CN207336351U - 一种污水处理系统 - Google Patents

一种污水处理系统 Download PDF

Info

Publication number
CN207336351U
CN207336351U CN201721014103.9U CN201721014103U CN207336351U CN 207336351 U CN207336351 U CN 207336351U CN 201721014103 U CN201721014103 U CN 201721014103U CN 207336351 U CN207336351 U CN 207336351U
Authority
CN
China
Prior art keywords
detection
light source
ultraviolet
solenoid valve
line receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201721014103.9U
Other languages
English (en)
Inventor
王行飞
陈建华
刘戈
邓愿
刘红星
茅忠群
诸永定
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Fotile Kitchen Ware Co Ltd
Original Assignee
Ningbo Fotile Kitchen Ware Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Fotile Kitchen Ware Co Ltd filed Critical Ningbo Fotile Kitchen Ware Co Ltd
Priority to CN201721014103.9U priority Critical patent/CN207336351U/zh
Application granted granted Critical
Publication of CN207336351U publication Critical patent/CN207336351U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Physical Water Treatments (AREA)

Abstract

本实用新型涉及一种污水处理系统,包括污水处理装置,其特征在于:还包括能检测污水源中有机物含量的有机物传感器,第一电磁阀和第二电磁阀和控制器,其中污水源先通过有机物传感器后再通过所述第一电磁阀与污水处理装置,污水源通过有机物传感器后再通过所述第二电磁阀与排水管连接;有机物传感器,第一电磁阀和第二电磁阀均与控制器连接,控制器根据有机物传感器检测的污水源中有机物含量是否超过预设阈值控制第一电磁阀和第二电磁阀。本实用新型的优点在于:通过污水源中有机物含量进行检测,从而调整第一电磁阀和第二电磁阀的开闭方式,选择是否需要启动污水处理装置,能有效提高污水处理装置的使用寿命。

Description

一种污水处理系统
技术领域
本实用新型涉及一种污水处理系统。
背景技术
工业上和生活上,每天都产生很多的污水。这些污水,一部分是集中到污水处理厂进行处理后再排放到河流中。而更多的部分则是直接排放到下水道或者是河流里,对水资源产生了很大的污染。生活上,厨房污水是造成河流湖泊富营养化污染的重要原因之一。一方面生活污水量大,处理费用高,另一方面人们的环保意识不高,所以生活污水净化系统没有得到广泛的应用。厨房污水主要成分是油脂、有机洗涤剂等有机物,以及泥沙、食物残渣等颗粒物,可以通过检测有机物含量来判断污水的脏污程度。所以,对生活污水进行净化处理后排放是很有必要的。
目前有机物含量的检测主要是依靠分光光度计,其工作原理为:通过对波长为254纳米的紫外线的吸收度来间接表征有机物的总含量,波长为254纳米的紫外线透过水后,水中的有机物会吸收部分的紫外线,而有机物的浓度越大,紫外线吸收的强度也越大,因此紫外线的吸收度对应着有机物的含量。不同的有机物针对不同波长紫外线有不同的吸收强度,通过扫描不同波长紫外线的吸收强度,可以大致分析出水中不同类有机物的含量。而总含量的测量,即不同有机物含量的综合指标,主要体现在254纳米波长的紫外线上。但分光光度计本身是一台仪器,价格非常昂贵,体积也非常庞大,最主要的是对于普通人员的使用还有一定障碍。
实用新型内容
本实用新型所要解决的技术问题是针对上述现有技术提供一种能根据污水源中有机物含量判断污水源污染程度从而控制是否启动污水处理的污水处理系统。
本实用新型解决上述技术问题所采用的技术方案为:一种污水处理系统,包括污水处理装置,其特征在于:还包括能检测污水源中有机物含量的有机物传感器,第一电磁阀和第二电磁阀和控制器,其中污水源先通过有机物传感器后再通过所述第一电磁阀与污水处理装置,污水源通过有机物传感器后再通过所述第二电磁阀与排水管连接;有机物传感器,第一电磁阀和第二电磁阀均与控制器连接,控制器根据有机物传感器检测的污水源中有机物含量超过预设阈值时打开第一电磁阀关闭第二电磁阀,控制器根据有机物传感器检测的污水源中有机物含量没有超过预设阈值时关闭第一电磁阀打开第二电磁阀。
作为改进,所述有机物检测传感器包括能发出紫外线的光源,及与所述光源配合的能检测水中有机物含量的检测组件,该检测组件包括
能被所述光源发出的紫外线穿透的检测管,被检测的污水源能通过该检测管;
检测组紫外线接收器,用于检测从所述光源发出、并穿透所述检测管后的紫外线的强度;
其中,检测组紫外线接收器与电路板连接,所述电路板用于根据检测组紫外线接收器接收的紫外线强度计算通过检测管内水中有机物含量。
上述提供的有机物检测传感器,不仅能有效检测水中有机物含量,部件少,结构简单,因此可以制成体积较小、成本较低的检测部件。
作为改进,本实用新型提供的有机物检测传感器,还包括壳体,检测组件设置在壳体内:所述壳体内设有光源容置腔或允许光源穿过的光源容置孔,所述光源设置在光源容置腔内或穿设在光源容置孔内;所述壳体内还设有与光源容置腔或允许光源穿过的光源容置孔连通的检测管容置腔,检测管设置在检测管容置腔内;所述检测组紫外线接收器设置在壳体内并与检测管相对。
所述光源外套设有隔离遮光保护套,光源套设隔离遮光保护套后设置在壳体的光源容置腔内或穿设在光源容置孔内;隔离遮光保护套上开有检测光透光孔;所述光源发出的紫外线通过检测光透光孔后再穿透所述检测管到达所述检测组紫外线接收器。隔离遮光保护套的作用有为隔离光源,防止光源发出的紫外线对照射导致壳体老化。通过在隔离遮光保护套开设检测光透光孔,可以使光源与检测组紫外线接收器之间的光线发射角度较小,从而减小光线在传送过程中由于折射和反射造成的检测数据的不确定性。
再改进,所述壳体上连接有分别与检测管两端接通的进水接头和出水接头。
再改进,所述进水接头和出水接头与检测管两端连接的部位设有密封圈。
再改进,所述电路板固定在壳体上,壳体内设有与检测管容置腔连通的检测光通道,所述检测组紫外线接收器固定在电路板上后位于检测光通道内。
能发出紫外线的光源一般采用紫外灯,紫外灯随着使用时间的延长,其发出的紫外线强度会产生一定的衰减,为了提高检测的精确度。本实用新型中的有机物传感器还包括对照组件,对照组件也设置在壳体内,其中对照组件一种较好的方案为:
对照组件包括有能检测直接从所述光源发出的紫外线的强度的对照组紫外线接收器,对照组紫外线接收器也与电路板连接,电路板根据检测组紫外线接收器接收的紫外线强度以及对照组紫外线接收器接收的紫外线强度来计算通过检测管内水中有机物含量;
所述隔离遮光保护套上开有对照光透光孔,对照组紫外线接收器设置在所述壳体内并与对照光透光孔相对,从而使所述光源发出的紫外线通过对照光透光孔后直接到达对照组紫外线接收器。通过在隔离遮光保护套开设对照光透光孔,可以使光源与对照组紫外线接收器之间的光线发射角度较小,从而减小光线在传送过程中由于折射和反射造成的检测数据的不确定性。
所述对照组件与检测组件可以设置在光源的同侧,所述检测光透光孔和所述对照光透光孔位于隔离遮光保护套同一侧;所述壳体内设有与对照光透光孔连通并正对的对照光通道,所述对照组紫外线接收器设置在对照光通道内。
所述对照组件与检测组件也可以对称设置在光源容置腔的两相对侧,所述检测光透光孔和所述对照光透光孔对称设置在隔离遮光保护套两相对侧;壳体上开有与对照光透光孔正对的对照组紫外线接收器安装孔,对照组紫外线接收器设置在该对照组紫外线接收器安装孔内。
所述对照组件与检测组件还可以位于光源容置腔外不同侧,所述检测光透光孔和所述对照光透光孔设置在隔离遮光保护套同一圆周不同位置,且与隔离遮光保护套同一圆周中心点连线之间成非180度的夹角,所述壳体内设有与对照光透光孔连通并正对的对照光通道,所述对照组紫外线接收器设置在对照光通道内。
对照组件另外一种较好的方案为,该对照组件包括有:
能被所述光源发出的紫外线穿透的对照管,对照管内部真空或设空气或设置纯净水;
对照组紫外线接收器,用于检测从所述光源发出、并穿透所述对照管后的紫外线的强度;
对照组紫外线接收器也与电路板连接,电路板根据检测组紫外线接收器接收的紫外线强度以及对照组紫外线接收器接收的紫外线强度来计算通过检测管内水中有机物含量。
可以在隔离保护套上开有对照光透光孔,所述光源发出的紫外线通过对照光透光孔后在穿透所述对照管到达对照组紫外线接收器。
此时,所述对照组件与检测组件同样可以设置在光源的同侧,所述检测光透光孔和所述对照光透光孔位于隔离遮光保护套同一侧;所述壳体内设有与所述对照光透光孔连通的对照管容置腔,对照管设置在对照管容置腔内;所述对照组紫外线接收器设置在壳体内并与对照管相对,从而使所述光源发出的紫外线通过对照光透光孔后再穿透所述对照管到达所述对照组紫外线接收器。
所述对照组件与检测组件同样也可以对称设置在光源容置腔的两相对侧,所述检测光透光孔和所述对照光透光孔对称设置在隔离遮光保护套两相对侧;壳体内设有与所述对照光透光孔连通的对照管容置腔,对照管设置在对照管容置腔内;所述对照组紫外线接收器设置在壳体内并与对照管相对,从而使所述光源发出的紫外线通过对照光透光孔后再穿透所述对照管到达所述对照组紫外线接收器。
所述对照组件与检测组件同样还可以位于光源容置腔外不同侧,所述检测光透光孔和所述对照光透光孔设置在隔离遮光保护套同一圆周不同位置,且与隔离遮光保护套同一圆周中心点连线之间成非180度的夹角,壳体内设有与所述对照光透光孔连通的对照管容置腔,对照管设置在对照管容置腔内;所述对照组紫外线接收器设置在壳体内并与对照管相对,从而使所述光源发出的紫外线通过对照光透光孔后再穿透所述对照管到达所述对照组紫外线接收器。
当隔离保护套上没有专门开设对照光透光孔,仅开有检测光透光孔时,所述壳体内设有与检测光透光孔正对并连通的引光通道,中部与引光通道垂直设置的分光通道,及用于将引光通道内的紫外线均匀分散到分光通道两侧的分光镜,所述检测管容置腔设置在分光通道一侧;所述壳体内位于分光通道另一侧设有对照管容置腔,对照管设置在对照管容置腔内;所述对照组紫外线接收器设置在壳体内并与对照管相对,从而使所述光源发出的紫外线通过检测光透光孔、引光通道后经分光镜进入分光通道后再穿透所述对照管到达所述对照组紫外线接收器。
所述引光通道内壁设有第一隔离保护套。
所述分光通道内壁设有第二隔离保护套。
本实用新型还包括与所述光源接触用于检测所述光源温度的温度传感器;在电路板水中有机物含量时,主要的干扰因素是光源的变化,而光源的变化主要是由于温度,随着光源的使用时间推长,光源的温度会逐渐升高;因为紫外灯的特性中,紫外线的强度会随着温度的变高而变强,为了提高检测的精度,在壳体内设置与光源接触用于检测所述光源温度的温度传感器,然后通过温度计算结果进行补偿,可以有效提高检测的精确度。
再改进,所述的污水处理系统中还包括粗过滤装置,污水源先通过粗过滤装置后再与有机物传感器连接。
再改进,所述的粗过滤装置与有机物传感器之间设有水流量计,另外还包括有第三电磁阀和第四电磁阀,第三电磁阀的第一端与外接自来水连接,第三电磁阀的第二端与水流量计连接,第四电磁阀的第一端与有机物传感器的输出端连接,第四电磁阀的第二端与排水管连接,水流量计、第三电磁阀和第四电磁阀均与控制器连接。
与现有技术相比,本实用新型的优点在于:通过污水源中有机物含量进行检测,从而调整第一电磁阀和第二电磁阀的开闭方式,选择是否需要启动污水处理装置,能有效提高污水处理装置的使用寿命;在进一步方案中,通过粗过滤装置有效过滤污水中的大颗粒物质,经过自来水对污水处理系统进行冲洗,能有效减少出现污染物堵塞、结垢等情况,延长了有机物传感器和电磁阀寿命。
附图说明
图1为本实用新型实施例中一污水处理系统的原理图;
图2为本实用新型实施例一中有机物检测传感器第一种方案的立体结构示意图;
图3为本实用新型实施例一中有机物检测传感器第一种方案的立体剖视图;
图4为本实用新型实施例一中有机物检测传感器第一种方案的立体分解图;
图5为本实用新型实施例一中有机物检测传感器第一种方案另一视角的立体分解图;
图6为本实用新型实施例一中有机物检测传感器第二种方案的立体结构示意图;
图7为本实用新型实施例一中有机物检测传感器第二种方案的剖视图;
图8为本实用新型实施例一中有机物检测传感器第三种方案的剖视图;
图9为本实用新型实施例一中有机物检测传感器第四种方案的剖视图;
图10为本实用新型实施例一中有机物检测传感器第五种方案的剖视图;
图11为本实用新型实施例一中有机物检测传感器第六种方案的立体结构示意图;
图12为本实用新型实施例一中有机物检测传感器第六种方案的立体剖视图;
图13为本实用新型实施例一中有机物检测传感器第七种方案的立体结构示意图;
图14为本实用新型实施例一中有机物检测传感器第七种方案的立体剖视图;
图15为本实用新型实施例一中有机物检测传感器第八种方案的立体剖视图;
图16为本实用新型实施例二中污水处理系统的原理图。
具体实施方式
以下结合附图实施例对本实用新型作进一步详细描述。
实施例一
如图1所示的污水处理系统,包括能检测污水源中有机物含量的有机物传感器101,第一电磁阀102和第二电磁阀103和控制器104和污水处理装置105,其中污水源先通过有机物传感器101后再通过所述第一电磁阀102与污水处理装置105,污水源通过有机物传感器101后再通过所述第二电磁阀103与排水管连接;有机物传感器101,第一电磁阀102和第二电磁阀103均与控制器104连接,控制器根据有机物传感器101检测的污水源中有机物含量超过预设阈值时打开第一电磁阀102关闭第二电磁阀103,控制器根据有机物传感器101检测的污水源中有机物含量没有超过预设阈值时关闭第一电磁阀102打开第二电磁阀103。有机物传感器检测污水源中有机物含量,控制器再根据有机物传感器的检测值判断是否需要进行净化处理,判断依据为国标污水综合排放标准;不同排污单位按照相应的排污标准,如:部分排污单位规定COD上限为100mg/L,则当有机物传感器检测到的有机物含量超过100mg/L时,控制器控制第一电磁阀打开,第二电磁阀关闭,污水经过污水处理装置处理再排出;当检测到的有机物含量不超过100mg/L时,控制器控制第二电磁阀打开,第一电磁阀关闭,污水不经过污水处理装置,提高污水处理装置的寿命。
其中有机物检测传感器的结构有多种,下面将详细描述有机物检测传感器结构的多种方案:
有机物检测传感器的第一种方案:
参见图2~5所示,其包括能发出紫外线的光源1,及与所述光源1配合的能检测水中有机物含量的检测组件,及用于与检测组件配套使用的对照组件。
其中,所述检测组件包括
能被所述光源1发出的紫外线穿透的检测管2,污水能通过该检测管2;
检测组紫外线接收器3,用于检测从所述光源1发出、并穿透所述检测管2后的紫外线的强度;
对照组件包括有:
能被所述光源1发出的紫外线穿透的对照管6,对照管6内部真空或设空气或设置纯净水;
对照组紫外线接收器5,用于检测从所述光源1发出、并穿透所述对照管6后的紫外线的强度;
上述检测组紫外线接收器3和对照组紫外线接收器5均与电路板4连接,电路板4根据检测组紫外线接收器3接收的紫外线强度以及对照组紫外线接收器5接收的紫外线强度来计算通过检测管2内水中有机物含量。
在本方案中,有机物检测传感器包括由第一壳体7a和第二壳体7b组装而成的壳体7,壳体7中部内设有允许光源穿过的光源容置孔,光源1穿设在光源容置孔内;第一壳体7a内还设有与光源容置孔连通的检测管容置腔,检测管2设置在检测管容置腔内;所述检测组紫外线接收器设置在第一壳体7a内并与检测管2相对。第二壳体7b内设有与光源容置孔连通的对照管容置腔,对照管6设置在对照管容置腔内;对照组紫外线接收器5设置在第二壳体7b内并与对照管6相对。
光源1外套设有隔离遮光保护套8,光源1套设隔离遮光保护套8后穿设在壳体7的光源容置孔内;隔离遮光保护套8上开有检测光透光孔81;所述光源1发出的紫外线通过检测光透光孔81后再穿透所述检测管2到达所述检测组紫外线接收器3。隔离遮光保护套8上还开有对照光透光孔82;所述光源1发出的紫外线通过对照光透光孔82后再穿透所述对照管6到达所述对照组紫外线接收器5。
第一壳体7a上连接有分别与检测管2两端接通的进水接头71和出水接头72,进水接头71和出水接头72与检测管2两端连接的部位设有密封圈73。
电路板4可以固定在第一壳体7a上,也可以固定在第二壳体7b上,本实施例中,电路板4固定在第一壳体7a上,对照组紫外线接收器5安装在侧板上,侧板固定在第二壳体7b上,对照组紫外线接收器5的输出端通过导线与电路板4连接。
第一壳体7a内设有与检测管容置腔连通的检测光通道74,所述检测组紫外线接收器3固定在电路板4上后位于检测光通道74内;第二壳体7b内设有与对照管容置腔连通的对照光通道75,所述对照组紫外线接收器5固定在侧板上后位于对照光通道75内。
本方案中,所述对照组件与检测组件对称设置在光源容置孔的两相对侧,即:对照组件与检测组件对称设置;所述检测光透光孔81和所述对照光透光孔82对称设置在隔离遮光保护套8两相对侧;这样设置的好处是检测组摄取的紫外线与对照组摄取的紫外线来自于光源1同一圆周位置,因此两者摄取的紫外线的原始光强相差很小;缺点在于:但是如果光源安装好后位置有径向偏移,则会导致对照组件和检测组件获取的检测数据出现较大的偏差。
本实施例中的有机物检测传感器的检测方法,其包括如下步骤:
步骤(1)、将对照管6抽真空,或保持对照管6内充满空气,或在对照管6内冲入纯净水,开启所述光源1,电路板4记录此次对照组紫外线接收器5接收到的紫外线强度值,并将该紫外线强度值记为第一紫外线强度参照值;
步骤(2)、准备N份有机物含量已知且含量均不相同的对照水样,保持所述光源1开启,然后分别将这N份对照水样依次通过所述对照管6,电路板4依次记录N份对照水样流过对照管6时对照组紫外线接收器5接收到的紫外线强度值,并将获得的N份紫外线强度值分别记为第二紫外线强度参照值、第三紫外线强度参照值、……第N+1紫外线强度参照值,其中N为大于等于3的自然数;
步骤(3)、根据步骤(2)获得的N份紫外线强度参照值,获得一份对照水样中有机物含量与紫外线强度参照值之间的对照表;
步骤(4)、保持所述光源1开启,将对照管6抽真空,或保持对照管6内充满空气,或在对照管6内冲入纯净水;将待测水流过所述检测管2,电路板4记录此次检测组紫外线接收器3接收到的紫外线强度值,并将该紫外线强度值记为紫外线强度检测值,同时记录对照组紫外线接收器5接收到的紫外线强度值,将该紫外线强度值记为临时紫外线强度参照值,将临时紫外线强度参照值除以第一紫外线强度参照值,获得光源强度衰减比例,将紫外线强度检测值乘以光源强度衰减比例,获得紫外线强度查找值,然后采用该紫外线强度查找值,通过查询步骤3获得的对照表,获得此时待测水中的有机物含量。
在上述检测方法中,主要的干扰因素是光源的变化,而光源的变化主要是由于温度,随着光源的使用时间推长,光源的温度会逐渐升高;因为紫外灯的特性中,紫外线的强度会随着温度的变高而变强,为了进一步提高检测的精度,壳体7内还包括与所述光源1接触用于检测所述光源1温度的温度传感器11;在所述步骤(1)和步骤(2)中,保持所述光源1开启,然后通过所述温度传感器11实时检测光源1的温度,记录光源(1)在不同温度值下,多个第一紫外线强度参照值和多个第二紫外线强度参照值、多个第三紫外线强度参照值、……多个第N+1紫外线强度参照值;然后所述步骤(3)获得一份对照水样中有机物含量与光源在不同温度值下的紫外线强制参照值之间的对照表;最后在步骤(4)中,同样保持所述光源(1)开启,并通过所述温度传感器(11)实时检测光源(1)的温度,根据当前光源(1)的温度值与当前紫外线强度检测值,通过查表获得此时待测水中的有机物含量。
有机物检测传感器的第二种方案:
参见图6和图7所示,第一种方案相比,壳体7内仅包括检测组件,而没有设置对照组件。
本方案中的有机物检测传感器的检测方法包括如下步骤:
步骤(1)、将检测管2抽真空,或保持检测管2内充满空气,或在检测管2内冲入纯净水,然后开启所述光源1,电路板4记录此次检测组紫外线接收器3接收到的紫外线强度值,并将该紫外线强度值记为第一紫外线强度参照值;
步骤(2)、准备N份有机物含量已知且含量均不相同的对照水样,保持所述光源1开启,然后分别将这N份对照水样依次通过所述检测管2,电路板4依次记录N份对照水样流过检测管2时检测组紫外线接收器3接收到的紫外线强度值,并将获得的N份紫外线强度值分别记为第二紫外线强度参照值、第三紫外线强度参照值、……第N+1紫外线强度参照值,其中N为大于等于3的自然数;
步骤(3)、根据步骤(1)和步骤(2)获得的N+1份紫外线强度参照值,获得一份对照水样中有机物含量与紫外线强度参照值之间的对照表;
步骤(4)、保持所述光源1开启,将待测水流过所述检测管2,电路板4记录此次检测组紫外线接收器3接收到的紫外线强度值,并将该紫外线强度值记为紫外线强度检测值,然后通过查询步骤(3)获得的对照表,获得此时待测水中的有机物含量。
有机物检测传感器的第三种方案:
与第一种方案不同的是,对照组件与检测组件设置在光源1的同侧,检测光透光孔81和所述对照光透光孔82位于隔离遮光保护套8同一侧;其内部结构参见图8所示。
在本实施例中,对照组件和检测组件在同一侧的好处是当紫外灯位置发生径向偏移时,检测组件和对照组件摄取到的紫外线强度偏差较少;其缺点是:由于紫外灯在轴向不同位置发光的强度可能会存在一定的偏差,所以,该实施例中,要求紫外灯在轴向方向上光强需要一致性好。
本方案中的有机物检测传感器的检测方法与第一种方案相同。
有机物检测传感器的第四种方案:
与第一种方案不同的是,对照组件仅包含对照组紫外线接收器5,没有设置对照管,对照组紫外线接收器5直接设置在对照光通道75内,其内部结构参见图9所示。所述光源1发出的紫外线通过对照光透光孔82沿着对照光通道75直接到达对照组紫外线接收器5。
本实施例中的有机物检测传感器的检测方法,其包括如下步骤:
步骤(1)、开启所述光源1,电路板4记录此次对照组紫外线接收器5接收到的紫外线强度值,并将该紫外线强度值记为第一紫外线强度参照值;
步骤(2)、准备N份有机物含量已知且含量均不相同的对照水样,保持所述光源1开启,然后分别将这N份对照水样依次通过所述检测管2,电路板4依次记录N份对照水样流过检测管2时检测组紫外线接收器3接收到的紫外线强度值,并将获得的N份紫外线强度值分别记为第二紫外线强度参照值、第三紫外线强度参照值、……第N+1紫外线强度参照值,其中N为大于等于3的自然数;
步骤(3)、根据步骤(2)获得的N份紫外线强度参照值,获得一份对照水样中有机物含量与紫外线强度参照值之间的对照表;
步骤(4)、保持所述光源1开启,将待测水流过所述检测管2,电路板4记录此次检测组紫外线接收器3接收到的紫外线强度值,并将该紫外线强度值记为紫外线强度检测值,同时记录对照组紫外线接收器5接收到的紫外线强度值,将该紫外线强度值记为临时紫外线强度参照值,将临时紫外线强度参照值除以第一紫外线强度参照值,获得光源强度衰减比例,将紫外线强度检测值乘以光源强度衰减比例,获得紫外线强度查找值,然后采用该紫外线强度查找值,通过查询步骤(3)获得的对照表,获得此时待测水中的有机物含量。
有机物检测传感器的第五种方案:
与第四种方案不同的是,对照组件和检测组件设置在光源的同侧,壳体外形构造则与第二种方案相同,内部结构参见图10所示。
本方案中的有机物检测传感器的检测方法与第四种方案相同。
有机物检测传感器的第六种方案:
与第四种方案不同的是,壳体7为整体件,对照组件与检测组件位于光源容置腔外不同侧,所述检测光透光孔81和所述对照光透光孔82设置在隔离遮光保护套8同一外圆周不同位置,且与隔离遮光保护套8同一圆周中心点连线之间成非180度的夹角,本实施例中的夹角为60度,壳体外形结构参见图11,壳体内部结构参见图12所示。
有机物检测传感器的第七种方案:
与第一种方案不同的是,隔离遮光保护套8上仅开有一个检测光透光孔81,而所述壳体7内设有与检测光透光孔81正对并连通的引光通道76,中部与引光通道76垂直设置的分光通道77,及用于将引光通道76内的紫外线均匀分散到分光通道77两侧的分光镜78,分光镜78为三棱镜;所述检测管容置腔设置在分光通道77一侧;所述壳体7内位于分光通道77另一侧设有对照管容置腔,对照管6设置在对照管容置腔内;所述对照组紫外线接收器5设置在壳体7内并与对照管6相对,从而使所述光源1发出的紫外线通过检测光透光孔81、引光通道76后经分光镜78进入分光通道77后再穿透所述对照管2到达所述对照组紫外线接收器5。引光通道76内壁设有第一隔离保护套9,分光通道77内壁设有第二隔离保护套10,参见图13、14所示。
本实施例中,紫外线经过分光镜78分光,保证检测组合对照组的紫外线原始光强相同。
有机物检测传感器的第八种方案:
与第四种方案不同的是,壳体7内设有光源容置腔,光源1为小型的紫外灯或LED紫外灯,光源1整体设置在光源容置腔内,参见图15所示。
实施例二
与实施例一不同的是,有机物传感器前方设有用于过滤污水中的大颗粒物质的粗过滤装置107,污水源先通过粗过滤装置107后再与有机物传感器101连接,粗过滤装置107与有机物传感器101之间设有水流量计108,另外还包括有第三电磁阀109和第四电磁阀110,第三电磁阀109的第一端与外接自来水连接,第三电磁阀109的第二端与水流量计108连接,第四电磁阀110的的第一端与有机物传感器101的输出端连接,第四电磁阀的第二端与排水管连接,水流量计108、第三电磁阀109和第四电磁阀110均与控制器104连接。并且为了防止有机物传感器出现污染物堵塞、结垢等情况,本实施例中还增加了冲洗阶段,参见图16所示。
污水源经过用于过滤污水中的大颗粒物质的粗过滤装置107,经过粗过滤后的污水处理方式与实施例一相同;为了延长有机物传感器和电磁阀寿命,控制器设置有冲洗阶段,在冲洗阶段,第三电磁阀打开,第一电磁阀关闭,第四电磁阀打开,将第三电磁阀的入水口的自来水对流量计、有机物传感器、第四电磁阀进行冲洗,本实施例中,污水中的大颗粒物质能被粗过滤装置有效过滤,能提高污水处理装置的效率,经过自来水对污水处理系统进行冲洗,能有效减少出现污染物堵塞、结垢等情况,延长了有机物传感器和电磁阀寿命。

Claims (21)

1.一种污水处理系统,包括污水处理装置(105),其特征在于:还包括能检测污水源中有机物含量的有机物传感器(101),第一电磁阀(102)和第二电磁阀(103)和控制器(104),其中污水源先通过有机物传感器(101)后再通过所述第一电磁阀(102)与污水处理装置(105),污水源通过有机物传感器(101)后再通过所述第二电磁阀(103)与排水管连接;有机物传感器(101),第一电磁阀(102)和第二电磁阀(103)均与控制器(104)连接,控制器根据有机物传感器(101)检测的污水源中有机物含量超过预设阈值时打开第一电磁阀(102)关闭第二电磁阀(103),控制器根据有机物传感器(101)检测的污水源中有机物含量没有超过预设阈值时关闭第一电磁阀(102)打开第二电磁阀(103)。
2.根据权利要求1所述的污水处理系统,其特征在于:所述有机物检测传感器(101)包括能发出紫外线的光源(1),及与所述光源(1)配合的能检测水中有机物含量的检测组件,该检测组件包括
能被所述光源(1)发出的紫外线穿透的检测管(2),被检测的污水源能通过该检测管(2);
检测组紫外线接收器(3),用于检测从所述光源(1)发出、并穿透所述检测管(2)后的紫外线的强度;
其中,检测组紫外线接收器(3)与电路板(4)连接,所述电路板(4)用于根据检测组紫外线接收器(3)接收的紫外线强度计算通过检测管(2)内水中有机物含量。
3.根据权利要求2所述的污水处理系统,其特征在于:所述有机物检测传感器还包括壳体(7),所述壳体(7)内设有光源容置腔或允许光源穿过的光源容置孔,所述光源(1)设置在光源容置腔内或穿设在光源容置孔内;所述壳体(7)内还设有与光源容置腔或允许光源穿过的光源容置孔连通的检测管容置腔,检测管(2)设置在检测管容置腔内;所述检测组紫外线接收器(3)设置在壳体(7)内并与检测管(2)相对。
4.根据权利要求3所述的污水处理系统,其特征在于:所述光源(1)外套设有隔离遮光保护套(8),光源(1)套设隔离遮光保护套(8)后设置在壳体(7)的光源容置腔内或穿设在光源容置孔内;隔离遮光保护套(8)上开有检测光透光孔(81);所述光源(1)发出的紫外线通过检测光透光孔(81)后再穿透所述检测管(2)到达所述检测组紫外线接收器(3)。
5.根据权利要求3所述的污水处理系统,其特征在于:所述壳体(7)上连接有分别与检测管(2)两端接通的进水接头(71)和出水接头(72),所述进水接头(71)和出水接头(72)与检测管(2)两端连接的部位设有密封圈(73)。
6.根据权利要求2所述的污水处理系统,其特征在于:所述电路板(4)固定在壳体(7)上,壳体(7)内设有与检测管容置腔连通的检测光通道(74),所述检测组紫外线接收器(3)固定在电路板(4)上后位于检测光通道(74)内。
7.根据权利要求4所述的污水处理系统,其特征在于:所述有机物检测传感器还包括对照组件,该对照组件包括有能检测直接从所述光源(1)发出的紫外线的强度的对照组紫外线接收器(5),对照组紫外线接收器(5)也与电路板(4)连接,电路板(4)根据检测组紫外线接收器(3)接收的紫外线强度以及对照组紫外线接收器(5)接收的紫外线强度来计算通过检测管(2)内水中有机物含量;
所述隔离遮光保护套(8)上开有对照光透光孔(82),对照组紫外线接收器(5)设置在所述壳体(7)内并与对照光透光孔(82)相对,从而使所述光源(1)发出的紫外线通过对照光透光孔(82)后直接到达对照组紫外线接收器(5)。
8.根据权利要求7所述的污水处理系统,其特征在于:所述对照组件与检测组件设置在光源(1)的同侧,所述检测光透光孔(81)和所述对照光透光孔(82)位于隔离遮光保护套(8)同一侧;所述壳体(7)内设有与对照光透光孔(82)连通并正对的对照光通道(75),所述对照组紫外线接收器(5)设置在对照光通道(75)内。
9.根据权利要求7所述的污水处理系统,其特征在于:所述对照组件与检测组件对称设置在光源容置腔的两相对侧,所述检测光透光孔(81)和所述对照光透光孔(82)对称设置在隔离遮光保护套(8)两相对侧;壳体(7)上开有与对照光透光孔(82)正对的对照组紫外线接收器安装孔,对照组紫外线接收器(5)设置在该对照组紫外线接收器安装孔内。
10.根据权利要求7所述的污水处理系统,其特征在于:所述对照组件与检测组件位于光源容置腔外不同侧,所述检测光透光孔(81)和所述对照光透光孔(82)设置在隔离遮光保护套(8)同一圆周不同位置,且与隔离遮光保护套(8)同一圆周中心点连线之间成非180度的夹角,所述壳体(7)内设有与对照光透光孔(82)连通并正对的对照光通道(75),所述对照组紫外线接收器(5)设置在对照光通道(75)内。
11.根据权利要求4所述的污水处理系统,其特征在于:所述有机物检测传感器还包括对照组件,该对照组件包括有:
能被所述光源(1)发出的紫外线穿透的对照管(6),对照管(6)内部真空或设空气或设置纯净水;
对照组紫外线接收器(5),用于检测从所述光源(1)发出、并穿透所述对照管(6)后的紫外线的强度;
对照组紫外线接收器(5)也与电路板(4)连接,电路板(4)根据检测组紫外线接收器(3)接收的紫外线强度以及对照组紫外线接收器(5)接收的紫外线强度来计算通过检测管(2)内水中有机物含量。
12.根据权利要求11所述的污水处理系统,其特征在于:所述隔离保护套(8)上开有对照光透光孔(82),所述光源(1)发出的紫外线通过对照光透光孔(82)后在穿透所述对照管(6)到达对照组紫外线接收器(5)。
13.根据权利要求12所述的污水处理系统,其特征在于:所述对照组件与检测组件设置在光源(1)的同侧,所述检测光透光孔(81)和所述对照光透光孔(82)位于隔离遮光保护套(8)同一侧;所述壳体(7)内设有与所述对照光透光孔(82)连通的对照管容置腔,对照管(6)设置在对照管容置腔内;所述对照组紫外线接收器(5)设置在壳体(7)内并与对照管(6)相对,从而使所述光源(1)发出的紫外线通过对照光透光孔(82)后再穿透所述对照管(6)到达所述对照组紫外线接收器(5)。
14.根据权利要求12所述的污水处理系统,其特征在于:所述对照组件与检测组件对称设置在光源容置腔的两相对侧,所述检测光透光孔(81)和所述对照光透光孔(82)对称设置在隔离遮光保护套(8)两相对侧;壳体(7)内设有与所述对照光透光孔(82)连通的对照管容置腔,对照管(6)设置在对照管容置腔内;所述对照组紫外线接收器(5)设置在壳体(7)内并与对照管(6)相对,从而使所述光源(1)发出的紫外线通过对照光透光孔(82)后再穿透所述对照管(6)到达所述对照组紫外线接收器(5)。
15.根据权利要求12所述的污水处理系统,其特征在于:所述对照组件与检测组件位于光源容置腔外不同侧,所述检测光透光孔(81)和所述对照光透光孔(82)设置在隔离遮光保护套(8)同一圆周不同位置,且与隔离遮光保护套(8)同一圆周中心点连线之间成非180度的夹角,壳体(7)内设有与所述对照光透光孔(82)连通的对照管容置腔,对照管(6)设置在对照管容置腔内;所述对照组紫外线接收器(5)设置在壳体(7)内并与对照管(6)相对,从而使所述光源(1)发出的紫外线通过对照光透光孔(82)后再穿透所述对照管(6)到达所述对照组紫外线接收器(5)。
16.根据权利要求11所述的污水处理系统,其特征在于:所述壳体(7)内设有与检测光透光孔(81)正对并连通的引光通道(76),中部与引光通道(76)垂直设置的分光通道(77),及用于将引光通道(76)内的紫外线均匀分散到分光通道(77)两侧的分光镜(78),所述检测管容置腔设置在分光通道(77)一侧;所述壳体(7)内位于分光通道(77)另一侧设有对照管容置腔,对照管(6)设置在对照管容置腔内;所述对照组紫外线接收器(5)设置在壳体(7)内并与对照管(6)相对,从而使所述光源(1)发出的紫外线通过检测光透光孔(81)、引光通道(76)后经分光镜(78)进入分光通道(77)后再穿透所述对照管(6)到达所述对照组紫外线接收器(5)。
17.根据权利要求16所述的污水处理系统,其特征在于:所述引光通道(76)内壁设有第一隔离保护套(9)。
18.根据权利要求16所述的污水处理系统,其特征在于:所述分光通道(77)内壁设有第二隔离保护套(10)。
19.根据权利要求2或3或4或5或6所述的污水处理系统,其特征在于:还包括与所述光源(1)接触用于检测所述光源(1)温度的温度传感器(11)。
20.根据权利要求1所述的污水处理系统,其特征在于:还包括粗过滤装置(107),污水源先通过粗过滤装置(107)后再与有机物传感器(101)连接。
21.根据权利要求20所述的污水处理系统,其特征在于:所述的粗过滤装置(107)与有机物传感器(101)之间设有水流量计(108),另外还包括有第三电磁阀(109)和第四电磁阀(110),第三电磁阀的第一端与外接自来水连接,第三电磁阀的第二端与水流量计(108)连接,第四电磁阀的第一端与有机物传感器(101)的输出端连接,第四电磁阀的第二端与排水管连接;水流量计(108)、第三电磁阀和第四电磁阀均与控制器(104)连接。
CN201721014103.9U 2017-08-14 2017-08-14 一种污水处理系统 Active CN207336351U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201721014103.9U CN207336351U (zh) 2017-08-14 2017-08-14 一种污水处理系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201721014103.9U CN207336351U (zh) 2017-08-14 2017-08-14 一种污水处理系统

Publications (1)

Publication Number Publication Date
CN207336351U true CN207336351U (zh) 2018-05-08

Family

ID=62372653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201721014103.9U Active CN207336351U (zh) 2017-08-14 2017-08-14 一种污水处理系统

Country Status (1)

Country Link
CN (1) CN207336351U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387485A (zh) * 2017-08-14 2019-02-26 宁波方太厨具有限公司 一种污水处理系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387485A (zh) * 2017-08-14 2019-02-26 宁波方太厨具有限公司 一种污水处理系统
CN109387485B (zh) * 2017-08-14 2023-12-15 宁波方太厨具有限公司 一种污水处理系统

Similar Documents

Publication Publication Date Title
US20010003426A1 (en) Method and device for oil-in-water measurement
CN102841060B (zh) 一种在线水质快速检测系统
CN105403524B (zh) 一种在线低能耗野外原位营养盐检测仪及检测方法
CN207336351U (zh) 一种污水处理系统
CN108760642A (zh) 全光谱实时水质分析仪
CN206362693U (zh) 一种安装在水龙头上的水质监测装置
CN2921830Y (zh) 总镉、总铅、总锌、总锰在线自动监测仪
CN208334182U (zh) 一种工业废水自动化检测系统
CN109387485A (zh) 一种污水处理系统
CN100504359C (zh) 用于水体样品中污染物在线监/检测的化学发光检测仪
CN205958442U (zh) 一种基于光谱测量技术的双光路水体环境在线测量装置
CN210833668U (zh) 一种水质监测系统
CN204462005U (zh) 一种水质重金属在线样品检测系统
CN115931451A (zh) 一种适用于地表水监测的采样分析单元
CN211198814U (zh) 一种二次供水水质监测水路控制系统
CN211292571U (zh) 一种内置滤光片的光谱仪
CN209946132U (zh) 带过滤单元的水质一体化检测装置
CN207096096U (zh) 一种净水器
CN207096105U (zh) 一种水质在线检测系统
CN211478142U (zh) 用于水环境水质综合毒性评估的生物预警微型站
CN111596027A (zh) 水质检测装置
CN111175463A (zh) 一种氨氮水质在线自动监测仪
CN203534961U (zh) 人造革废水cod和ss在线检测装置
CN210626317U (zh) 一种自清洁水质检测器
CN107337238A (zh) 一种净水器

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant