CN207250525U - 一种InP HEMT结构 - Google Patents

一种InP HEMT结构 Download PDF

Info

Publication number
CN207250525U
CN207250525U CN201720335468.5U CN201720335468U CN207250525U CN 207250525 U CN207250525 U CN 207250525U CN 201720335468 U CN201720335468 U CN 201720335468U CN 207250525 U CN207250525 U CN 207250525U
Authority
CN
China
Prior art keywords
inp
hemt
cap layers
layer
raceway groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201720335468.5U
Other languages
English (en)
Inventor
黎明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Hiwafer Technology Co Ltd
Original Assignee
Chengdu Hiwafer Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Hiwafer Technology Co Ltd filed Critical Chengdu Hiwafer Technology Co Ltd
Priority to CN201720335468.5U priority Critical patent/CN207250525U/zh
Application granted granted Critical
Publication of CN207250525U publication Critical patent/CN207250525U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

本实用新型涉及一种InP HEMT结构,该InP HEMT材料由在InP衬底上依次外延生长的缓冲层In0.52Al0.48As、复合沟道层、空间隔离层In0.52Al0.48As、平面掺杂层、势垒层InAlAs和高掺杂渐进盖帽层InXGa1‑X构成,通过上述方式,本实用新型这种结构综合应用了低场时InGaAs的高电子迁移率特性及高场时InP的高阈值能量和高饱和速率,既提高了InP HEMT的漏极-源极击穿电压,也保证了其优良毫米波频率特性和提升输出功率和可靠性。

Description

一种InP HEMT结构
技术领域
本实用新型涉及一种InP HEMT结构,属于半导体制造领域。
背景技术
由于HEMT具有的高电子迁移率、低噪声、高功率增益、低功耗、高效率等特点,被大量应用于微波、毫米波单片集成电路和超高速数字集成电路领域中。HEMT的优越频率特性源自其独特的能带结构,即异质结界面的导带不连续性,这种不连续性产生的二维电子气具有很高的迁移率和饱和速度。InP基HEMT具有更极高的截止频率和更很低的噪声,被认为在毫米波段最有竞争力的三端器件之一。早期促进InP基HEMT技术发展的是来自光纤通讯系统的光发射器和光探测器中超高频和宽带信号放大的需求,现在推动技术的主要是军事需求,然而随着直接广播卫星(DBSs)、手提电话、自动防撞系统等的出现,潜在的民用机会也得到发展。现在GaAs 基HEMT技术已经进入规模产业化阶段,但InP基HEMT仍然有一些技术难题有待解决,例如InP基HEMT的应用受限于其较低的沟道击穿电压,使漏极偏置电压较低,进而输出功率密度不高。
自上个世纪八十年代开始,人们通过不断优化外延层结构来改进InP基HEMT和MMIC的功率性能。在毫米波段,已有很多性能优良的InP基HEMT研究报道。为改善InP HEMT的功率性能,人们主要在肖特基势垒材料和沟道材料展开了很多的研究。InP HEMT较低的栅极击穿电压主要是源于其弱的肖特基势垒,通过增加InAlAs势垒中Al的组分或采用InAlP势垒都能够有效地提高器件地栅极-漏极击穿电压。在另一方面,InGaAs沟道中的碰撞电离限制了InP HEMT的输出功率,减少碰撞电离可经由降低InGaAs沟道中In的组分,提高沟道的禁带宽度使其的漏极-源极击穿电压提高3-4 V,同时保持了InP HEMT极佳的高频特性。然而,降低In组分在提高禁带宽度的同时也降低了InGaAs中的电子迁移率,从而恶化HEMT的射频性能。使用更宽禁带的InP作为HEMT沟道可以大幅提高器件漏极-栅极击穿电压。InP在高场下具有很高的饱和电子漂移速度,但在低场下的电子迁移率却比In0.53Ga0.47As低得多,且InP沟道HEMT的薄层电阻和源电阻都比In0.53Ga0.47As要高;并且使用InP沟道比较难于得到低的接触电阻,从而降低HEMT在毫米波段的增益和附加效率。
因此,为兼顾HEMT漏极-源极击穿电压和频率性能,本实用新型中采用复合沟道,是用InP替代部分InGaAs,共同构成HEMT的导通沟道。由于In0.53Ga0.47As具有很高的电子迁移率,而InP的电离阈值能量比In0.53Ga0.47As高,耐电压击穿能力比In0.53Ga0.47As强,所以这种结构综合应用了低场时InGaAs的高电子迁移率特性及高场时InP的高阈值能量和高饱和速率,既提高了HEMT的漏极-源极击穿电压,不只提升输出功率和可靠性也保证了其优良毫米波频率特性。
实用新型内容
为解决上述技术问题,本实用新型采用的一个技术方案是:一种InP HEMT结构,其特征在于,所述器件由下至上依次包括衬底、缓冲层、复合沟道层、空间隔离层、平面掺杂层、势垒层和帽层;
所述复合沟道层从上至下包括不掺杂InGaAs沟道1、为不掺杂InP沟道2和高掺杂InP沟道3,沟道1和沟道2两种结构减小了碰撞电离,有效的提高了够到中的击穿电场强度,沟道3用于低场下为二维电子气提供导电沟道;
所述帽层为高掺杂渐进帽层。
优选地,所述缓冲层为In0.52Al0.48As非掺杂缓冲层,厚度400-800mm,用于吸收InP衬底与后续外延层之间因为晶格失配产生的应力,避免产生晶格驰豫;
优选地,所述空间隔离层用于将施主杂质电离中心和2DEG空间隔离,减小电离散射作用,保证沟道内2DEG的高电子迁移率;
优选地,所述渐进帽层为InXGa1-XAs帽层,厚度为150-300 Å,其中包括若干层结构,每一层结构中In组分含量x从0.53渐进到0。
区别于现有技术的情况,本实用新型的有益效果是:
1.本实用新型提供的这种HEMT外延结构,由于采用了复合沟道(In0.53Ga0.47As/InP/n+-InP)结构,综合应用了低场时InGaAs的高电子迁移率特性及高场时InP的高阈值能量和高饱和速率,既提高了InP HEMT的漏极-栅极击穿电压,也保证了其优良的毫米波频率特性和提升输出功率和可靠性。
2.本实用新型提供的这种HEMT外延结构,其高掺杂渐进盖帽层InXGa1-XAs为器件制备提供了良好的欧姆接触。
3.本实用新型提出的InP HEMT结构具有明显成效,包括极高的截止频率和很低的噪声和提升输出功率和可靠性, 在超高速、超高频如毫米波段等领域具有极强的竞争力。
附图说明
图1是本实用新型InP HEMT结构的结构图。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
参见图1一种InP HEMT结构,其特征在于,所述器件由下至上依次包括衬底1、缓冲层2、复合沟道层3、空间隔离层4、平面掺杂层5、势垒层6和帽层7;
所述复合沟道层从上至下包括不掺杂InGaAs沟道1(31)、为不掺杂InP沟道2(32)和高掺杂InP沟道3(33),沟道1(31)和沟道2(32)两种结构代替了常规InP HEMT中InGaAs沟道的上半部分,这种沟道结构的主要优势是InP中的电离阈值能量较高,两种材料之间的导带不连续性较小,减小了碰撞电离,有效地提高了沟道中的击穿电场强度,沟道3起到载流子提供和沟道的导电作用,用于低场下为二维电子气提供导电沟道;
具体的:
所述缓冲层2为不掺杂In0.52Al0.48As缓冲层,在550℃低温下生长在衬底上,厚度400~800nm,用于吸收InP衬底与后续外延层之间因为晶格失配产生的应力,避免产生晶格驰豫;
所述沟道层3采用金属有机化合物沉积或分子束沉积生长,用于为沟道生长提供一个平整的界面,在低场下为二维电子气提供导电沟道;
所述空间隔离层4用于将施主杂质电离中心和2DEG空间隔离,减小电离散射作用,保证沟道内2DEG的高电子迁移率;
所述帽层7为InXGa1-XAs渐变帽层,厚度为150-300 Å,其中包括若干层结构,每一层结构中In组分含量x从0.53渐进到0。
以上所述仅为本实用新型的实施例,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本实用新型的专利保护范围内。

Claims (4)

1.一种InP HEMT结构,其特征在于,所述结构由下至上依次包括衬底、缓冲层、复合沟道层、空间隔离层、平面掺杂层、势垒层和帽层;
所述复合沟道层从上至下包括不掺杂InGaAs沟道1、不掺杂InP沟道2和高掺杂InP沟道3,沟道1和沟道2两种结构减小了碰撞电离,有效的提高了够到中的击穿电场强度,沟道3用于低场下为二维电子气提供导电沟道;
所述帽层为高掺杂渐进帽层,用于为器件制备提供良好的欧姆接触。
2.根据权利要求1所述的InP HEMT结构,其特征在于:所述缓冲层为In0.52Al0.48As非掺杂缓冲层,厚度400-800mm,用于吸收InP衬底与后续外延层之间因为晶格失配产生的应力,避免产生晶格驰豫。
3.根据权利要求1所述的InP HEMT结构,其特征在于:所述空间隔离层用于将施主杂质电离中心和2DEG空间隔离,减小电离散射作用,保证沟道内2DEG的高电子迁移率。
4.根据权利要求1所述的InP HEMT结构,其特征在于:所述渐进帽层为InXGa1-XAs帽层,厚度为150-300 Å,其中包括若干层结构。
CN201720335468.5U 2017-03-31 2017-03-31 一种InP HEMT结构 Active CN207250525U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201720335468.5U CN207250525U (zh) 2017-03-31 2017-03-31 一种InP HEMT结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201720335468.5U CN207250525U (zh) 2017-03-31 2017-03-31 一种InP HEMT结构

Publications (1)

Publication Number Publication Date
CN207250525U true CN207250525U (zh) 2018-04-17

Family

ID=61875231

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201720335468.5U Active CN207250525U (zh) 2017-03-31 2017-03-31 一种InP HEMT结构

Country Status (1)

Country Link
CN (1) CN207250525U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023124137A1 (zh) * 2021-12-29 2023-07-06 中兴通讯股份有限公司 InP HEMT小信号等效电路模型、参数提取方法、设备和介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023124137A1 (zh) * 2021-12-29 2023-07-06 中兴通讯股份有限公司 InP HEMT小信号等效电路模型、参数提取方法、设备和介质

Similar Documents

Publication Publication Date Title
CN109166916B (zh) 一种绝缘栅双极型晶体管及其制备方法
CN109192771B (zh) 一种电荷存储型绝缘栅双极型晶体管及其制备方法
CN100397655C (zh) 提高氮化镓基高电子迁移率晶体管性能的结构及制作方法
CN207250525U (zh) 一种InP HEMT结构
CN100570887C (zh) 高速砷化镓基复合沟道应变高电子迁移率晶体管材料
CN102842613A (zh) 双异质结构氮化镓基高电子迁移率晶体管结构及制作方法
CN105304706A (zh) Si基MHEMT外延结构
CN209071336U (zh) 一种带半绝缘缓冲层的GaAs基高电子迁移率晶体管材料结构
CN206921824U (zh) 一种具有多层缓冲结构的应变mHEMT结构
CN206878002U (zh) 一种应变mHEMT结构
US8519440B2 (en) Semiconductor device
CN207269025U (zh) 一种新型mHEMT器件
CN100379019C (zh) 双异质结构氮化镓基高电子迁移率晶体管结构及制作方法
CN101814434B (zh) 一种制造氮面极性AlN/AlInN复合背势垒氮化镓场效应管的方法
CN204348720U (zh) 一种复合沟道mhemt微波振荡器
Kim et al. Microwave power GaAs MISFET's with undoped AlGaAs as an insulator
RU2563533C2 (ru) Мощный переключатель свч
RU2563544C1 (ru) Полупроводниковая гетероструктура
CN103943670B (zh) 超结集电区应变硅异质结双极晶体管
Tan et al. 140 GHz 0.1 mu m gate-length pseudomorphic In/sub 0.52/Al/sub 0.48/As/In/sub 0.60/Ga/sub 0.40/As/InP HEMT
Wang et al. Design of Double Delta-Doped Al0. 22Ga0. 78As/In0. 22Ga 0.78 As Pseudomorphic HEMTs
CN101442070A (zh) 砷化镓基增强/耗尽型应变高电子迁移率晶体管材料结构
CN204289458U (zh) 一种抑制背栅效应的砷化镓基赝配高电子迁移率晶体管材料结构
CN107731817A (zh) 制造双极互补金属氧化半导体器件的方法及硅基多层结构
RU2781044C1 (ru) Мощный полевой транзистор свч на полупроводниковой гетероструктуре

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant