging surface in each lens.
It will also be appreciated that term " comprising ", " including ", " having ", "comprising" and/or " including ", when in this theory Represent stated feature, element and/or part be present when being used in bright book, but do not preclude the presence or addition of one or more Further feature, element, part and/or combinations thereof.In addition, ought the statement of such as " ... at least one " appear in institute When after the list of row feature, whole listed feature, rather than the individual component in modification list are modified.In addition, work as description originally During the embodiment of application, represented " one or more embodiments of the application " using "available".Also, term " exemplary " It is intended to refer to example or illustration.
Unless otherwise defined, otherwise all terms (including technical terms and scientific words) used herein be respectively provided with The application one skilled in the art's is generally understood that identical implication.It will also be appreciated that term (such as in everyday words Term defined in allusion quotation) implication consistent with their implications in the context of correlation technique should be interpreted as having, and It will not explained with idealization or excessively formal sense, unless clearly so limiting herein.
It should be noted that in the case where not conflicting, the feature in embodiment and embodiment in the application can phase Mutually combination.Describe the application in detail below with reference to the accompanying drawings and in conjunction with the embodiments.
The feature of the application, principle and other aspects are described in detail below.
It may include such as eight lens with focal power according to the optical imaging lens of the application illustrative embodiments, That is, the first lens, the second lens, the 3rd lens, the 4th lens, the 5th lens, the 6th lens, the 7th lens and the 8th lens. This eight lens are along optical axis by thing side to image side sequential.
In the exemplary embodiment, the first lens can have positive light coke, and its thing side can be convex surface;Second lens can With negative power;3rd lens can have positive light coke;4th lens have positive light coke or negative power, and its thing side can For concave surface, image side surface can be convex surface;5th lens have positive light coke or negative power;6th lens have positive light coke or negative Focal power, its thing side can be convex surface;7th lens have positive light coke or negative power;8th lens can have negative light focus Degree.
In the exemplary embodiment, the thing side of the second lens can be convex surface, and image side surface can be concave surface.
In the exemplary embodiment, at least one in the thing side and image side surface of the 3rd lens is convex surface, for example, The image side surface of 3rd lens can be convex surface.
In the exemplary embodiment, at least one in the thing side and image side surface of the 5th lens is concave surface, for example, The thing side of 5th lens can be concave surface.
In the exemplary embodiment, at least one in the thing side and image side surface of the 7th lens is concave surface, for example, The image side surface of 7th lens can be concave surface.
In the exemplary embodiment, the thing side of the 8th lens can be convex surface, and image side surface can be concave surface.
In the exemplary embodiment, the optical imaging lens of the application can meet conditional f/EPD≤2.0, wherein, f For total effective focal length of optical imaging lens, EPD is the Entry pupil diameters of optical imaging lens.More specifically, f and EPD are further 1.55≤f/EPD≤1.90 can be met.Meet conditional f/EPD≤2.0, can effectively increase the thang-kng amount in the unit interval, Make optical imaging lens that there is large aperture advantage, so as to strengthen while the aberration of peripheral field is reduced under dark situation Imaging effect.
In the exemplary embodiment, the optical imaging lens of the application can meet conditional TTL/ImgH≤1.65, its In, TTL be the center of the first lens thing side to distance of the imaging surface on optical axis of optical imaging lens, ImgH be optics into As the half of effective pixel area diagonal line length on lens imaging face.More specifically, TTL and ImgH can further meet 1.41≤ TTL/ImgH≤1.63.By controlling TTL and ImgH ratio, to ensure the small size performance of imaging lens.
In the exemplary embodiment, the optical imaging lens of the application can meet 70 °≤FOV≤81 ° of conditional, its In, FOV is the full filed angle of optical imaging lens.More specifically, FOV can further meet 70.5 °≤FOV≤80.4 °.Pass through The full filed angle of camera lens is controlled, to efficiently control the areas imaging of camera lens.
In the exemplary embodiment, the optical imaging lens of the application can meet the < f1/f < 1.0 of conditional 0.5, its In, f1 is the effective focal length of the first lens, and f is total effective focal length of optical imaging lens.More specifically, f1 and f further may be used Meet 0.65 < f1/f < 0.95, for example, 0.72≤f1/f≤0.91.Meet the < f1/f < 1.0 of conditional 0.5, thing side can be made End possesses enough convergence abilities, to adjust beam focusing position, and then shortens the optics overall length of imaging system.
In the exemplary embodiment, the optical imaging lens of the application can meet conditional -3.5≤f2/f≤- 1.5, Wherein, f2 is the effective focal length of the second lens, and f is total effective focal length of optical imaging lens.More specifically, f2 and f are further - 3.30≤f2/f≤- 1.56 can be met.As it is known to the person skilled in the art, spherical aberration is the main of limitation lens efficiency One of the reason for, in this application by reasonably introducing the lens with negative power, it can effectively balance imaging system Spherical aberration, improve image quality.
In the exemplary embodiment, the optical imaging lens of the application can meet conditional 1.5≤f3/f≤3.0, its In, f3 is the effective focal length of the 3rd lens, and f is total effective focal length of optical imaging lens.More specifically, f3 and f further may be used Meet 1.70≤f3/f≤2.70, for example, 1.84≤f3/f≤2.59., can be effectively by controlling the 3rd power of lens The tolerance sensitivity of imaging system is reduced, and can ensure that the miniaturization of imaging system.
In the exemplary embodiment, the optical imaging lens of the application can meet conditional -5.0≤f8/f≤- 1.0, Wherein, f8 is the effective focal length of the 8th lens, and f is total effective focal length of optical imaging lens.More specifically, f8 and f are further - 4.82≤f8/f≤- 1.10 can be met.By controlling the 8th power of lens, can effectively correct at image planes near axis area Distortion, so as to improve the image quality of imaging system.
In the exemplary embodiment, the optical imaging lens of the application can meet conditional 1.5≤R3/R4≤3.0, its In, R3 is the radius of curvature of the thing side of the second lens, and R4 is the radius of curvature of the image side surface of the second lens.More specifically, R3 It can further meet 1.64≤R3/R4≤2.93 with R4.Meet conditional 1.5≤R3/R4≤3.0, can help to reduce imaging The spherical aberration of system and the generation of astigmatism.
In the exemplary embodiment, the optical imaging lens of the application can meet the < R1/R6 of conditional -0.5 < 0, its In, R1 is the radius of curvature of the thing side of the first lens, and R6 is the radius of curvature of the image side surface of the 3rd lens.More specifically, R1 - 0.40 < R1/R6 < -0.20 can further be met with R6, for example, -0.32≤R1/R6≤- 0.24.Pass through the first lens and Three lens meet the < R1/R6 of conditional -0.5 < 0 with merging, can effectively correct the aberration of imaging system, and be advantageous to Realize the balance of various differences.
In the exemplary embodiment, the optical imaging lens of the application can meet the < CT3/CT4 < 2.5 of conditional 1.0, Wherein, CT3 be the 3rd lens in the center thickness on optical axis, CT4 is the 4th lens in the center thickness on optical axis.More specifically Ground, CT3 and CT4 can further meet 1.30 < CT3/CT4 < 2.45, for example, 1.38≤CT3/CT4≤2.40.Meet condition The < CT3/CT4 < 2.5 of formula 1.0, contribute to lens sizes to be evenly distributed, and ensure assemble stable, and help to reduce entirely The aberration of imaging system, shorten the optics overall length of imaging system.
In the exemplary embodiment, the optical imaging lens of the application can meet the < R9/R11 of conditional -2.5 < 0, its In, R9 is the radius of curvature of the thing side of the 5th lens, and R11 is the radius of curvature of the thing side of the 6th lens.More specifically, R9 - 2.10 < R9/R11 < -0.30 can further be met with R11, for example, -2.02≤R9/R11≤- 0.41.Pass through the 5th lens Meet the < R9/R11 of conditional -2.5 < 0 with merging with the 6th lens, can effectively correct the aberration of imaging system, and have Beneficial to the balance for realizing various differences.
In the exemplary embodiment, the optical imaging lens of the application can meet conditional (R15-R16)/(R15+ R16) < 1.0, wherein, R15 is the radius of curvature of the thing side of the 8th lens, and R16 is the curvature half of the image side surface of the 8th lens Footpath.More specifically, R15 and R16 can further meet 0.10 < (R15-R16)/(R15+R16) < 0.65, for example, 0.16≤ (R15-R16)/(R15+R16)≤0.56., can be effective by controlling the ratio of the 8th lens thing side and image side curvature radius The overall aberration of ground amendment imaging system.
In the exemplary embodiment, the optical imaging lens of the application can meet the < CT1/CT2 < 4.0 of conditional 2.0, Wherein, CT1 be the first lens in the center thickness on optical axis, CT2 is the second lens in the center thickness on optical axis.More specifically Ground, CT1 and CT2 can further meet 2.30 < CT1/CT2 < 3.60, for example, 2.39≤CT1/CT2≤3.56.Pass through control The ratio of first lens and the second lens center thickness, imaging system can be made to obtain good machinability.
In the exemplary embodiment, above-mentioned optical lens may also include at least one diaphragm, to lift the imaging of camera lens Quality.Diaphragm can be arranged as required to locate at an arbitrary position, for example, diaphragm may be provided between thing side and the first lens;Or Diaphragm may be provided between the first lens and the second lens.
Alternatively, above-mentioned optical lens may also include the optical filter for correcting color error ratio and/or be located at for protecting The protective glass of photo-sensitive cell on imaging surface.
Multi-disc eyeglass, such as described above eight can be used according to the optical imaging lens of the above-mentioned embodiment of the application Piece.Pass through spacing on the axle between each power of lens of reasonable distribution, face type, the center thickness of each lens and each lens Deng, can effectively reduce imaging lens volume, reduce imaging lens susceptibility and improve the machinability of imaging lens, make Optical imaging lens are obtained to be more beneficial for producing and processing and being applicable to portable type electronic product.Meanwhile pass through above-mentioned configuration Optical imaging lens also have the beneficial effect such as large aperture, big visual angle, high image quality.
In presently filed embodiment, at least one in the minute surface of each lens is aspherical mirror.Non-spherical lens The characteristics of be:From lens centre to lens perimeter, curvature is consecutive variations.It is constant with having from lens centre to lens perimeter The spherical lens of curvature is different, and non-spherical lens has more preferably radius of curvature characteristic, and there is improvement to distort aberration and improve picture The advantages of dissipating aberration.After non-spherical lens, the aberration occurred when imaging can be eliminated as much as possible, so as to improve Image quality.
However, it will be understood by those of skill in the art that without departing from this application claims technical scheme situation Under, the lens numbers for forming optical imaging lens can be changed, to obtain each result and advantage described in this specification.Example Such as, although being described in embodiments by taking eight lens as an example, the optical imaging lens are not limited to include eight Lens.If desired, the optical imaging lens may also include the lens of other quantity.
The specific embodiment for the optical imaging lens for being applicable to above-mentioned embodiment is further described with reference to the accompanying drawings.
Embodiment 1
Optical imaging lens referring to Fig. 1 to Fig. 2 D descriptions according to the embodiment of the present application 1.Fig. 1 is shown according to this Apply for the structural representation of the optical imaging lens of embodiment 1.
As shown in figure 1, according to the optical imaging lens of the application illustrative embodiments along optical axis by thing side to image side according to Sequence includes:It is diaphragm STO, the first lens E1, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th saturating Mirror E6, the 7th lens E7, the 8th lens E8, optical filter E9 and imaging surface S19.
First lens E1 has positive light coke, and its thing side S1 is convex surface, and image side surface S2 is concave surface.Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface.3rd lens E3 has positive light coke, and its thing side S5 is Convex surface, image side surface S6 are convex surface.4th lens E4 has positive light coke, and its thing side S7 is concave surface, and image side surface S8 is convex surface.The Five lens E5 have negative power, and its thing side S9 is concave surface, and image side surface S10 is concave surface.6th lens E6 has positive light coke, Its thing side S11 is convex surface, and image side surface S12 is concave surface.7th lens E7 has negative power, and its thing side S13 is convex surface, as Side S14 is concave surface.8th lens E8 has negative power, and its thing side S15 is convex surface, and image side surface S16 is concave surface.Optical filter E9 has thing side S17 and image side surface S18.Light from object sequentially passes through each surface S1 to S18 and is ultimately imaged and is being imaged On the S19 of face.
Table 1 show the surface types of each lens of the optical imaging lens of embodiment 1, radius of curvature, thickness, material and Circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).
Table 1
As shown in Table 1, the thing side of any one lens in the first lens E1 to the 8th lens E8 and image side surface are It is aspherical.In the present embodiment, the face type x of each non-spherical lens is available but is not limited to following aspherical formula and is defined:
Wherein, x be it is aspherical along optical axis direction when being highly h position, away from aspheric vertex of surface apart from rise;C is Aspherical paraxial curvature, c=1/R (that is, paraxial curvature c is the mean curvature radius R of upper table 1 inverse);K be circular cone coefficient ( Provided in table 1);Ai is the correction factor of aspherical i-th-th ranks.Table 2 below is given available for each aspherical in embodiment 1 Minute surface S1-S14 high order term coefficient A4、A6、A8、A10、A12、A14、A16、A18And A20
Table 2
Table 3 provides the effective focal length f1 to f8 of each lens in embodiment 1, total effective focal length f of optical imaging lens, first Lens E1 thing side S1 center is to imaging surface S19 effective pixel areas pair on distance TTL, imaging surface S19 on optical axis The half ImgH of the linea angulata length and full filed angle FOV of optical imaging lens.
f1(mm) 3.48 f7(mm) -13.42
f2(mm) -12.76 f8(mm) -11.00
f3(mm) 10.03 f(mm) 3.87
f4(mm) 218.23 TTL(mm) 4.74
f5(mm) -11.29 ImgH(mm) 3.37
f6(mm) 18.17 FOV(°) 80.4
Table 3
Optical imaging lens in embodiment 1 meet:
F/EPD=1.79, wherein, f is total effective focal length of optical imaging lens, and EPD is the entrance pupil of optical imaging lens Diameter;
TTL/ImgH=1.41, wherein, the center that TTL is the first lens E1 thing side S1 is to imaging surface S19 in optical axis On distance, ImgH be imaging surface S19 on effective pixel area diagonal line length half;
F1/f=0.90, wherein, f1 is the first lens E1 effective focal length, and f is total effective focal length of optical imaging lens;
F2/f=-3.30, wherein, f2 is the second lens E2 effective focal length, and f is the total effectively burnt of optical imaging lens Away from;
F3/f=2.59, wherein, f3 is the 3rd lens E3 effective focal length, and f is total effective focal length of optical imaging lens;
F8/f=-2.84, wherein, f8 is the 8th lens E8 effective focal length, and f is the total effectively burnt of optical imaging lens Away from;
R3/R4=1.64, wherein, R3 is the second lens E2 thing side S3 radius of curvature, and R4 is the second lens E2's Image side surface S4 radius of curvature;
R1/R6=-0.26, wherein, R1 is the first lens E1 thing side S1 radius of curvature, and R6 is the 3rd lens E3's Image side surface S6 radius of curvature;
CT3/CT4=1.65, wherein, CT3 be the 3rd lens E3 in the center thickness on optical axis, CT4 is the 4th lens E4 In the center thickness on optical axis;
R9/R11=-1.19, wherein, R9 is the 5th lens E5 thing side S9 radius of curvature, and R11 is the 6th lens E6 Thing side S11 radius of curvature;
(R15-R16)/(R15+R16)=0.23, wherein, R15 is the 8th lens E8 thing side S15 radius of curvature, R16 is the 8th lens E8 image side surface S16 radius of curvature;
CT1/CT2=2.39, wherein, CT1 be the first lens E1 in the center thickness on optical axis, CT2 is the second lens E2 In the center thickness on optical axis.
In addition, Fig. 2A shows chromatic curve on the axle of the optical imaging lens of embodiment 1, it represents the light of different wave length Line deviates via the converging focal point after camera lens.Fig. 2 B show the astigmatism curve of the optical imaging lens of embodiment 1, and it represents son Noon curvature of the image and sagittal image surface bending.Fig. 2 C show the distortion curve of the optical imaging lens of embodiment 1, and it represents different Distortion sizes values in the case of visual angle.Fig. 2 D show the ratio chromatism, curve of the optical imaging lens of embodiment 1, and it represents light Line via the different image heights after camera lens on imaging surface deviation.Understood according to Fig. 2A to Fig. 2 D, the light given by embodiment 1 Good image quality can be realized by learning imaging lens.
Embodiment 2
Optical imaging lens referring to Fig. 3 to Fig. 4 D descriptions according to the embodiment of the present application 2.In the present embodiment and following In embodiment, for brevity, by clipped description similar to Example 1.Fig. 3 is shown according to the embodiment of the present application 2 Optical imaging lens structural representation.
As shown in figure 3, according to the optical imaging lens of the application illustrative embodiments along optical axis by thing side to image side according to Sequence includes:It is first lens E1, diaphragm STO, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th saturating Mirror E6, the 7th lens E7, the 8th lens E8, optical filter E9 and imaging surface S19.
First lens E1 has positive light coke, and its thing side S1 is convex surface, and image side surface S2 is concave surface.Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface.3rd lens E3 has positive light coke, and its thing side S5 is Convex surface, image side surface S6 are convex surface.4th lens E4 has positive light coke, and its thing side S7 is concave surface, and image side surface S8 is convex surface.The Five lens E5 have negative power, and its thing side S9 is concave surface, and image side surface S10 is convex surface.6th lens E6 has negative power, Its thing side S11 is convex surface, and image side surface S12 is concave surface.7th lens E7 has positive light coke, and its thing side S13 is convex surface, as Side S14 is concave surface.8th lens E8 has negative power, and its thing side S15 is convex surface, and image side surface S16 is concave surface.Optical filter E9 has thing side S17 and image side surface S18.Light from object sequentially passes through each surface S1 to S18 and is ultimately imaged and is being imaged On the S19 of face.
Table 4 show the surface types of each lens of the optical imaging lens of embodiment 2, radius of curvature, thickness, material and Circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).
Table 4
As shown in Table 4, in example 2, the thing side of any one lens in the first lens E1 to the 8th lens E8 It is aspherical with image side surface.Table 5 shows the high order term coefficient available for each aspherical mirror in embodiment 2, wherein, it is each non- Spherical surface type can be limited by the formula (1) provided in above-described embodiment 1.
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 4.5900E-04 7.0170E-03 -1.4940E-02 1.3971E-02 4.4250E-03 -2.4110E-02 2.2876E-02 -9.6300E-03 1.4970E-03
S2 -3.1680E-02 9.4563E-02 -1.4831E-01 1.3440E-01 -4.9920E-02 -2.7880E-02 3.8599E-02 -1.5950E-02 2.3870E-03
S3 -5.4250E-02 1.1418E-01 -1.7162E-01 2.1217E-01 -1.9315E-01 1.3748E-01 -7.6790E-02 2.9472E-02 -5.2100E-03
S4 -6.3420E-02 2.7360E-02 -8.3400E-03 1.7270E-02 -1.0109E-01 2.4995E-01 -2.8539E-01 1.5686E-01 -3.1700E-02
S5 -3.4060E-02 -8.5870E-02 1.5314E-02 3.7141E-01 -1.4721E+00 2.7737E+00 -2.8223E+00 1.5013E+00 -3.2680E-01
S6 1.7049E-01 -8.1119E-01 9.7991E-01 -2.6757E-01 -4.7872E-01 7.4366E-01 -7.6410E-01 5.0500E-01 -1.3599E-01
S7 1.4509E-01 -6.3055E-01 4.4054E-01 7.0957E-01 -1.2692E+00 8.1107E-01 -4.6451E-01 3.1980E-01 -9.9250E-02
S8 -2.1533E-01 7.8195E-01 -1.7842E+00 2.2551E+00 -1.5665E+00 6.5976E-01 -3.5650E-01 2.3189E-01 -6.2270E-02
S9 -2.5559E-01 9.9844E-01 -2.1530E+00 2.6474E+00 -2.0554E+00 1.1949E+00 -6.6783E-01 3.0216E-01 -6.3760E-02
S10 -7.6720E-02 3.7066E-01 -7.7486E-01 8.8625E-01 -6.0014E-01 2.3265E-01 -4.2790E-02 3.3700E-04 7.2500E-04
S11 -5.1030E-02 7.3904E-02 -1.7190E-01 2.2408E-01 -1.9478E-01 1.0377E-01 -3.0930E-02 3.9100E-03 0.0000E+00
S12 5.7077E-02 -1.3412E-01 1.3197E-01 -8.4220E-02 3.3763E-02 -8.2000E-03 1.1030E-03 -6.3000E-05 0.0000E+00
S13 8.5567E-02 -1.7959E-01 1.5638E-01 -9.4430E-02 3.7044E-02 -8.6400E-03 1.0780E-03 -5.5000E-05 0.0000E+00
S14 4.6062E-02 -8.7780E-02 5.7990E-02 -2.5740E-02 7.0650E-03 -1.0700E-03 7.7600E-05 -1.8000E-06 0.0000E+00
S15 -1.0591E-01 -2.5270E-02 4.5853E-02 -2.1290E-02 5.3500E-03 -7.8000E-04 6.1400E-05 -2.0000E-06 0.0000E+00
S16 -1.8874E-01 7.6906E-02 -2.7650E-02 7.4310E-03 -1.3300E-03 1.4400E-04 -8.5000E-06 2.0800E-07 0.0000E+00
Table 5
Table 6 provides the effective focal length f1 to f8 of each lens in embodiment 2, total effective focal length f of optical imaging lens, first Lens E1 thing side S1 center is to imaging surface S19 effective pixel areas pair on distance TTL, imaging surface S19 on optical axis The half ImgH of the linea angulata length and full filed angle FOV of optical imaging lens.
f1(mm) 3.45 f7(mm) 32.27
f2(mm) -8.29 f8(mm) -9.41
f3(mm) 10.02 f(mm) 4.46
f4(mm) 377.36 TTL(mm) 5.41
f5(mm) -13.13 ImgH(mm) 3.40
f6(mm) -31.89 FOV(°) 73.3
Table 6
Fig. 4 A show chromatic curve on the axle of the optical imaging lens of embodiment 2, and it represents the light warp of different wave length Deviateed by the converging focal point after camera lens.Fig. 4 B show the astigmatism curve of the optical imaging lens of embodiment 2, and it represents meridian picture Face is bent and sagittal image surface bending.Fig. 4 C show the distortion curve of the optical imaging lens of embodiment 2, and it represents different visual angles In the case of distortion sizes values.Fig. 4 D show the ratio chromatism, curve of the optical imaging lens of embodiment 2, and it represents light warp By the deviation of the different image heights after camera lens on imaging surface.Understood according to Fig. 4 A to Fig. 4 D, optics given by embodiment 2 into As camera lens can realize good image quality.
Embodiment 3
The optical imaging lens according to the embodiment of the present application 3 are described referring to Fig. 5 to Fig. 6 D.Fig. 5 shows basis The structural representation of the optical imaging lens of the embodiment of the present application 3.
As shown in figure 5, according to the optical imaging lens of the application illustrative embodiments along optical axis by thing side to image side according to Sequence includes:It is first lens E1, diaphragm STO, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th saturating Mirror E6, the 7th lens E7, the 8th lens E8, optical filter E9 and imaging surface S19.
First lens E1 has positive light coke, and its thing side S1 is convex surface, and image side surface S2 is concave surface.Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface.3rd lens E3 has positive light coke, and its thing side S5 is Convex surface, image side surface S6 are convex surface.4th lens E4 has positive light coke, and its thing side S7 is concave surface, and image side surface S8 is convex surface.The Five lens E5 have negative power, and its thing side S9 is concave surface, and image side surface S10 is convex surface.6th lens E6 has negative power, Its thing side S11 is convex surface, and image side surface S12 is concave surface.7th lens E7 has negative power, and its thing side S13 is convex surface, as Side S14 is concave surface.8th lens E8 has negative power, and its thing side S15 is convex surface, and image side surface S16 is concave surface.Optical filter E9 has thing side S17 and image side surface S18.Light from object sequentially passes through each surface S1 to S18 and is ultimately imaged and is being imaged On the S19 of face.
Table 7 show the surface types of each lens of the optical imaging lens of embodiment 3, radius of curvature, thickness, material and Circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).
Table 7
As shown in Table 7, in embodiment 3, the thing side of any one lens in the first lens E1 to the 8th lens E8 It is aspherical with image side surface.Table 8 shows the high order term coefficient available for each aspherical mirror in embodiment 3, wherein, it is each non- Spherical surface type can be limited by the formula (1) provided in above-described embodiment 1.
Table 8
Table 9 provides the effective focal length f1 to f8 of each lens in embodiment 3, total effective focal length f of optical imaging lens, first Lens E1 thing side S1 center is to imaging surface S19 effective pixel areas pair on distance TTL, imaging surface S19 on optical axis The half ImgH of the linea angulata length and full filed angle FOV of optical imaging lens.
f1(mm) 3.47 f7(mm) -346.12
f2(mm) -8.02 f8(mm) -9.56
f3(mm) 9.52 f(mm) 4.38
f4(mm) 769.75 TTL(mm) 5.38
f5(mm) -14.94 ImgH(mm) 3.40
f6(mm) -160.63 FOV(°) 74.0
Table 9
Fig. 6 A show chromatic curve on the axle of the optical imaging lens of embodiment 3, and it represents the light warp of different wave length Deviateed by the converging focal point after camera lens.Fig. 6 B show the astigmatism curve of the optical imaging lens of embodiment 3, and it represents meridian picture Face is bent and sagittal image surface bending.Fig. 6 C show the distortion curve of the optical imaging lens of embodiment 3, and it represents different visual angles In the case of distortion sizes values.Fig. 6 D show the ratio chromatism, curve of the optical imaging lens of embodiment 3, and it represents light warp By the deviation of the different image heights after camera lens on imaging surface.Understood according to Fig. 6 A to Fig. 6 D, optics given by embodiment 3 into As camera lens can realize good image quality.
Embodiment 4
The optical imaging lens according to the embodiment of the present application 4 are described referring to Fig. 7 to Fig. 8 D.Fig. 7 shows basis The structural representation of the optical imaging lens of the embodiment of the present application 4.
As shown in fig. 7, according to the optical imaging lens of the application illustrative embodiments along optical axis by thing side to image side according to Sequence includes:It is first lens E1, diaphragm STO, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th saturating Mirror E6, the 7th lens E7, the 8th lens E8, optical filter E9 and imaging surface S19.
First lens E1 has positive light coke, and its thing side S1 is convex surface, and image side surface S2 is concave surface.Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface.3rd lens E3 has positive light coke, and its thing side S5 is Convex surface, image side surface S6 are convex surface.4th lens E4 has positive light coke, and its thing side S7 is concave surface, and image side surface S8 is convex surface.The Five lens E5 have negative power, and its thing side S9 is concave surface, and image side surface S10 is convex surface.6th lens E6 has positive light coke, Its thing side S11 is convex surface, and image side surface S12 is concave surface.7th lens E7 has positive light coke, and its thing side S13 is convex surface, as Side S14 is concave surface.8th lens E8 has negative power, and its thing side S15 is convex surface, and image side surface S16 is concave surface.Optical filter E9 has thing side S17 and image side surface S18.Light from object sequentially passes through each surface S1 to S18 and is ultimately imaged and is being imaged On the S19 of face.
Table 10 shows surface type, radius of curvature, thickness, the material of each lens of the optical imaging lens of embodiment 4 And circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).
Table 10
As shown in Table 10, in example 4, the thing side of any one lens in the first lens E1 to the 8th lens E8 It is aspherical with image side surface.Table 11 shows the high order term coefficient available for each aspherical mirror in embodiment 4, wherein, respectively Aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -4.1733E-03 2.3693E-02 -5.7200E-02 7.7382E-02 -6.0640E-02 2.4651E-02 -2.9400E-03 -1.2100E-03 3.2200E-04
S2 4.9710E-02 -2.5343E-01 6.2410E-01 -9.4467E-01 9.3040E-01 -5.9894E-01 2.4223E-01 -5.5750E-02 5.5660E-03
S3 3.6814E-02 -2.6527E-01 6.1755E-01 -8.2371E-01 6.8102E-01 -3.2968E-01 7.5595E-02 3.6700E-04 -2.4000E-03
S4 -4.7907E-02 -6.8650E-02 1.6612E-01 -2.1557E-01 1.7580E-01 -7.1410E-02 -1.5700E-03 1.2951E-02 -3.1700E-03
S5 -2.7432E-02 -1.8000E-02 -1.6612E-01 5.2846E-01 -9.3827E-01 1.0323E+00 -6.8061E-01 2.4426E-01 -3.6440E-02
S6 -1.1952E-03 -7.3360E-02 -3.4980E-01 8.5970E-01 -5.4300E-01 -3.1410E-01 6.2534E-01 -3.2894E-01 6.1337E-02
S7 -3.6843E-02 1.6684E-01 -1.1160E+00 2.3404E+00 -2.2770E+00 9.4934E-01 5.7786E-02 -1.8165E-01 4.4263E-02
S8 -1.2268E-01 3.8445E-01 -6.9995E-01 3.0525E-01 8.3691E-01 -1.5694E+00 1.1992E+00 -4.4869E-01 6.7437E-02
S9 -1.7991E-01 5.9573E-01 -1.2040E+00 1.3434E+00 -8.7481E-01 3.0559E-01 -3.7310E-02 -5.8300E-03 1.2190E-03
S10 -1.0032E-01 2.8999E-01 -5.4877E-01 5.7169E-01 -3.5106E-01 1.2320E-01 -2.0650E-02 1.7800E-04 3.6700E-04
S11 7.0929E-03 -6.9910E-02 1.1213E-01 -1.3686E-01 9.1868E-02 -3.3900E-02 5.7840E-03 -3.0000E-04 0.0000E+00
S12 4.6249E-02 -1.8556E-01 2.8111E-01 -2.6373E-01 1.4951E-01 -5.0860E-02 9.5390E-03 -7.6000E-04 0.0000E+00
S13 4.2396E-02 -1.2542E-01 9.7025E-02 -4.6760E-02 9.5620E-03 4.3100E-04 -4.5000E-04 4.7900E-05 0.0000E+00
S14 3.8233E-02 -6.8560E-02 4.1116E-02 -1.7000E-02 4.3550E-03 -6.3000E-04 4.3200E-05 -8.9000E-07 0.0000E+00
S15 -1.7653E-01 5.6344E-02 -1.1280E-02 2.9340E-03 -7.8000E-04 1.3000E-04 -1.1000E-05 3.8100E-07 0.0000E+00
S16 -1.9535E-01 8.5365E-02 -3.1530E-02 8.2340E-03 -1.3800E-03 1.4100E-04 -7.9000E-06 1.8800E-07 0.0000E+00
Table 11
Table 12 provides the effective focal length f1 to f8 of each lens in embodiment 4, total effective focal length f of optical imaging lens, One lens E1 thing side S1 center is to imaging surface S19 effective pixel areas on distance TTL, imaging surface S19 on optical axis The half ImgH of the diagonal line length and full filed angle FOV of optical imaging lens.
f1(mm) 3.85 f7(mm) 28.01
f2(mm) -8.57 f8(mm) -6.20
f3(mm) 8.97 f(mm) 4.29
f4(mm) 264.70 TTL(mm) 5.50
f5(mm) -14.99 ImgH(mm) 3.57
f6(mm) 37.02 FOV(°) 77.8
Table 12
Fig. 8 A show chromatic curve on the axle of the optical imaging lens of embodiment 4, and it represents the light warp of different wave length Deviateed by the converging focal point after camera lens.Fig. 8 B show the astigmatism curve of the optical imaging lens of embodiment 4, and it represents meridian picture Face is bent and sagittal image surface bending.Fig. 8 C show the distortion curve of the optical imaging lens of embodiment 4, and it represents different visual angles In the case of distortion sizes values.Fig. 8 D show the ratio chromatism, curve of the optical imaging lens of embodiment 4, and it represents light warp By the deviation of the different image heights after camera lens on imaging surface.Understood according to Fig. 8 A to Fig. 8 D, optics given by embodiment 4 into As camera lens can realize good image quality.
Embodiment 5
The optical imaging lens according to the embodiment of the present application 5 are described referring to Fig. 9 to Figure 10 D.Fig. 9 shows basis The structural representation of the optical imaging lens of the embodiment of the present application 5.
As shown in figure 9, according to the optical imaging lens of the application illustrative embodiments along optical axis by thing side to image side according to Sequence includes:It is diaphragm STO, the first lens E1, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th saturating Mirror E6, the 7th lens E7, the 8th lens E8, optical filter E9 and imaging surface S19.
First lens E1 has positive light coke, and its thing side S1 is convex surface, and image side surface S2 is concave surface.Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface.3rd lens E3 has positive light coke, and its thing side S5 is Convex surface, image side surface S6 are convex surface.4th lens E4 has negative power, and its thing side S7 is concave surface, and image side surface S8 is convex surface.The Five lens E5 have negative power, and its thing side S9 is concave surface, and image side surface S10 is concave surface.6th lens E6 has positive light coke, Its thing side S11 is convex surface, and image side surface S12 is concave surface.7th lens E7 has negative power, and its thing side S13 is convex surface, as Side S14 is concave surface.8th lens E8 has negative power, and its thing side S15 is convex surface, and image side surface S16 is concave surface.Optical filter E9 has thing side S17 and image side surface S18.Light from object sequentially passes through each surface S1 to S18 and is ultimately imaged and is being imaged On the S19 of face.
Table 13 shows surface type, radius of curvature, thickness, the material of each lens of the optical imaging lens of embodiment 5 And circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).
Table 13
As shown in Table 13, in embodiment 5, the thing side of any one lens in the first lens E1 to the 8th lens E8 It is aspherical with image side surface.Table 14 shows the high order term coefficient available for each aspherical mirror in embodiment 5, wherein, respectively Aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.4600E-03 2.5560E-02 -1.0971E-01 3.2167E-01 -5.8036E-01 6.5600E-01 -4.4995E-01 1.7144E-01 -2.8060E-02
S2 -6.8600E-03 -2.8000E-02 2.9746E-01 -1.0468E+00 2.1305E+00 -2.6256E+00 1.9071E+00 -7.4569E-01 1.2069E-01
S3 -4.6210E-02 4.0693E-02 -1.1675E-01 8.7448E-01 -2.9009E+00 5.3146E+00 -5.6029E+00 3.1899E+00 -7.5487E-01
S4 -9.0380E-02 4.6970E-02 3.6445E-02 -4.3321E-01 2.2640E+00 -7.2929E+00 1.3286E+01 -1.2613E+01 4.9079E+00
S5 -2.6850E-02 -2.0917E-01 1.3309E+00 -7.6452E+00 2.5335E+01 -5.1729E+01 6.3953E+01 -4.4136E+01 1.3197E+01
S6 5.8890E-03 1.1253E-01 2.4516E-01 -7.3762E+00 3.0246E+01 -5.8343E+01 5.9783E+01 -3.1388E+01 6.6681E+00
S7 -7.6200E-02 4.0507E-01 -8.1338E-01 -3.8417E+00 2.2316E+01 -4.5715E+01 4.6807E+01 -2.4050E+01 4.9519E+00
S8 -2.0134E-01 1.1010E+00 -3.2292E+00 4.4062E+00 -2.1744E+00 -5.9691E-01 5.2720E-01 3.3383E-01 -2.1043E-01
S9 -2.0094E-01 1.1140E+00 -3.1490E+00 4.9077E+00 -5.1575E+00 4.5080E+00 -3.4133E+00 1.7231E+00 -3.8969E-01
S10 -9.9680E-02 1.6202E-01 -1.7886E-01 1.6613E-01 -2.5042E-01 3.5782E-01 -2.7847E-01 1.0502E-01 -1.5330E-02
S11 -2.0740E-02 -5.2670E-02 9.6900E-03 -9.0300E-03 3.8417E-02 -4.1180E-02 1.7606E-02 -2.6800E-03 0.0000E+00
S12 5.5003E-02 -9.8740E-02 2.2042E-02 2.3233E-02 -1.9150E-02 5.7600E-03 -7.3000E-04 2.4300E-05 0.0000E+00
S13 7.2113E-02 -1.6696E-01 1.2898E-01 -7.0160E-02 2.6318E-02 -6.0200E-03 7.4500E-04 -3.8000E-05 0.0000E+00
S14 4.9279E-02 -1.0858E-01 7.3237E-02 -2.9880E-02 7.3390E-03 -1.0200E-03 7.2700E-05 -2.0000E-06 0.0000E+00
S15 -1.2470E-01 8.8700E-03 2.3481E-02 -1.2060E-02 2.8900E-03 -3.8000E-04 2.6500E-05 -7.6000E-07 0.0000E+00
S16 -2.1696E-01 1.0134E-01 -4.0110E-02 1.1013E-02 -1.9500E-03 2.0900E-04 -1.2000E-05 3.1200E-07 0.0000E+00
Table 14
Table 15 provides the effective focal length f1 to f8 of each lens in embodiment 5, total effective focal length f of optical imaging lens, One lens E1 thing side S1 center is to imaging surface S19 effective pixel areas on distance TTL, imaging surface S19 on optical axis The half ImgH of the diagonal line length and full filed angle FOV of optical imaging lens.
f1(mm) 3.41 f7(mm) -10.75
f2(mm) -11.47 f8(mm) -18.88
f3(mm) 9.89 f(mm) 3.92
f4(mm) -148.36 TTL(mm) 4.76
f5(mm) -11.71 ImgH(mm) 3.37
f6(mm) 23.33 FOV(°) 79.9
Table 15
Figure 10 A show chromatic curve on the axle of the optical imaging lens of embodiment 5, and it represents the light warp of different wave length Deviateed by the converging focal point after camera lens.Figure 10 B show the astigmatism curve of the optical imaging lens of embodiment 5, and it represents meridian Curvature of the image and sagittal image surface bending.Figure 10 C show the distortion curve of the optical imaging lens of embodiment 5, and it represents different Distortion sizes values in the case of visual angle.Figure 10 D show the ratio chromatism, curve of the optical imaging lens of embodiment 5, and it is represented Light via the different image heights after camera lens on imaging surface deviation.Understood according to Figure 10 A to Figure 10 D, given by embodiment 5 Optical imaging lens can realize good image quality.
Embodiment 6
The optical imaging lens according to the embodiment of the present application 6 are described referring to Figure 11 to Figure 12 D.Figure 11 shows root According to the structural representation of the optical imaging lens of the embodiment of the present application 6.
As shown in figure 11, according to the optical imaging lens of the application illustrative embodiments along optical axis by thing side to image side according to Sequence includes:It is diaphragm STO, the first lens E1, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th saturating Mirror E6, the 7th lens E7, the 8th lens E8, optical filter E9 and imaging surface S19.
First lens E1 has positive light coke, and its thing side S1 is convex surface, and image side surface S2 is concave surface.Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface.3rd lens E3 has positive light coke, and its thing side S5 is Concave surface, image side surface S6 are convex surface.4th lens E4 has negative power, and its thing side S7 is concave surface, and image side surface S8 is convex surface.The Five lens E5 have negative power, and its thing side S9 is concave surface, and image side surface S10 is concave surface.6th lens E6 has positive light coke, Its thing side S11 is convex surface, and image side surface S12 is concave surface.7th lens E7 has negative power, and its thing side S13 is convex surface, as Side S14 is concave surface.8th lens E8 has negative power, and its thing side S15 is convex surface, and image side surface S16 is concave surface.Optical filter E9 has thing side S17 and image side surface S18.Light from object sequentially passes through each surface S1 to S18 and is ultimately imaged and is being imaged On the S19 of face.
Table 16 shows surface type, radius of curvature, thickness, the material of each lens of the optical imaging lens of embodiment 6 And circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).
Table 16
As shown in Table 16, in embodiment 6, the thing side of any one lens in the first lens E1 to the 8th lens E8 It is aspherical with image side surface.Table 17 shows the high order term coefficient available for each aspherical mirror in embodiment 6, wherein, respectively Aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.6500E-03 2.9852E-02 -1.3473E-01 3.9763E-01 -7.2557E-01 8.2981E-01 -5.7743E-01 2.2366E-01 -3.7340E-02
S2 -1.0250E-02 -2.2020E-02 3.0846E-01 -1.1674E+00 2.5186E+00 -3.3066E+00 2.5892E+00 -1.1112E+00 2.0176E-01
S3 -5.0730E-02 4.5944E-02 2.1207E-02 9.0501E-02 -6.6983E-01 1.5495E+00 -1.8240E+00 1.1095E+00 -2.7120E-01
S4 -8.8920E-02 5.2240E-02 3.6704E-02 -4.3505E-01 2.2618E+00 -7.2929E+00 1.3286E+01 -1.2613E+01 4.9079E+00
S5 -3.4560E-02 -2.2615E-01 1.5404E+00 -8.6145E+00 2.8352E+01 -5.7656E+01 7.0976E+01 -4.8762E+01 1.4497E+01
S6 5.3983E-02 -7.9701E-01 6.2909E+00 -2.9591E+01 8.1088E+01 -1.3230E+02 1.2619E+02 -6.4968E+01 1.3992E+01
S7 -2.2700E-03 -6.4703E-01 5.6862E+00 -2.6233E+01 6.9871E+01 -1.0967E+02 9.9955E+01 -4.8998E+01 1.0017E+01
S8 -8.5580E-02 -5.1697E-01 6.0942E+00 -2.4894E+01 5.3004E+01 -6.5099E+01 4.6718E+01 -1.8336E+01 3.0646E+00
S9 -1.0722E-01 -2.3712E-01 4.7639E+00 -1.9913E+01 4.1166E+01 -4.9009E+01 3.4447E+01 -1.3409E+01 2.2412E+00
S10 -9.9530E-02 1.2357E-01 1.4703E-01 -8.0180E-01 1.2499E+00 -9.9392E-01 4.3473E-01 -9.9420E-02 9.2670E-03
S11 -2.7900E-02 -3.9740E-02 1.2300E-03 5.2400E-04 2.4560E-02 -3.0630E-02 1.3787E-02 -2.1500E-03 0.0000E+00
S12 6.8502E-02 -1.3216E-01 6.7674E-02 -1.3840E-02 -1.0700E-03 5.4400E-04 1.0200E-04 -3.2000E-05 0.0000E+00
S13 7.3459E-02 -1.7628E-01 1.3953E-01 -7.7650E-02 2.9854E-02 -7.0000E-03 8.8700E-04 -4.7000E-05 0.0000E+00
S14 5.2382E-02 -1.2359E-01 8.7750E-02 -3.7480E-02 9.7450E-03 -1.4700E-03 1.1900E-04 -4.0000E-06 0.0000E+00
S15 -1.3509E-01 1.2701E-02 2.3923E-02 -1.2750E-02 3.0970E-03 -4.1000E-04 2.8600E-05 -8.2000E-07 0.0000E+00
S16 -2.2200E-01 1.0311E-01 -3.9150E-02 1.0119E-02 -1.6700E-03 1.6600E-04 -9.0000E-06 2.0700E-07 0.0000E+00
Table 17
Table 18 provides the effective focal length f1 to f8 of each lens in embodiment 6, total effective focal length f of optical imaging lens, One lens E1 thing side S1 center is to imaging surface S19 effective pixel areas on distance TTL, imaging surface S19 on optical axis The half ImgH of the diagonal line length and full filed angle FOV of optical imaging lens.
f1(mm) 3.36 f7(mm) -12.01
f2(mm) -10.66 f8(mm) -18.67
f3(mm) 10.15 f(mm) 3.94
f4(mm) -139.94 TTL(mm) 4.77
f5(mm) -11.84 ImgH(mm) 3.37
f6(mm) 28.60 FOV(°) 79.5
Table 18
Figure 12 A show chromatic curve on the axle of the optical imaging lens of embodiment 6, and it represents the light warp of different wave length Deviateed by the converging focal point after camera lens.Figure 12 B show the astigmatism curve of the optical imaging lens of embodiment 6, and it represents meridian Curvature of the image and sagittal image surface bending.Figure 12 C show the distortion curve of the optical imaging lens of embodiment 6, and it represents different Distortion sizes values in the case of visual angle.Figure 12 D show the ratio chromatism, curve of the optical imaging lens of embodiment 6, and it is represented Light via the different image heights after camera lens on imaging surface deviation.Understood according to Figure 12 A to Figure 12 D, given by embodiment 6 Optical imaging lens can realize good image quality.
Embodiment 7
The optical imaging lens according to the embodiment of the present application 7 are described referring to Figure 13 to Figure 14 D.Figure 13 shows root According to the structural representation of the optical imaging lens of the embodiment of the present application 7.
As shown in figure 13, according to the optical imaging lens of the application illustrative embodiments along optical axis by thing side to image side according to Sequence includes:It is first lens E1, diaphragm STO, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th saturating Mirror E6, the 7th lens E7, the 8th lens E8, optical filter E9 and imaging surface S19.
First lens E1 has positive light coke, and its thing side S1 is convex surface, and image side surface S2 is concave surface.Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface.3rd lens E3 has positive light coke, and its thing side S5 is Convex surface, image side surface S6 are convex surface.4th lens E4 has negative power, and its thing side S7 is concave surface, and image side surface S8 is convex surface.The Five lens E5 have negative power, and its thing side S9 is concave surface, and image side surface S10 is convex surface.6th lens E6 has negative power, Its thing side S11 is convex surface, and image side surface S12 is concave surface.7th lens E7 has negative power, and its thing side S13 is convex surface, as Side S14 is concave surface.8th lens E8 has negative power, and its thing side S15 is convex surface, and image side surface S16 is concave surface.Optical filter E9 has thing side S17 and image side surface S18.Light from object sequentially passes through each surface S1 to S18 and is ultimately imaged and is being imaged On the S19 of face.
Table 19 shows surface type, radius of curvature, thickness, the material of each lens of the optical imaging lens of embodiment 7 And circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).
Table 19
As shown in Table 19, in embodiment 7, the thing side of any one lens in the first lens E1 to the 8th lens E8 It is aspherical with image side surface.Table 20 shows the high order term coefficient available for each aspherical mirror in embodiment 7, wherein, respectively Aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.8528E-04 8.7050E-03 -2.6230E-02 4.2286E-02 -3.8360E-02 1.5553E-02 6.5100E-04 -2.8400E-03 6.5700E-04
S2 -6.8325E-04 -6.5120E-02 2.8558E-01 -6.3496E-01 8.6875E-01 -7.5778E-01 4.0790E-01 -1.2333E-01 1.6011E-02
S3 -2.4675E-02 -6.3140E-02 3.2717E-01 -7.0349E-01 9.6142E-01 -8.4496E-01 4.5991E-01 -1.3995E-01 1.8133E-02
S4 -6.4174E-02 -1.6800E-02 1.0927E-01 -1.9236E-01 1.8632E-01 -2.5130E-02 -1.2589E-01 1.1410E-01 -3.1310E-02
S5 -3.4800E-02 -8.0790E-02 1.0900E-04 3.1157E-01 -1.0141E+00 1.7354E+00 -1.6508E+00 8.2095E-01 -1.6657E-01
S6 1.4993E-01 -5.2893E-01 -9.9763E-01 5.9403E+00 -1.1140E+01 1.1360E+01 -6.7470E+00 2.1961E+00 -3.0138E-01
S7 1.2836E-01 -1.7244E-01 -2.4925E+00 9.5440E+00 -1.6393E+01 1.6152E+01 -9.4906E+00 3.1270E+00 -4.4773E-01
S8 -1.6613E-01 7.0841E-01 -2.5343E+00 5.5119E+00 -7.5258E+00 6.4231E+00 -3.3341E+00 9.6883E-01 -1.2182E-01
S9 -1.5985E-01 5.7863E-01 -1.7839E+00 3.6861E+00 -5.1080E+00 4.5949E+00 -2.5848E+00 8.3441E-01 -1.1969E-01
S10 -2.7733E-02 1.1606E-01 -4.0812E-01 7.7575E-01 -9.1651E-01 6.7915E-01 -3.0450E-01 7.4597E-02 -7.4200E-03
S11 1.7215E-02 -7.6520E-02 -2.4830E-02 1.5287E-01 -2.0802E-01 1.4214E-01 -5.1150E-02 7.5300E-03 0.0000E+00
S12 7.6508E-02 -1.8366E-01 1.8399E-01 -1.2796E-01 5.9166E-02 -1.7440E-02 2.9610E-03 -2.2000E-04 0.0000E+00
S13 7.8660E-02 -1.8201E-01 1.6172E-01 -1.0354E-01 4.2966E-02 -1.0600E-02 1.4040E-03 -7.7000E-05 0.0000E+00
S14 4.1116E-02 -7.8910E-02 5.1979E-02 -2.4370E-02 7.5790E-03 -1.4100E-03 1.4100E-04 -5.7000E-06 0.0000E+00
S15 -1.7076E-01 6.2034E-02 -1.7270E-02 5.4930E-03 -1.4000E-03 2.1500E-04 -1.7000E-05 5.5200E-07 0.0000E+00
S16 -2.1972E-01 1.0300E-01 -4.2250E-02 1.2455E-02 -2.4000E-03 2.8300E-04 -1.8000E-05 5.0400E-07 0.0000E+00
Table 20
Table 21 provides the effective focal length f1 to f8 of each lens in embodiment 7, total effective focal length f of optical imaging lens, One lens E1 thing side S1 center is to imaging surface S19 effective pixel areas on distance TTL, imaging surface S19 on optical axis The half ImgH of the diagonal line length and full filed angle FOV of optical imaging lens.
f1(mm) 3.45 f7(mm) -21.98
f2(mm) -7.53 f8(mm) -11.95
f3(mm) 9.07 f(mm) 4.39
f4(mm) -35.22 TTL(mm) 5.39
f5(mm) -56.83 ImgH(mm) 3.40
f6(mm) -173.13 FOV(°) 74.0
Table 21
Figure 14 A show chromatic curve on the axle of the optical imaging lens of embodiment 7, and it represents the light warp of different wave length Deviateed by the converging focal point after camera lens.Figure 14 B show the astigmatism curve of the optical imaging lens of embodiment 7, and it represents meridian Curvature of the image and sagittal image surface bending.Figure 14 C show the distortion curve of the optical imaging lens of embodiment 7, and it represents different Distortion sizes values in the case of visual angle.Figure 14 D show the ratio chromatism, curve of the optical imaging lens of embodiment 7, and it is represented Light via the different image heights after camera lens on imaging surface deviation.Understood according to Figure 14 A to Figure 14 D, given by embodiment 7 Optical imaging lens can realize good image quality.
Embodiment 8
The optical imaging lens according to the embodiment of the present application 8 are described referring to Figure 15 to Figure 16 D.Figure 15 shows root According to the structural representation of the optical imaging lens of the embodiment of the present application 8.
As shown in figure 15, according to the optical imaging lens of the application illustrative embodiments along optical axis by thing side to image side according to Sequence includes:It is first lens E1, diaphragm STO, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th saturating Mirror E6, the 7th lens E7, the 8th lens E8, optical filter E9 and imaging surface S19.
First lens E1 has positive light coke, and its thing side S1 is convex surface, and image side surface S2 is concave surface.Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface.3rd lens E3 has positive light coke, and its thing side S5 is Convex surface, image side surface S6 are convex surface.4th lens E4 has negative power, and its thing side S7 is concave surface, and image side surface S8 is convex surface.The Five lens E5 have positive light coke, and its thing side S9 is concave surface, and image side surface S10 is convex surface.6th lens E6 has positive light coke, Its thing side S11 is convex surface, and image side surface S12 is concave surface.7th lens E7 has negative power, and its thing side S13 is convex surface, as Side S14 is concave surface.8th lens E8 has negative power, and its thing side S15 is convex surface, and image side surface S16 is concave surface.Optical filter E9 has thing side S17 and image side surface S18.Light from object sequentially passes through each surface S1 to S18 and is ultimately imaged and is being imaged On the S19 of face.
Table 22 shows surface type, radius of curvature, thickness, the material of each lens of the optical imaging lens of embodiment 8 And circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).
Table 22
As shown in Table 22, in embodiment 8, the thing side of any one lens in the first lens E1 to the 8th lens E8 It is aspherical with image side surface.Table 23 shows the high order term coefficient available for each aspherical mirror in embodiment 8, wherein, respectively Aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 8.5630E-04 5.5720E-03 -1.4890E-02 1.6988E-02 -4.5300E-03 -1.1620E-02 1.3380E-02 -6.0100E-03 9.8800E-04
S2 1.5933E-02 -1.4229E-01 4.7764E-01 -9.2747E-01 1.1531E+00 -9.3472E-01 4.7628E-01 -1.3829E-01 1.7434E-02
S3 -1.0073E-02 -1.4847E-01 5.5272E-01 -1.0512E+00 1.3039E+00 -1.0680E+00 5.5657E-01 -1.6661E-01 2.1763E-02
S4 -6.6346E-02 -1.9880E-02 3.9560E-02 2.3822E-01 -9.2562E-01 1.5878E+00 -1.4968E+00 7.5461E-01 -1.5958E-01
S5 -3.8461E-02 -6.0480E-02 -9.2990E-02 6.3803E-01 -1.6320E+00 2.4539E+00 -2.1889E+00 1.0644E+00 -2.1824E-01
S6 1.4135E-01 -7.8212E-01 8.3973E-01 4.8283E-01 -2.0304E+00 2.0938E+00 -1.0234E+00 2.1919E-01 -9.2900E-03
S7 1.4998E-01 -6.6357E-01 4.8319E-01 1.1608E+00 -3.0030E+00 3.1274E+00 -1.7714E+00 5.4746E-01 -7.4000E-02
S8 -8.3408E-02 8.1120E-03 2.1126E-01 -5.2408E-01 3.4898E-01 2.3214E-01 -4.7792E-01 2.6857E-01 -5.4080E-02
S9 -6.2586E-02 -1.4269E-01 5.5943E-01 -7.2521E-01 -2.9690E-02 1.0666E+00 -1.1854E+00 5.5803E-01 -1.0098E-01
S10 5.2107E-02 -3.3103E-01 7.5037E-01 -1.0933E+00 1.0502E+00 -6.5714E-01 2.5809E-01 -5.8870E-02 6.3020E-03
S11 9.8752E-02 -3.2810E-01 4.5329E-01 -4.3335E-01 2.5153E-01 -8.0210E-02 9.5750E-03 3.4500E-04 0.0000E+00
S12 9.9920E-02 -2.4781E-01 2.8870E-01 -2.3045E-01 1.1950E-01 -3.8700E-02 7.0980E-03 -5.6000E-04 0.0000E+00
S13 6.0715E-02 -1.6657E-01 1.4035E-01 -8.2940E-02 3.1086E-02 -7.0100E-03 8.6600E-04 -4.5000E-05 0.0000E+00
S14 4.3666E-02 -8.3640E-02 5.4356E-02 -2.4250E-02 7.1220E-03 -1.2600E-03 1.2000E-04 -4.6000E-06 0.0000E+00
S15 -1.9109E-01 9.1599E-02 -3.6550E-02 1.2555E-02 -2.9500E-03 4.1700E-04 -3.2000E-05 9.9500E-07 0.0000E+00
S16 -2.1943E-01 1.0543E-01 -4.3530E-02 1.2819E-02 -2.4700E-03 2.9300E-04 -1.9000E-05 5.3600E-07 0.0000E+00
Table 23
Table 24 provides the effective focal length f1 to f8 of each lens in embodiment 8, total effective focal length f of optical imaging lens, One lens E1 thing side S1 center is to imaging surface S19 effective pixel areas on distance TTL, imaging surface S19 on optical axis The half ImgH of the diagonal line length and full filed angle FOV of optical imaging lens.
f1(mm) 3.48 f7(mm) -18.12
f2(mm) -7.26 f8(mm) -9.87
f3(mm) 8.66 f(mm) 4.42
f4(mm) -21.96 TTL(mm) 5.43
f5(mm) 229.35 ImgH(mm) 3.40
f6(mm) 127.65 FOV(°) 73.6
Table 24
Figure 16 A show chromatic curve on the axle of the optical imaging lens of embodiment 8, and it represents the light warp of different wave length Deviateed by the converging focal point after camera lens.Figure 16 B show the astigmatism curve of the optical imaging lens of embodiment 8, and it represents meridian Curvature of the image and sagittal image surface bending.Figure 16 C show the distortion curve of the optical imaging lens of embodiment 8, and it represents different Distortion sizes values in the case of visual angle.Figure 16 D show the ratio chromatism, curve of the optical imaging lens of embodiment 8, and it is represented Light via the different image heights after camera lens on imaging surface deviation.Understood according to Figure 16 A to Figure 16 D, given by embodiment 8 Optical imaging lens can realize good image quality.
Embodiment 9
The optical imaging lens according to the embodiment of the present application 9 are described referring to Figure 17 to Figure 18 D.Figure 17 shows root According to the structural representation of the optical imaging lens of the embodiment of the present application 9.
As shown in figure 17, according to the optical imaging lens of the application illustrative embodiments along optical axis by thing side to image side according to Sequence includes:It is diaphragm STO, the first lens E1, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th saturating Mirror E6, the 7th lens E7, the 8th lens E8, optical filter E9 and imaging surface S19.
First lens E1 has positive light coke, and its thing side S1 is convex surface, and image side surface S2 is concave surface.Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface.3rd lens E3 has positive light coke, and its thing side S5 is Convex surface, image side surface S6 are convex surface.4th lens E4 has positive light coke, and its thing side S7 is concave surface, and image side surface S8 is convex surface.The Five lens E5 have negative power, and its thing side S9 is concave surface, and image side surface S10 is concave surface.6th lens E6 has positive light coke, Its thing side S11 is convex surface, and image side surface S12 is concave surface.7th lens E7 has negative power, and its thing side S13 is concave surface, as Side S14 is concave surface.8th lens E8 has negative power, and its thing side S15 is convex surface, and image side surface S16 is concave surface.Optical filter E9 has thing side S17 and image side surface S18.Light from object sequentially passes through each surface S1 to S18 and is ultimately imaged and is being imaged On the S19 of face.
Table 25 shows surface type, radius of curvature, thickness, the material of each lens of the optical imaging lens of embodiment 9 And circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).
Table 25
As shown in Table 25, in embodiment 9, the thing side of any one lens in the first lens E1 to the 8th lens E8 It is aspherical with image side surface.Table 26 shows the high order term coefficient available for each aspherical mirror in embodiment 9, wherein, respectively Aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 6.3336E-04 2.1776E-02 -9.5070E-02 2.9970E-01 -5.9352E-01 7.5934E-01 -6.0791E-01 2.7689E-01 -5.5060E-02
S2 -1.2822E-02 -9.3690E-03 2.9734E-01 -1.2707E+00 3.0727E+00 -4.5602E+00 4.0732E+00 -2.0060E+00 4.1780E-01
S3 -5.0933E-02 3.4336E-02 7.2497E-02 -1.4456E-01 1.6738E-01 -2.2480E-01 3.4018E-01 -2.8934E-01 9.6828E-02
S4 -9.1830E-02 -4.5857E-02 9.4846E-01 -5.2828E+00 1.7749E+01 -3.7178E+01 4.7381E+01 -3.3567E+01 1.0178E+01
S5 -3.1141E-02 -2.1757E-01 1.2043E+00 -6.7303E+00 2.2552E+01 -4.6913E+01 5.9242E+01 -4.1515E+01 1.2426E+01
S6 3.9748E-02 -2.1384E-01 7.6609E-01 -3.2787E+00 8.4701E+00 -1.3580E+01 1.3457E+01 -7.5138E+00 1.8052E+00
S9 -1.8679E-02 7.9287E-02 -5.5386E-01 1.9345E+00 -4.4686E+00 6.4060E+00 -5.4411E+00 2.5312E+00 -5.0668E-01
S10 -7.6829E-02 8.2879E-02 -2.2829E-01 6.2049E-01 -1.1130E+00 1.2423E+00 -7.9941E-01 2.6866E-01 -3.6490E-02
S11 -4.1761E-02 -5.9881E-02 3.4711E-02 -4.7600E-02 8.4006E-02 -8.2150E-02 3.9378E-02 -7.2400E-03 0.0000E+00
S12 4.4662E-02 -1.4064E-01 9.9308E-02 -5.5820E-02 3.2250E-02 -1.5250E-02 4.2170E-03 -4.8000E-04 0.0000E+00
S13 1.1753E-01 -2.4292E-01 2.1790E-01 -1.4978E-01 7.3680E-02 -2.3080E-02 4.0900E-03 -3.1000E-04 0.0000E+00
S14 4.6136E-02 -1.1560E-01 8.9463E-02 -4.3420E-02 1.3349E-02 -2.5000E-03 2.6000E-04 -1.2000E-05 0.0000E+00
S15 -1.3012E-01 1.2406E-02 2.6005E-02 -1.5710E-02 4.4050E-03 -6.8000E-04 5.4800E-05 -1.8000E-06 0.0000E+00
S16 -2.0713E-01 9.5513E-02 -3.6570E-02 9.6610E-03 -1.6400E-03 1.6800E-04 -9.3000E-06 2.1500E-07 0.0000E+00
Table 26
Table 27 provides the effective focal length f1 to f8 of each lens in embodiment 9, total effective focal length f of optical imaging lens, One lens E1 thing side S1 center is to imaging surface S19 effective pixel areas on distance TTL, imaging surface S19 on optical axis The half ImgH of the diagonal line length and full filed angle FOV of optical imaging lens.
f1(mm) 3.38 f7(mm) -11.23
f2(mm) -10.83 f8(mm) -10.51
f3(mm) 10.19 f(mm) 4.09
f4(mm) 107.65 TTL(mm) 4.87
f5(mm) -10.27 ImgH(mm) 3.37
f6(mm) 17.61 FOV(°) 77.0
Table 27
Figure 18 A show chromatic curve on the axle of the optical imaging lens of embodiment 9, and it represents the light warp of different wave length Deviateed by the converging focal point after camera lens.Figure 18 B show the astigmatism curve of the optical imaging lens of embodiment 9, and it represents meridian Curvature of the image and sagittal image surface bending.Figure 18 C show the distortion curve of the optical imaging lens of embodiment 9, and it represents different Distortion sizes values in the case of visual angle.Figure 18 D show the ratio chromatism, curve of the optical imaging lens of embodiment 9, and it is represented Light via the different image heights after camera lens on imaging surface deviation.Understood according to Figure 18 A to Figure 18 D, given by embodiment 9 Optical imaging lens can realize good image quality.
Embodiment 10
The optical imaging lens according to the embodiment of the present application 10 are described referring to Figure 19 to Figure 20 D.Figure 19 is shown According to the structural representation of the optical imaging lens of the embodiment of the present application 10.
As shown in figure 19, according to the optical imaging lens of the application illustrative embodiments along optical axis by thing side to image side according to Sequence includes:It is diaphragm STO, the first lens E1, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th saturating Mirror E6, the 7th lens E7, the 8th lens E8, optical filter E9 and imaging surface S19.
First lens E1 has positive light coke, and its thing side S1 is convex surface, and image side surface S2 is concave surface.Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface.3rd lens E3 has positive light coke, and its thing side S5 is Convex surface, image side surface S6 are convex surface.4th lens E4 has positive light coke, and its thing side S7 is concave surface, and image side surface S8 is convex surface.The Five lens E5 have negative power, and its thing side S9 is concave surface, and image side surface S10 is concave surface.6th lens E6 has positive light coke, Its thing side S11 is convex surface, and image side surface S12 is convex surface.7th lens E7 has negative power, and its thing side S13 is concave surface, as Side S14 is concave surface.8th lens E8 has negative power, and its thing side S15 is convex surface, and image side surface S16 is concave surface.Optical filter E9 has thing side S17 and image side surface S18.Light from object sequentially passes through each surface S1 to S18 and is ultimately imaged and is being imaged On the S19 of face.
Table 28 shows surface type, radius of curvature, thickness, the material of each lens of the optical imaging lens of embodiment 10 And circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).
Table 28
As shown in Table 28, in embodiment 10, the thing side of any one lens in the first lens E1 to the 8th lens E8 Face and image side surface are aspherical.Table 29 shows the high order term coefficient available for each aspherical mirror in embodiment 10, wherein, Each aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.
Table 29
Table 30 provides the effective focal length f1 to f8 of each lens in embodiment 10, total effective focal length f of optical imaging lens, One lens E1 thing side S1 center is to imaging surface S19 effective pixel areas on distance TTL, imaging surface S19 on optical axis The half ImgH of the diagonal line length and full filed angle FOV of optical imaging lens.
f1(mm) 3.37 f7(mm) -9.50
f2(mm) -9.90 f8(mm) -10.37
f3(mm) 10.35 f(mm) 4.16
f4(mm) 69.99 TTL(mm) 4.94
f5(mm) -9.67 ImgH(mm) 3.23
f6(mm) 13.47 FOV(°) 73.4
Table 30
Figure 20 A show chromatic curve on the axle of the optical imaging lens of embodiment 10, and it represents the light of different wave length Deviate via the converging focal point after camera lens.Figure 20 B show the astigmatism curve of the optical imaging lens of embodiment 10, and it represents son Noon curvature of the image and sagittal image surface bending.Figure 20 C show the distortion curve of the optical imaging lens of embodiment 10, and it is represented not With the distortion sizes values in the case of visual angle.Figure 20 D show the ratio chromatism, curve of the optical imaging lens of embodiment 10, its table Show deviation of the light via the different image heights after camera lens on imaging surface.Understood according to Figure 20 A to Figure 20 D, the institute of embodiment 10 The optical imaging lens provided can realize good image quality.
Embodiment 11
The optical imaging lens according to the embodiment of the present application 11 are described referring to Figure 21 to Figure 22 D.Figure 21 is shown According to the structural representation of the optical imaging lens of the embodiment of the present application 11.
As shown in figure 21, according to the optical imaging lens of the application illustrative embodiments along optical axis by thing side to image side according to Sequence includes:It is first lens E1, diaphragm STO, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th saturating Mirror E6, the 7th lens E7, the 8th lens E8, optical filter E9 and imaging surface S19.
First lens E1 has positive light coke, and its thing side S1 is convex surface, and image side surface S2 is concave surface.Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface.3rd lens E3 has positive light coke, and its thing side S5 is Convex surface, image side surface S6 are convex surface.4th lens E4 has negative power, and its thing side S7 is concave surface, and image side surface S8 is convex surface.The Five lens E5 have negative power, and its thing side S9 is concave surface, and image side surface S10 is convex surface.6th lens E6 has positive light coke, Its thing side S11 is convex surface, and image side surface S12 is concave surface.7th lens E7 has positive light coke, and its thing side S13 is convex surface, as Side S14 is concave surface.8th lens E8 has negative power, and its thing side S15 is convex surface, and image side surface S16 is concave surface.Optical filter E9 has thing side S17 and image side surface S18.Light from object sequentially passes through each surface S1 to S18 and is ultimately imaged and is being imaged On the S19 of face.
Table 31 shows surface type, radius of curvature, thickness, the material of each lens of the optical imaging lens of embodiment 11 And circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).
Table 31
As shown in Table 31, in embodiment 11, the thing side of any one lens in the first lens E1 to the 8th lens E8 Face and image side surface are aspherical.Table 32 shows the high order term coefficient available for each aspherical mirror in embodiment 11, wherein, Each aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -5.2706E-03 2.8474E-02 -8.1630E-02 1.3249E-01 -1.3360E-01 8.3298E-02 -3.1300E-02 6.3970E-03 -5.4000E-04
S2 3.6694E-02 -1.4793E-01 3.0180E-01 -3.9320E-01 3.3280E-01 -1.8294E-01 6.2676E-02 -1.2110E-02 1.0050E-03
S3 3.4286E-02 -2.1268E-01 4.7118E-01 -6.6025E-01 6.4417E-01 -4.2959E-01 1.8622E-01 -4.6930E-02 5.1830E-03
S4 -4.4905E-02 -1.1634E-01 3.3003E-01 -5.4214E-01 5.3926E-01 -2.5384E-01 -1.7040E-02 6.7369E-02 -1.9330E-02
S5 -2.8450E-02 1.1177E-02 -2.8739E-01 9.2935E-01 -1.7290E+00 2.0054E+00 -1.4168E+00 5.5717E-01 -9.3830E-02
S6 7.5756E-03 -1.7249E-01 -8.9470E-02 7.8877E-01 -1.2121E+00 9.3360E-01 -3.9622E-01 8.6643E-02 -7.3100E-03
S7 1.8016E-03 -1.2502E-01 -1.9415E-01 9.8673E-01 -1.5301E+00 1.2749E+00 -6.1470E-01 1.6392E-01 -1.8690E-02
S8 -3.4900E-02 -5.1770E-02 1.2243E-01 -1.5273E-01 -8.1400E-02 3.4824E-01 -3.1239E-01 1.2127E-01 -1.7740E-02
S9 -1.4289E-02 -1.3265E-01 1.3800E-04 7.0894E-01 -1.8140E+00 2.2440E+00 -1.5072E+00 5.2552E-01 -7.4580E-02
S10 6.0572E-02 -3.2977E-01 5.7892E-01 -6.8772E-01 5.2672E-01 -2.1495E-01 2.2372E-02 1.1865E-02 -2.8800E-03
S11 6.9953E-02 -1.9684E-01 2.7103E-01 -2.8396E-01 1.8401E-01 -6.8340E-02 1.2488E-02 -8.2000E-04 0.0000E+00
S12 -3.8418E-03 -7.5850E-02 1.6492E-01 -2.0229E-01 1.3573E-01 -5.1770E-02 1.0527E-02 -8.9000E-04 0.0000E+00
S13 1.5100E-03 -9.9230E-02 9.8889E-02 -6.1790E-02 1.9899E-02 -2.8200E-03 3.2100E-05 2.0300E-05 0.0000E+00
S14 3.5272E-02 -8.2460E-02 5.9140E-02 -2.6870E-02 7.4830E-03 -1.2300E-03 1.0800E-04 -3.9000E-06 0.0000E+00
S15 -1.6444E-01 2.8983E-02 1.3464E-02 -8.5000E-03 2.1560E-03 -3.0000E-04 2.1600E-05 -6.6000E-07 0.0000E+00
S16 -2.0950E-01 9.2411E-02 -3.3790E-02 8.9570E-03 -1.5600E-03 1.6600E-04 -9.8000E-06 2.4400E-07 0.0000E+00
Table 32
Table 33 provides the effective focal length f1 to f8 of each lens in embodiment 11, total effective focal length f of optical imaging lens, One lens E1 thing side S1 center is to imaging surface S19 effective pixel areas on distance TTL, imaging surface S19 on optical axis The half ImgH of the diagonal line length and full filed angle FOV of optical imaging lens.
Table 33
Figure 22 A show chromatic curve on the axle of the optical imaging lens of embodiment 11, and it represents the light of different wave length Deviate via the converging focal point after camera lens.Figure 22 B show the astigmatism curve of the optical imaging lens of embodiment 11, and it represents son Noon curvature of the image and sagittal image surface bending.Figure 22 C show the distortion curve of the optical imaging lens of embodiment 11, and it is represented not With the distortion sizes values in the case of visual angle.Figure 22 D show the ratio chromatism, curve of the optical imaging lens of embodiment 11, its table Show deviation of the light via the different image heights after camera lens on imaging surface.Understood according to Figure 22 A to Figure 22 D, the institute of embodiment 11 The optical imaging lens provided can realize good image quality.
Embodiment 12
The optical imaging lens according to the embodiment of the present application 12 are described referring to Figure 23 to Figure 24 D.Figure 23 is shown According to the structural representation of the optical imaging lens of the embodiment of the present application 12.
As shown in figure 23, according to the optical imaging lens of the application illustrative embodiments along optical axis by thing side to image side according to Sequence includes:It is first lens E1, diaphragm STO, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th saturating Mirror E6, the 7th lens E7, the 8th lens E8, optical filter E9 and imaging surface S19.
First lens E1 has positive light coke, and its thing side S1 is convex surface, and image side surface S2 is concave surface.Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface.3rd lens E3 has positive light coke, and its thing side S5 is Convex surface, image side surface S6 are convex surface.4th lens E4 has negative power, and its thing side S7 is concave surface, and image side surface S8 is convex surface.The Five lens E5 have positive light coke, and its thing side S9 is concave surface, and image side surface S10 is convex surface.6th lens E6 has positive light coke, Its thing side S11 is convex surface, and image side surface S12 is concave surface.7th lens E7 has positive light coke, and its thing side S13 is convex surface, as Side S14 is concave surface.8th lens E8 has negative power, and its thing side S15 is convex surface, and image side surface S16 is concave surface.Optical filter E9 has thing side S17 and image side surface S18.Light from object sequentially passes through each surface S1 to S18 and is ultimately imaged and is being imaged On the S19 of face.
Table 34 shows surface type, radius of curvature, thickness, the material of each lens of the optical imaging lens of embodiment 12 And circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).
Table 34
As shown in Table 34, in embodiment 12, the thing side of any one lens in the first lens E1 to the 8th lens E8 Face and image side surface are aspherical.Table 35 shows the high order term coefficient available for each aspherical mirror in embodiment 12, wherein, Each aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.
Table 35
Table 36 provides the effective focal length f1 to f8 of each lens in embodiment 12, total effective focal length f of optical imaging lens, One lens E1 thing side S1 center is to imaging surface S19 effective pixel areas on distance TTL, imaging surface S19 on optical axis The half ImgH of the diagonal line length and full filed angle FOV of optical imaging lens.
f1(mm) 3.93 f7(mm) 31.56
f2(mm) -7.91 f8(mm) -5.00
f3(mm) 8.19 f(mm) 4.45
f4(mm) -23.43 TTL(mm) 5.61
f5(mm) 255.79 ImgH(mm) 3.57
f6(mm) 60.10 FOV(°) 75.9
Table 36
Figure 24 A show chromatic curve on the axle of the optical imaging lens of embodiment 12, and it represents the light of different wave length Deviate via the converging focal point after camera lens.Figure 24 B show the astigmatism curve of the optical imaging lens of embodiment 12, and it represents son Noon curvature of the image and sagittal image surface bending.Figure 24 C show the distortion curve of the optical imaging lens of embodiment 12, and it is represented not With the distortion sizes values in the case of visual angle.Figure 24 D show the ratio chromatism, curve of the optical imaging lens of embodiment 12, its table Show deviation of the light via the different image heights after camera lens on imaging surface.Understood according to Figure 24 A to Figure 24 D, the institute of embodiment 12 The optical imaging lens provided can realize good image quality.
Embodiment 13
The optical imaging lens according to the embodiment of the present application 13 are described referring to Figure 25 to Figure 26 D.Figure 25 is shown According to the structural representation of the optical imaging lens of the embodiment of the present application 13.
As shown in figure 25, according to the optical imaging lens of the application illustrative embodiments along optical axis by thing side to image side according to Sequence includes:It is first lens E1, diaphragm STO, the second lens E2, the 3rd lens E3, the 4th lens E4, the 5th lens E5, the 6th saturating Mirror E6, the 7th lens E7, the 8th lens E8, optical filter E9 and imaging surface S19.
First lens E1 has positive light coke, and its thing side S1 is convex surface, and image side surface S2 is convex surface.Second lens E2 has Negative power, its thing side S3 are convex surface, and image side surface S4 is concave surface.3rd lens E3 has positive light coke, and its thing side S5 is Convex surface, image side surface S6 are convex surface.4th lens E4 has negative power, and its thing side S7 is concave surface, and image side surface S8 is convex surface.The Five lens E5 have positive light coke, and its thing side S9 is concave surface, and image side surface S10 is convex surface.6th lens E6 has negative power, Its thing side S11 is convex surface, and image side surface S12 is concave surface.7th lens E7 has negative power, and its thing side S13 is convex surface, as Side S14 is concave surface.8th lens E8 has negative power, and its thing side S15 is convex surface, and image side surface S16 is concave surface.Optical filter E9 has thing side S17 and image side surface S18.Light from object sequentially passes through each surface S1 to S18 and is ultimately imaged and is being imaged On the S19 of face.
Table 37 shows surface type, radius of curvature, thickness, the material of each lens of the optical imaging lens of embodiment 13 And circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).
Table 37
As shown in Table 37, in embodiment 13, the thing side of any one lens in the first lens E1 to the 8th lens E8 Face and image side surface are aspherical.Table 38 shows the high order term coefficient available for each aspherical mirror in embodiment 13, wherein, Each aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.3555E-03 1.1690E-04 -8.4000E-05 6.9400E-04 -1.8600E-03 8.4400E-04 3.6200E-05 -2.8000E-04 3.2100E-05
S2 -2.1921E-02 6.3546E-02 -9.8830E-02 9.8506E-02 -6.6550E-02 2.8728E-02 -8.3800E-03 1.9320E-03 -3.2000E-04
S3 -5.7573E-02 1.0311E-01 -1.1708E-01 8.4318E-02 1.6019E-02 -9.9670E-02 9.6328E-02 -4.2020E-02 7.1970E-03
S4 -7.6695E-02 4.9447E-02 1.5037E-02 -1.7507E-01 4.1343E-01 -5.0574E-01 3.4232E-01 -1.1304E-01 1.1858E-02
S5 -4.5059E-02 -5.8955E-02 6.2542E-02 -2.0200E-03 -2.7721E-01 6.4396E-01 -6.8690E-01 3.6896E-01 -8.1330E-02
S6 1.6106E-01 -8.6954E-01 9.6411E-01 7.0240E-01 -3.2258E+00 4.1372E+00 -2.7751E+00 9.8118E-01 -1.4301E-01
S7 1.9380E-01 -7.4959E-01 2.3952E-01 2.6056E+00 -6.0068E+00 6.6374E+00 -4.1956E+00 1.4593E+00 -2.1656E-01
S8 -2.3619E-01 8.5346E-01 -2.2331E+00 3.7525E+00 -4.1172E+00 2.9356E+00 -1.3262E+00 3.4507E-01 -3.8470E-02
S9 -2.7497E-01 9.9765E-01 -2.0927E+00 2.6505E+00 -2.1417E+00 1.1228E+00 -3.9467E-01 9.5156E-02 -1.2920E-02
S10 -7.5114E-02 3.6968E-01 -7.7497E-01 8.8641E-01 -6.0000E-01 2.3274E-01 -4.2760E-02 3.4900E-04 7.2700E-04
S11 -3.7039E-02 6.0823E-02 -2.6042E-01 4.2275E-01 -4.2854E-01 2.6648E-01 -9.3600E-02 1.4028E-02 0.0000E+00
S12 7.1172E-02 -1.6636E-01 1.5744E-01 -1.0420E-01 4.6410E-02 -1.3060E-02 2.0820E-03 -1.4000E-04 0.0000E+00
S13 8.5354E-02 -1.9226E-01 1.8054E-01 -1.1766E-01 4.9711E-02 -1.2580E-02 1.7250E-03 -9.9000E-05 0.0000E+00
S14 3.6664E-02 -8.5386E-02 6.1173E-02 -2.8200E-02 8.0900E-03 -1.3500E-03 1.2000E-04 -4.3000E-06 0.0000E+00
S15 -1.2752E-01 1.2634E-02 1.8708E-02 -1.0670E-02 2.8570E-03 -4.3000E-04 3.4200E-05 -1.1000E-06 0.0000E+00
S16 -1.9632E-01 8.2797E-02 -2.9400E-02 7.6610E-03 -1.3300E-03 1.4200E-04 -8.3000E-06 2.0700E-07 0.0000E+00
Table 38
Table 39 provides the effective focal length f1 to f8 of each lens in embodiment 13, total effective focal length f of optical imaging lens, One lens E1 thing side S1 center is to imaging surface S19 effective pixel areas on distance TTL, imaging surface S19 on optical axis The half ImgH of the diagonal line length and full filed angle FOV of optical imaging lens.
Table 39
To sum up, embodiment 1 to embodiment 13 meets the relation shown in table 40 respectively.
Table 40
The application also provides a kind of imaging device, and its electronics photo-sensitive cell can be photosensitive coupling element (CCD) or complementation Property matal-oxide semiconductor element (CMOS).Imaging device can be such as digital camera independent imaging equipment or The image-forming module being integrated on the mobile electronic devices such as mobile phone.The imaging device is equipped with optical imaging lens described above Head.
Above description is only the preferred embodiment of the application and the explanation to institute's application technology principle.People in the art Member should be appreciated that invention scope involved in the application, however it is not limited to the technology that the particular combination of above-mentioned technical characteristic forms Scheme, while should also cover in the case where not departing from the inventive concept, carried out by above-mentioned technical characteristic or its equivalent feature The other technical schemes for being combined and being formed.Such as features described above has similar work(with (but not limited to) disclosed herein The technical scheme that the technical characteristic of energy is replaced mutually and formed.

Claims (15)

1. optical imaging lens, sequentially included by thing side to image side along optical axis:First lens, the second lens, the 3rd lens, Four lens, the 5th lens, the 6th lens, the 7th lens and the 8th lens, it is characterised in that
First lens have positive light coke, and its thing side is convex surface;
Second lens have negative power;
3rd lens have positive light coke;
4th lens have positive light coke or negative power, and its thing side is concave surface, and image side surface is convex surface;
5th lens have positive light coke or negative power;
6th lens have positive light coke or negative power, and its thing side is convex surface;
7th lens have positive light coke or negative power;And
8th lens have negative power.
2. optical imaging lens according to claim 1, it is characterised in that total effective focal length of the optical imaging lens F and the optical imaging lens Entry pupil diameters EPD meet f/EPD≤2.0.
3. optical imaging lens according to claim 1, it is characterised in that the center of the thing side of first lens is extremely Distance TTL of the imaging surface of the optical imaging lens on optical axis and valid pixel on the imaging surface of the optical imaging lens The half ImgH of region diagonal line length meets TTL/ImgH≤1.65.
4. optical imaging lens according to claim 1, it is characterised in that the full filed angle of the optical imaging lens FOV meets 70 °≤FOV≤81 °.
5. optical imaging lens according to any one of claim 1 to 4, it is characterised in that first lens have The total effective focal length f for imitating focal length f1 and the optical imaging lens meets 0.5 < f1/f < 1.0.
6. optical imaging lens according to any one of claim 1 to 4, it is characterised in that second lens have The total effective focal length f for imitating focal length f2 and the optical imaging lens meets -3.5≤f2/f≤- 1.5.
7. optical imaging lens according to any one of claim 1 to 4, it is characterised in that the 3rd lens have The total effective focal length f for imitating focal length f3 and the optical imaging lens meets 1.5≤f3/f≤3.0.
8. optical imaging lens according to any one of claim 1 to 4, it is characterised in that the 8th lens have The total effective focal length f for imitating focal length f8 and the optical imaging lens meets -5.0≤f8/f≤- 1.0.
9. optical imaging lens according to any one of claim 1 to 4, it is characterised in that the thing of second lens The radius of curvature R 3 of side and the radius of curvature R 4 of the image side surface of second lens meet 1.5≤R3/R4≤3.0.
10. optical imaging lens according to any one of claim 1 to 4, it is characterised in that the thing of first lens The radius of curvature R 1 of side and the radius of curvature R 6 of the image side surface of the 3rd lens meet -0.5 < R1/R6 < 0.
11. optical imaging lens according to any one of claim 1 to 4, it is characterised in that the 3rd lens are in institute The center thickness CT3 stated on optical axis meets 1.0 < CT3/CT4 with the 4th lens in the center thickness CT4 on the optical axis < 2.5.
12. optical imaging lens according to any one of claim 1 to 4, it is characterised in that the thing of the 5th lens The radius of curvature R 9 of side and the radius of curvature R 11 of the thing side of the 6th lens meet -2.5 < R9/R11 < 0.
13. optical imaging lens according to any one of claim 1 to 4, it is characterised in that the thing of the 8th lens The radius of curvature R 15 of side and the radius of curvature R 16 of the image side surface of the 8th lens meet (R15-R16)/(R15+R16) < 1.0。
14. optical imaging lens according to any one of claim 1 to 4, it is characterised in that first lens are in institute The center thickness CT1 stated on optical axis meets 2.0 < CT1/CT2 with second lens in the center thickness CT2 on the optical axis < 4.0.
15. optical imaging lens, sequentially included by thing side to image side along optical axis:First lens, the second lens, the 3rd lens, 4th lens, the 5th lens, the 6th lens, the 7th lens and the 8th lens, it is characterised in that
First lens have positive light coke, and its thing side is convex surface;
Second lens have negative power;
3rd lens have positive light coke;
4th lens, the 5th lens and the 7th lens are respectively provided with positive light coke or negative power;
6th lens have positive light coke or negative power, and its thing side is convex surface;
8th lens have negative power;
Wherein, total effective focal length f of the optical imaging lens and Entry pupil diameters EPD of the optical imaging lens meets f/ EPD≤2.0。
CN201711172644.9A 2017-11-22 2017-11-22 Optical imaging lens Active CN107741630B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201711172644.9A CN107741630B (en) 2017-11-22 2017-11-22 Optical imaging lens
PCT/CN2018/100480 WO2019100768A1 (en) 2017-11-22 2018-08-14 Optical imaging lens
US16/644,965 US11662555B2 (en) 2017-11-22 2018-08-14 Optical imaging lens including eight lenses of +−++−+−−, +−++−−+−, +−++−−−−, +−++−++−, +−+−−+−−, +−+−−−−−, +−+−++−− +−+−−++−, +−+−+++− or +−+−+−−− refractive powers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711172644.9A CN107741630B (en) 2017-11-22 2017-11-22 Optical imaging lens

Publications (2)

Publication Number Publication Date
CN107741630A true CN107741630A (en) 2018-02-27
CN107741630B CN107741630B (en) 2020-04-21

Family

ID=61239130

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711172644.9A Active CN107741630B (en) 2017-11-22 2017-11-22 Optical imaging lens

Country Status (1)

Country Link
CN (1) CN107741630B (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445610A (en) * 2018-06-05 2018-08-24 浙江舜宇光学有限公司 Optical imagery eyeglass group
CN108535843A (en) * 2018-05-02 2018-09-14 浙江舜宇光学有限公司 Optical imaging system
CN108646394A (en) * 2018-07-26 2018-10-12 浙江舜宇光学有限公司 Optical imaging lens
CN108919464A (en) * 2018-08-06 2018-11-30 浙江舜宇光学有限公司 Optical imagery eyeglass group
CN109343203A (en) * 2018-11-27 2019-02-15 浙江舜宇光学有限公司 Optical imaging lens group
CN109375349A (en) * 2018-12-25 2019-02-22 浙江舜宇光学有限公司 Imaging lens
WO2019100768A1 (en) * 2017-11-22 2019-05-31 浙江舜宇光学有限公司 Optical imaging lens
WO2019105139A1 (en) * 2017-11-29 2019-06-06 浙江舜宇光学有限公司 Optical imaging lens
CN110646917A (en) * 2018-06-26 2020-01-03 三星电机株式会社 Optical imaging system
CN110850559A (en) * 2019-12-20 2020-02-28 玉晶光电(厦门)有限公司 Optical imaging lens
CN110879459A (en) * 2019-12-05 2020-03-13 浙江舜宇光学有限公司 Optical imaging lens
CN110908083A (en) * 2019-12-23 2020-03-24 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN110967813A (en) * 2019-12-13 2020-04-07 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111007637A (en) * 2019-12-23 2020-04-14 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111007628A (en) * 2019-12-23 2020-04-14 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111025554A (en) * 2019-12-23 2020-04-17 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111025534A (en) * 2019-12-13 2020-04-17 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111061036A (en) * 2019-12-13 2020-04-24 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111061038A (en) * 2019-12-13 2020-04-24 瑞声通讯科技(常州)有限公司 Image pickup optical lens
WO2020199573A1 (en) * 2019-04-02 2020-10-08 浙江舜宇光学有限公司 Camera lens group
CN111965800A (en) * 2020-10-21 2020-11-20 常州市瑞泰光电有限公司 Image pickup optical lens
CN112083550A (en) * 2019-06-12 2020-12-15 大立光电股份有限公司 Photographing lens assembly, image capturing device and electronic device
CN112394477A (en) * 2019-08-16 2021-02-23 康达智株式会社 Camera lens
JP2021033299A (en) * 2019-08-19 2021-03-01 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens
WO2021114236A1 (en) * 2019-12-13 2021-06-17 诚瑞光学(常州)股份有限公司 Photographing optical lens
WO2021114238A1 (en) * 2019-12-13 2021-06-17 诚瑞光学(常州)股份有限公司 Camera optical lens
WO2021114240A1 (en) * 2019-12-13 2021-06-17 诚瑞光学(常州)股份有限公司 Camera optical lens
WO2021114233A1 (en) * 2019-12-13 2021-06-17 诚瑞光学(常州)股份有限公司 Photographing optical lens
WO2021127820A1 (en) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 Camera optical lens
WO2021127876A1 (en) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 Camera optical lens
WO2021127879A1 (en) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 Camera optical lens
CN113267879A (en) * 2021-05-27 2021-08-17 浙江舜宇光学有限公司 Optical imaging lens
CN113433656A (en) * 2021-06-11 2021-09-24 江西晶超光学有限公司 Imaging system, lens module and electronic equipment
US11137576B2 (en) 2018-07-04 2021-10-05 Largan Precision Co., Ltd. Photographing optical lens assembly, imaging apparatus and electronic device
CN113484982A (en) * 2021-06-16 2021-10-08 江西晶超光学有限公司 Optical lens, camera module and electronic equipment
CN113552697A (en) * 2021-07-19 2021-10-26 江西晶超光学有限公司 Optical lens, camera module and electronic equipment
CN113589483A (en) * 2021-08-03 2021-11-02 浙江舜宇光学有限公司 Optical imaging lens
CN113835197A (en) * 2021-09-29 2021-12-24 浙江舜宇光学有限公司 Optical imaging lens
US11262540B2 (en) 2018-10-24 2022-03-01 Largan Precision Co., Ltd. Imaging lens system, image capturing unit and electronic device
CN114137693A (en) * 2019-10-09 2022-03-04 浙江舜宇光学有限公司 Optical imaging lens
TWI760780B (en) * 2020-06-22 2022-04-11 大陸商玉晶光電(廈門)有限公司 Optical imaging lens
WO2022082928A1 (en) * 2020-10-21 2022-04-28 诚瑞光学(深圳)有限公司 Optical camera lens
CN114578530A (en) * 2022-05-06 2022-06-03 江西联益光学有限公司 Optical lens
CN114740593A (en) * 2022-03-07 2022-07-12 江西晶超光学有限公司 Optical lens, camera module and electronic equipment
KR20220132515A (en) * 2019-11-21 2022-09-30 삼성전기주식회사 Imaging Lens System
CN115202007A (en) * 2021-08-04 2022-10-18 三星电机株式会社 Optical imaging system
WO2023197253A1 (en) * 2022-04-14 2023-10-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Imaging lens assembly, camera module and imaging device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212597A (en) * 1990-10-25 1993-05-18 Fuji Photo Optical Co., Ltd. Projection lens system for projectors
US5642229A (en) * 1993-06-15 1997-06-24 Mitsubishi Denki Kabushiki Kaisha Projection lens unit
CN106443986A (en) * 2015-08-11 2017-02-22 大立光电股份有限公司 Image capturing lens assembly, image capturing device and electronic device
CN106896473A (en) * 2015-12-21 2017-06-27 康达智株式会社 Pick-up lens
CN107085285A (en) * 2017-07-05 2017-08-22 浙江舜宇光学有限公司 Optical imaging lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212597A (en) * 1990-10-25 1993-05-18 Fuji Photo Optical Co., Ltd. Projection lens system for projectors
US5642229A (en) * 1993-06-15 1997-06-24 Mitsubishi Denki Kabushiki Kaisha Projection lens unit
CN106443986A (en) * 2015-08-11 2017-02-22 大立光电股份有限公司 Image capturing lens assembly, image capturing device and electronic device
CN106896473A (en) * 2015-12-21 2017-06-27 康达智株式会社 Pick-up lens
CN107085285A (en) * 2017-07-05 2017-08-22 浙江舜宇光学有限公司 Optical imaging lens

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11662555B2 (en) 2017-11-22 2023-05-30 Zhejiang Sunny Optical, Co., Ltd Optical imaging lens including eight lenses of +−++−+−−, +−++−−+−, +−++−−−−, +−++−++−, +−+−−+−−, +−+−−−−−, +−+−++−− +−+−−++−, +−+−+++− or +−+−+−−− refractive powers
WO2019100768A1 (en) * 2017-11-22 2019-05-31 浙江舜宇光学有限公司 Optical imaging lens
WO2019105139A1 (en) * 2017-11-29 2019-06-06 浙江舜宇光学有限公司 Optical imaging lens
WO2019210672A1 (en) * 2018-05-02 2019-11-07 浙江舜宇光学有限公司 Optical imaging system
CN108535843A (en) * 2018-05-02 2018-09-14 浙江舜宇光学有限公司 Optical imaging system
US11307387B2 (en) 2018-05-02 2022-04-19 Zhejiang Sunny Optical Co., Ltd Optical imaging system including seven lenses of +−++−+−, +−+−++− or +−+−+−− refractive powers
CN108535843B (en) * 2018-05-02 2019-10-11 浙江舜宇光学有限公司 Optical imaging system
CN108445610A (en) * 2018-06-05 2018-08-24 浙江舜宇光学有限公司 Optical imagery eyeglass group
CN108445610B (en) * 2018-06-05 2023-05-26 浙江舜宇光学有限公司 Optical imaging lens group
US11340424B2 (en) 2018-06-26 2022-05-24 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN110646917A (en) * 2018-06-26 2020-01-03 三星电机株式会社 Optical imaging system
CN115061266A (en) * 2018-06-26 2022-09-16 三星电机株式会社 Optical imaging system
US11994749B2 (en) 2018-06-26 2024-05-28 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US11668905B2 (en) 2018-06-26 2023-06-06 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US11137576B2 (en) 2018-07-04 2021-10-05 Largan Precision Co., Ltd. Photographing optical lens assembly, imaging apparatus and electronic device
US11927729B2 (en) 2018-07-04 2024-03-12 Largan Precision Co., Ltd. Photographing optical lens assembly, imaging apparatus and electronic device
CN108646394B (en) * 2018-07-26 2023-04-28 浙江舜宇光学有限公司 Optical imaging lens
CN108646394A (en) * 2018-07-26 2018-10-12 浙江舜宇光学有限公司 Optical imaging lens
WO2020029620A1 (en) * 2018-08-06 2020-02-13 浙江舜宇光学有限公司 Optical imaging lens set
CN108919464B (en) * 2018-08-06 2023-08-04 浙江舜宇光学有限公司 Optical imaging lens group
CN108919464A (en) * 2018-08-06 2018-11-30 浙江舜宇光学有限公司 Optical imagery eyeglass group
US11262540B2 (en) 2018-10-24 2022-03-01 Largan Precision Co., Ltd. Imaging lens system, image capturing unit and electronic device
US11933947B2 (en) 2018-10-24 2024-03-19 Largan Precision Co., Ltd. Imaging lens system, image capturing unit and electronic device
CN109343203A (en) * 2018-11-27 2019-02-15 浙江舜宇光学有限公司 Optical imaging lens group
CN109375349B (en) * 2018-12-25 2024-05-14 浙江舜宇光学有限公司 Imaging lens
CN109375349A (en) * 2018-12-25 2019-02-22 浙江舜宇光学有限公司 Imaging lens
WO2020199573A1 (en) * 2019-04-02 2020-10-08 浙江舜宇光学有限公司 Camera lens group
US11774714B2 (en) 2019-06-12 2023-10-03 Largan Precision Co., Ltd. Photographing lens assembly, image capturing unit and electronic device including eight lenses of +−++−−+−, +−−++−+−, +−−+−−+−, +−−−+−+− or +−−+−++− refractive powers
CN114791662A (en) * 2019-06-12 2022-07-26 大立光电股份有限公司 Photographing lens assembly
US11112580B2 (en) 2019-06-12 2021-09-07 Largan Precision Co., Ltd. Photographing lens assembly comprising eight lenses of +−++−−+−, +−−++−+−, +−−+−−+−, +−−−+−+− or +−−+−++− refractive powers, image capturing unit and electronic device
CN112083550A (en) * 2019-06-12 2020-12-15 大立光电股份有限公司 Photographing lens assembly, image capturing device and electronic device
CN114839747A (en) * 2019-06-12 2022-08-02 大立光电股份有限公司 Photographic lens group
CN114967058A (en) * 2019-06-12 2022-08-30 大立光电股份有限公司 Photographing lens assembly, image capturing device and electronic device
CN113640955A (en) * 2019-08-16 2021-11-12 康达智株式会社 Camera lens
CN113640955B (en) * 2019-08-16 2023-05-16 东京晨美光学电子株式会社 Image pickup lens
CN112394477A (en) * 2019-08-16 2021-02-23 康达智株式会社 Camera lens
JP2021033299A (en) * 2019-08-19 2021-03-01 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens
CN114137693A (en) * 2019-10-09 2022-03-04 浙江舜宇光学有限公司 Optical imaging lens
CN114137693B (en) * 2019-10-09 2024-03-29 浙江舜宇光学有限公司 Optical imaging lens
KR20220132515A (en) * 2019-11-21 2022-09-30 삼성전기주식회사 Imaging Lens System
KR102620544B1 (en) * 2019-11-21 2024-01-03 삼성전기주식회사 Imaging Lens System
US11782241B2 (en) 2019-11-21 2023-10-10 Samsung Electro-Mechanics Co., Ltd. Imaging lens system including eight lenses of ++−+−−+−, ++−+−+−− or ++−+−++− refractive powers
US11947187B2 (en) 2019-12-05 2024-04-02 Zhejiang Sunny Optical Co., Ltd Optical imaging lens assembly
CN110879459B (en) * 2019-12-05 2022-01-07 浙江舜宇光学有限公司 Optical imaging lens
CN110879459A (en) * 2019-12-05 2020-03-13 浙江舜宇光学有限公司 Optical imaging lens
US20210173185A1 (en) * 2019-12-05 2021-06-10 Zhejiang Sunny Optical Co., Ltd Optical imaging lens assembly
CN111061038A (en) * 2019-12-13 2020-04-24 瑞声通讯科技(常州)有限公司 Image pickup optical lens
WO2021114236A1 (en) * 2019-12-13 2021-06-17 诚瑞光学(常州)股份有限公司 Photographing optical lens
CN111061036A (en) * 2019-12-13 2020-04-24 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN110967813B (en) * 2019-12-13 2022-01-07 诚瑞光学(常州)股份有限公司 Image pickup optical lens
CN111061036B (en) * 2019-12-13 2021-02-19 诚瑞光学(常州)股份有限公司 Image pickup optical lens
CN111025534B (en) * 2019-12-13 2022-03-01 诚瑞光学(常州)股份有限公司 Image pickup optical lens
CN111061038B (en) * 2019-12-13 2022-03-01 诚瑞光学(常州)股份有限公司 Image pickup optical lens
CN111025534A (en) * 2019-12-13 2020-04-17 瑞声通讯科技(常州)有限公司 Image pickup optical lens
WO2021114238A1 (en) * 2019-12-13 2021-06-17 诚瑞光学(常州)股份有限公司 Camera optical lens
WO2021114240A1 (en) * 2019-12-13 2021-06-17 诚瑞光学(常州)股份有限公司 Camera optical lens
CN110967813A (en) * 2019-12-13 2020-04-07 瑞声通讯科技(常州)有限公司 Image pickup optical lens
WO2021114233A1 (en) * 2019-12-13 2021-06-17 诚瑞光学(常州)股份有限公司 Photographing optical lens
US11487085B2 (en) 2019-12-20 2022-11-01 Genius Electronic Optical (Xiamen) Co., Ltd. Optical imaging lens including eight lenses of +-+-+-+-, +-+-+-++, +-++--+-, or +-+--++- refractive powers
CN110850559B (en) * 2019-12-20 2022-04-22 玉晶光电(厦门)有限公司 Optical imaging lens
CN110850559A (en) * 2019-12-20 2020-02-28 玉晶光电(厦门)有限公司 Optical imaging lens
WO2021127876A1 (en) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 Camera optical lens
CN111007628A (en) * 2019-12-23 2020-04-14 瑞声通讯科技(常州)有限公司 Image pickup optical lens
WO2021127879A1 (en) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 Camera optical lens
CN110908083A (en) * 2019-12-23 2020-03-24 瑞声通讯科技(常州)有限公司 Image pickup optical lens
WO2021127820A1 (en) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 Camera optical lens
CN111025554B (en) * 2019-12-23 2021-12-14 诚瑞光学(常州)股份有限公司 Image pickup optical lens
CN111007637A (en) * 2019-12-23 2020-04-14 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111007637B (en) * 2019-12-23 2021-12-14 诚瑞光学(常州)股份有限公司 Image pickup optical lens
CN111025554A (en) * 2019-12-23 2020-04-17 瑞声通讯科技(常州)有限公司 Image pickup optical lens
TWI760780B (en) * 2020-06-22 2022-04-11 大陸商玉晶光電(廈門)有限公司 Optical imaging lens
CN111965800B (en) * 2020-10-21 2020-12-25 常州市瑞泰光电有限公司 Image pickup optical lens
WO2022082928A1 (en) * 2020-10-21 2022-04-28 诚瑞光学(深圳)有限公司 Optical camera lens
CN111965800A (en) * 2020-10-21 2020-11-20 常州市瑞泰光电有限公司 Image pickup optical lens
WO2022082929A1 (en) * 2020-10-21 2022-04-28 诚瑞光学(深圳)有限公司 Optical camera lens
CN113267879A (en) * 2021-05-27 2021-08-17 浙江舜宇光学有限公司 Optical imaging lens
CN113433656B (en) * 2021-06-11 2023-11-07 江西欧菲光学有限公司 Imaging system, lens module and electronic equipment
CN113433656A (en) * 2021-06-11 2021-09-24 江西晶超光学有限公司 Imaging system, lens module and electronic equipment
CN113484982A (en) * 2021-06-16 2021-10-08 江西晶超光学有限公司 Optical lens, camera module and electronic equipment
CN113484982B (en) * 2021-06-16 2023-09-05 江西晶超光学有限公司 Optical lens, camera module and electronic equipment
CN113552697B (en) * 2021-07-19 2023-09-05 江西晶超光学有限公司 Optical lens, camera module and electronic equipment
CN113552697A (en) * 2021-07-19 2021-10-26 江西晶超光学有限公司 Optical lens, camera module and electronic equipment
CN113589483A (en) * 2021-08-03 2021-11-02 浙江舜宇光学有限公司 Optical imaging lens
CN115202007A (en) * 2021-08-04 2022-10-18 三星电机株式会社 Optical imaging system
CN113835197B (en) * 2021-09-29 2023-08-08 浙江舜宇光学有限公司 Optical imaging lens
CN113835197A (en) * 2021-09-29 2021-12-24 浙江舜宇光学有限公司 Optical imaging lens
CN114740593B (en) * 2022-03-07 2023-09-05 江西晶超光学有限公司 Optical lens, camera module and electronic equipment
CN114740593A (en) * 2022-03-07 2022-07-12 江西晶超光学有限公司 Optical lens, camera module and electronic equipment
WO2023197253A1 (en) * 2022-04-14 2023-10-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Imaging lens assembly, camera module and imaging device
CN114578530A (en) * 2022-05-06 2022-06-03 江西联益光学有限公司 Optical lens

Also Published As

Publication number Publication date
CN107741630B (en) 2020-04-21

Similar Documents

Publication Publication Date Title
CN107741630A (en) Optical imaging lens
CN207424362U (en) Optical imaging lens
CN207424361U (en) Optical imaging lens
CN107703609A (en) Optical imaging lens
CN207424360U (en) Optical imaging lens
CN107621683A (en) Optical imaging lens
CN108152934A (en) Optical imaging lens
CN107643586A (en) Imaging lens system group
CN108873272A (en) Optical imaging lens
CN107703608A (en) Optical imaging lens
CN109870788A (en) Imaging lens system group
CN107831588A (en) Optical imaging lens
CN108873253A (en) Pick-up lens
CN107102425A (en) Optical imaging lens
CN107843977A (en) Optical imaging lens
CN107621681A (en) Optical imaging lens
CN107436481A (en) Imaging lens system group
CN109270662A (en) Optical imaging lens
CN110346919A (en) Optical imaging lens
CN107490841A (en) Imaging lens system group
CN107462977A (en) Optical imaging lens
CN107092077A (en) Optical imaging system
CN208506350U (en) Pick-up lens
CN209690597U (en) Imaging lens system group
CN107664830A (en) Optical imaging lens

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant