CN207067067U - 隔振垫性能实验装置 - Google Patents

隔振垫性能实验装置 Download PDF

Info

Publication number
CN207067067U
CN207067067U CN201721045707.XU CN201721045707U CN207067067U CN 207067067 U CN207067067 U CN 207067067U CN 201721045707 U CN201721045707 U CN 201721045707U CN 207067067 U CN207067067 U CN 207067067U
Authority
CN
China
Prior art keywords
vibration isolator
concrete
pile
sensor
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201721045707.XU
Other languages
English (en)
Inventor
余云燕
刘为民
孙飞飞
付艳艳
陈志敏
马兆云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Jiaotong University
Original Assignee
Lanzhou Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Jiaotong University filed Critical Lanzhou Jiaotong University
Priority to CN201721045707.XU priority Critical patent/CN207067067U/zh
Application granted granted Critical
Publication of CN207067067U publication Critical patent/CN207067067U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本实用新型涉及土木工程技术领域,提供了一种隔振垫性能实验装置,用于测定隔振垫与土体横向厚度的对应关系,所述隔振垫性能实验装置包括隔振垫、混凝土桩、模型槽及测量模块;模型槽包括底板及侧板,底板及侧板围成腔体,侧板包括可移动挡板,隔振垫可改变层数地贴紧于可移动挡板的内侧;腔体内装有土体,且混凝土桩的一端设置于土体内,测量模块与混凝土桩及隔振垫均连接。本实用新型可以准确的测定隔振垫与土体横向厚度之间的对应关系,操作简单。

Description

隔振垫性能实验装置
技术领域
本实用新型涉及土木工程技术领域,具体而言,涉及一种隔振垫性能实验装置。
背景技术
弹性波在桩和土体中传播产生的振动会对周边建筑、场地、生产和生活等产生一定的影响,特别是对精密仪器的生产和运营有较大的影响。隔振垫可以对弹性波的振动起到很好的隔振效果,隔振垫是具有一定弹性的软材料,如橡胶、软木、海绵橡胶、毛毡、玻璃纤维、矿渣棉及泡沫板等。测定隔振垫与土体厚度之间的关系对寸土寸金的城市、企业、高校和科研院所的建设振动分析与减隔振具有重要意义。
实用新型内容
本实用新型的目的在于提供一种隔振垫性能实验装置,用以改善上述问题。
本实用新型是这样实现的:
一种隔振垫性能实验装置,用于测定隔振垫与土体横向厚度的对应关系,所述隔振垫性能实验装置包括隔振垫、混凝土桩、模型槽及测量模块;模型槽包括底板及侧板,底板及侧板围成腔体,侧板包括可移动挡板,隔振垫可改变层数地贴紧于可移动挡板的内侧;腔体内装有土体,且混凝土桩的一端设置于土体内,测量模块与混凝土桩及隔振垫均连接;混凝土桩用于在冲击力锤的水平击振下产生弹性横波;隔振垫用于对弹性横波进行衰减;测量模块用于在可移动挡板的内侧设置第一层数的隔振垫和第二层数的隔振垫时分别获取弹性横波的第一信号幅值和第二信号幅值;可移动挡板用于按照预设距离远离混凝土桩进行移动以改变腔体的体积,使得腔体内的土体量增加时土体的高度不变而横向厚度增加,以使第一信号幅值和第二信号幅值分别减小;测量模块还用于在第一信号幅值和第二信号幅值分别减小至预设值时,对应获取可移动挡板与混凝土桩之间的第一距离和第二距离,以确定隔振垫与土体横向厚度的对应关系。
进一步地,所述测量模块包括传感器单元、电荷放大器和示波器,所述传感器单元可拆卸地安装于所述混凝土桩的另一端、以及所述隔振垫上,所述电荷放大器电性连接于所述传感器单元和所述示波器之间。
进一步地,所述传感器单元包括第一传感器、第二传感器及第三传感器,所述第一传感器可拆卸地安装于所述混凝土桩的另一端,所述第二传感器及所述第三传感器可拆卸地安装于所述隔振垫上,且所述第一传感器、第二传感器及第三传感器均与所述电荷放大器电性连接。
进一步地,所述第一传感器、第二传感器及第三传感器均为加速度传感器。
进一步地,所述可移动挡板包括挡板本体,所述挡板本体上设置有第一通孔及第二通孔,所述第二传感器可拆卸地安装于所述隔振垫上且与所述第一通孔对应,所述第三传感器可拆卸地安装于所述隔振垫上且与所述第二通孔对应。
进一步地,所述可移动挡板还包括第一盖板及第二盖板,所述第一盖板与所述挡板本体铰接以盖合所述第一通孔,所述第二盖板与所述挡板本体铰接以盖合所述第二通孔。
进一步地,所述第一盖板和所述第二盖板均通过合页铰链与所述挡板本体铰接。
进一步地,所述第一盖板和所述第二盖板上均安装有插销。
进一步地,所述第一通孔和所述第二通孔均与所述混凝土桩的侧面对齐。
一种隔振垫性能实验装置,用于测定隔振垫与土体横向厚度的对应关系,所述隔振垫性能实验装置包括冲击力锤、隔振垫、混凝土桩、模型槽及测量模块;模型槽包括底板及侧板,底板及侧板围成腔体,侧板包括可移动挡板,隔振垫可改变层数地贴紧于可移动挡板的内侧;腔体内装有土体,且混凝土桩的一端设置于土体内,测量模块与混凝土桩及隔振垫均连接;混凝土桩用于在冲击力锤的水平击振下产生弹性横波;隔振垫用于对弹性横波进行衰减;测量模块用于在可移动挡板的内侧设置第一层数的隔振垫和第二层数的隔振垫时分别获取弹性横波的第一信号幅值和第二信号幅值;可移动挡板用于按照预设距离远离混凝土桩进行移动以改变腔体的体积,使得腔体内的土体量增加时土体的高度不变而横向厚度增加,以使第一信号幅值和第二信号幅值分别减小;测量模块还用于在第一信号幅值和第二信号幅值分别减小至预设值时,对应获取可移动挡板与混凝土桩之间的第一距离和第二距离,以确定隔振垫与土体横向厚度的对应关系。
相对现有技术,本实用新型具有以下有益效果:本实用新型提供的一种隔振垫性能实验装置,首先,利用冲击力锤水平击振混凝土桩产生弹性横波;其次,通过在可移动挡板的内侧设置第一层数和第二层数的隔振垫时分别获取弹性横波的第一信号幅值和第二信号幅值;再将可移动挡板按照预设距离远离混凝土桩进行移动使得腔体内的土体量增加时土体的高度不变而横向厚度增加,以使第一信号幅值和第二信号幅值分别减小;最后,当第一信号幅值和第二信号幅值分别减小至预设值时,对应获取可移动挡板与混凝土桩之间的第一距离和第二距离,确定出隔振垫与土体横向厚度的对应关系。本实用新型可以准确的测定隔振垫与土体横向厚度之间的对应关系,操作简单,具有良好的实用性。
为使本实用新型的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为使本实用新型实施例的目的、技术方案和优点更加清楚,下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本实用新型一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本实用新型实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本实用新型的实施例的详细描述并非旨在限制要求保护的本实用新型的范围,而是仅仅表示本实用新型的选定实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
图1示出了本实用新型实施例所提供的隔振垫性能实验装置一视角的结构示意图。
图2示出了本实用新型实施例所提供的隔振垫性能实验装置另一视角的结构示意图。
图3示出了本实用新型实施例所提供的模型槽的结构示意图。
图4为图2示出的隔振垫性能实验装置的AA1线截面剖视图。
图标:100-隔振垫性能实验装置;110-模型槽;111-底板;112-第一侧板;113-第二侧板;114-第三侧板;115-可移动挡板;1151-挡板本体;1152-第一通孔;1153-第二通孔;1154-第一盖板;1155-第二盖板;1156-合页铰链;1157-插销;120-混凝土桩;130-隔振垫;140-测量模块;141-传感器单元;1411-第一传感器;1412-第二传感器;1413-第三传感器;143-电荷放大器;145-示波器;160-土体;170-冲击力锤。
具体实施方式
下面将结合本实用新型实施例中附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本实用新型实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本实用新型的实施例的详细描述并非旨在限制要求保护的本实用新型的范围,而是仅仅表示本实用新型的选定实施例。基于本实用新型的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
在本实用新型的描述中,还需要说明的是,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本实用新型中的具体含义。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
下面结合附图,对本实用新型的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请结合参照图1和图2,隔振垫性能实验装置100包括模型槽110、混凝土桩120、隔振垫130、测量模块140、土体160及冲击力锤170,模型槽110内装有土体160,混凝土桩120的一端设置于土体160内,隔振垫130可改变层数的贴紧于模型槽110的内侧,测量模块140与混凝土桩120及隔振垫130均连接,冲击力锤170用于水平击振混凝土桩120以产生弹性横波。
请参照图3,模型槽110包括底板111及侧板,侧板包括第一侧板112、第二侧板113、第三侧板114及可移动挡板115,底板111、第一侧板112、第二侧板113、第三侧板114及可移动挡板115围成腔体,腔体内装有土体160。
在本实施例中,底板111可以是方形底板,底板111的尺寸可以为长×宽=1.0m×1.0m,底板111可以是钢板。
在本实施例中,第一侧板112位于模型槽110的后侧,第一侧板112可以是有机玻璃,且第一侧板112的外侧设置有用于固定有机玻璃的固定板,第一侧板112的尺寸可以是宽×高=1.0m×0.8m,固定板可以是5#角钢。
在本实施例中,第二侧板113位于模型槽110的左侧,第二侧板113可以是有机玻璃,且第二侧板113的外侧设置有用于固定有机玻璃的固定板,第二侧板113的尺寸可以是宽×高=1.0m×0.8m,固定板可以是5#角钢。
在本实施例中,第三侧板114位于模型槽110的前侧,第三侧板114可以是有机玻璃,且第三侧板114的外侧设置有用于固定有机玻璃的固定板,第三侧板114的尺寸可以是宽×高=1.0m×0.8m,固定板可以是5#角钢。
在本实施例中,第一侧板112与第二侧板113之间、以及第二侧板113与第三侧板114之间均通过10#角钢固定连接,第一侧板112、第二侧板113、第三侧板114与底板111之间均通过5#角钢固定连接。
在本实施例中,可移动挡板115位于模型槽110的右侧,可移动挡板115用于按照预设距离在底板111上进行移动以改变腔体的体积,使得腔体内的土体量增加时土体160的高度不变而横向厚度改变。可移动挡板115包括挡板本体1151、第一通孔1152、第二通孔1153、第一盖板1154及第二盖板1155,第一通孔1152及第二通孔1153均开设于挡板本体1151上,第一盖板1154及第二盖板1155均与挡板本体1151铰接。
在本实施例中,挡板本体1151的尺寸可以是宽×高=1.0m×0.8m。挡板本体1151的上设置有三块固定板,三块固定板将挡板本体1151分为尺寸相等的第一部分和第二部分,第一通孔1152开设于第一部分的中心处,第二通孔1153开设于第二部分的中心处,且第二通孔1153靠近底板111。第一通孔1152和第二通孔1153的尺寸均可以是长×宽=0.15m×0.15m。
在本实施例中,第一盖板1154与挡板本体1151铰接以盖合第一通孔1152,第二盖板1155与挡板本体1151铰接以盖合第二通孔1153。第一盖板1154和第二盖板1155的尺寸均可以是长×宽=0.15m×0.15m。
在本实施例中,第一盖板1154和第二盖板1155上均设置有合页铰链1156和插销1157,第一盖板1154和第二盖板1155的左侧均通过合页铰链1156与挡板本体1151铰接。第一盖板1154和第二盖板1155的右侧均安装于插销1157以使第一盖板1154和第二盖板1155分别盖合第一通孔1152和第二通孔1153。作为一种实施方式,合页铰链1156可以是3寸合页铰链,插销1157可以是3寸不锈钢插销门栓。
请参照图4,混凝土桩120的竖直插入模型槽110,使得混凝土桩120的一端设置于土体160内且混凝土桩120的侧面与第一通孔1152和第二通孔1153均对齐。混凝土桩120用于在在冲击力锤170的水平击振下产生弹性横波,混凝土桩120的横截面为方形,其尺寸为长×宽×高=0.15m×0.15m×1.5m。
在本实施例中,隔振垫130可改变层数地贴紧于可移动挡板115的内侧,隔振垫130用于对弹性横波进行衰减,其尺寸可以是长×宽=1.0m×0.8m。作为一种实施方式,隔振垫130可以是橡胶、软木、海绵橡胶、毛毡、玻璃纤维、矿渣棉及泡沫板等,在本实施例中,隔振垫130选择泡沫板。
在本实施例中,测量模块140包括传感器单元141、电荷放大器143及示波器145,传感器单元141可拆卸地安装于混凝土桩120远离模型槽110的一端、以及隔振垫130上,电荷放大器143电性连接于传感器单元141及示波器145之间。
在本实施例中,传感器单元141用于获得衰减后的弹性横波,并将弹性横波转换为电信号。传感器单元141包括第一传感器1411、第二传感器1412及第三传感器1413,第一传感器1411可拆卸地安装于混凝土桩120远离模型槽110的一端,第二传感器1412及第三传感器1413可拆卸地安装于隔振垫130上,且第一传感器1411、第二传感器1412及第三传感器1413均与电荷放大器143电性连接。也就是说,第一传感器1411、第二传感器1412及第三传感器1413均用于获得衰减后的弹性横波,并分别将弹性横波转换为电信号。
在本实施例中,第一传感器1411可以用胶粘在混凝土桩120距离桩顶10cm且靠近可移动挡板115的侧面中间位置。第二传感器1412可以用胶粘在隔振垫130上且与第一通孔1152的中心对应,第三传感器1413可以用胶粘在隔振垫130上且与第二通孔1153的中心对应。作为一种实施方式,第一传感器1411、第二传感器1412及第三传感器1413均可以是加速度传感器、速度传感器等。
在本实施例中,第一传感器1411、第二传感器1412及第三传感器1413均选择压电式加速度传感器,该压电式加速度传感器的频率范围为0.5~10kHz,参考灵敏度1.88pC/m.s-2
在本实施例中,电荷放大器143用于将第一传感器1411、第二传感器1412及第三传感器1413发送的电信号进行放大,并发送至示波器145,该电荷放大器143的频率范围0.3Hz~500Hz,低噪声小于5μV。
在本实施例中,示波器145用于对放大后的电信号进行显示,以得到第一传感器1411、第二传感器1412及第三传感器1413获得的弹性横波的信号幅值,该示波器145的带宽≥440MHz,采样速度为5Gs/s。
在本实施例中,土体160为重塑土,体积约1.5m3
在本实施例中,隔振垫性能实验装置100采用以下方法进行实验,实验过程包括以下步骤:
步骤S101,当可移动挡板115的内侧设置第一层数的隔振垫130时,获得弹性横波的第一信号幅值。
在本实施例中,获得弹性横波的第一信号幅值之前,需要设置隔振垫性能实验装置100。首先,隔振垫性能实验装置100的设置过程如下:确定土体160的压实度和含水率;其次,设置混凝土桩120与第二侧板113的距离为第一预设距离(例如,15cm);第三,在模型槽110的底板111上铺设预设厚度(例如,10cm)的土层并压实;第四,将混凝土桩120放入模型槽110,使得混凝土桩120与第二侧板113的距离为第一预设距离(例如,15cm)且居中放置;第四,将第一层数(例如,1层)隔振垫130贴紧于可移动挡板115的内侧,使可移动挡板115与底板111、第一侧板112、第二侧板113及第三侧板114形成腔体并固定在初始位置(例如,可移动挡板115与混凝土桩120之间的距离为10cm);第五,将土体160分层压实到预设高度(例如,0.8m);第六,将第一传感器1411用胶粘在混凝土桩120距离桩顶10cm且靠近可移动挡板115的侧面中间位置;第七,打开第一盖板1154的插销1157,拉开第一盖板1154,将第二传感器1412用胶粘在隔振垫130上且与第二通孔1153的中心对应;并打开第二盖板1155的插销1157,拉开第二盖板1155,将第三传感器1413用胶粘在隔振垫130上且与第二通孔1153的中心对应;第八,将第一传感器1411、第二传感器1412及第三传感器1413均与电荷放大器143电性连接,且将电荷放大器143与示波器145电性连接;第九,在混凝土桩120靠近第二侧板113的侧面距离桩顶40cm处,用冲击力锤170水平击振混凝土桩120,示波器145显示弹性横波的第一信号幅值。
步骤S102,调整可移动挡板115,使第一信号幅值减小至预设值时,获取可移动挡板115与混凝土桩120之间的第一距离。
在本实施例中,获取第一距离的过程可以包括:首先,卸下第二传感器1412及第三传感器1413,合上第一盖板1154和第二盖板1155,插上插销1157;其次,将可移动挡板115按照第二预设距离(例如,10cm)远离混凝土桩120进行移动以改变腔体的体积,使得腔体内土体160的高度不变而横向厚度增加,并将与可移动挡板115接触的土体160的侧面刮毛;第三,重复步骤S101中的第七~第九中介绍的步骤,使得可移动挡板115持续按照第二预设距离(例如,10cm)远离混凝土桩120进行递增移动,以使示波器145中显示的弹性横波的第一信号幅值逐渐减小;第四,当第二传感器1412和第三传感器1413在示波器145中显示的弹性横波的第一信号幅值减小至预设值(例如,0)时,表明可移动挡板115与混凝土桩120之间的土体160和第一层数的隔振垫130完全吸收了土体160中的弹性横波,获取可移动挡板115与混凝土桩120之间的第一距离D1,此时,第一距离D1就是第一层数的隔振垫130情况下土体160中弹性横波的衰减范围。
步骤S103,当可移动挡板115的内侧设置第二层数的隔振垫130时,获得弹性横波的第二信号幅值。
在本实施例中,首先,将第一层数(例如,2层)隔振垫130贴紧于可移动挡板115的内侧,使可移动挡板115与底板111、第一侧板112、第二侧板113及第三侧板114形成腔体并固定在初始位置(例如,可移动挡板115与混凝土桩120之间的距离为10cm);然后,重复步骤S101中的步骤,示波器145显示弹性横波的第二信号幅值。
步骤S104,调整可移动挡板115,使第二信号幅值减小至预设值时,获取可移动挡板115与混凝土桩120之间的第二距离。
在本实施例中,当第二传感器1412和第三传感器1413在示波器145中显示的弹性横波的第二信号幅值减小至预设值(例如,0)时,表明可移动挡板115与混凝土桩120之间的土体160和第二层数的隔振垫130完全吸收了土体160中的弹性横波,获取可移动挡板115与混凝土桩120之间的第二距离D2,此时,第二距离D1就是第二层数的隔振垫130情况下土体160中弹性横波的衰减范围。
步骤S105,根据第一距离和第二距离,确定隔振垫130与土体160横向厚度的对应关系。
在本实施例中,根据上述步骤,可以确定第二层数-第一层数(例如,1层)的隔振垫130与土体160横向厚度的对应关系为ΔD=D1-D2,也就是说,第二层数-第一层数(例如,1层)的隔振垫130的隔振性能相当于ΔD=D1-D2横向厚度的的土体160,因此,土体160的弹性横波衰减范围为D=D1+ΔD或D=D2+2ΔD。
本实用新型实施例所提供的隔振垫性能实验装置100的工作原理是:首先,混凝土桩120在冲击力锤170的水平击振下产生弹性横波;其次,隔振垫130和土体160对弹性横波进行衰减;第三,测量模块140在可移动挡板115的内侧设置第一层数的隔振垫130和第二层数的隔振垫130时分别获取弹性横波的第一信号幅值和第二信号幅值;第四,可移动挡板115按照预设距离远离混凝土桩120进行移动以改变腔体的体积,使得腔体内土体160的高度不变而横向厚度增加,以使第一信号幅值和第二信号幅值分别减小;第五,测量模块140在第一信号幅值和第二信号幅值分别减小至预设值时,对应获取可移动挡板115与混凝土桩120之间的第一距离D1和第二距离D2,确定出第二层数-第一层数(例如,1层)的隔振垫130与土体160横向厚度的对应关系为ΔD=D1-D2,土体160的弹性横波衰减范围为D=D1+ΔD或D=D2+2ΔD。
综上所述,本实用新型提供的一种隔振垫性能实验装置,用于测定隔振垫与土体横向厚度的对应关系,其包括隔振垫、混凝土桩、模型槽及测量模块,模型槽包括底板及侧板,底板及侧板围成腔体,侧板包括可移动挡板,隔振垫可改变层数地贴紧于可移动挡板的内侧,腔体内装有土体,且混凝土桩的一端设置于土体内,测量模块与混凝土桩及隔振垫均连接,混凝土桩用于在冲击力锤的水平击振下产生弹性横波;隔振垫用于对弹性横波进行衰减;测量模块用于在可移动挡板的内侧设置第一层数的隔振垫和第二层数的隔振垫时分别获取弹性横波的第一信号幅值和第二信号幅值;可移动挡板用于按照预设距离远离混凝土桩进行移动以改变腔体的体积,使得腔体内的土体量增加时土体的高度不变而横向厚度增加,以使第一信号幅值和第二信号幅值分别减小;测量模块还用于在第一信号幅值和第二信号幅值分别减小至预设值时,对应获取可移动挡板与混凝土桩之间的第一距离和第二距离,以确定隔振垫与土体横向厚度的对应关系。本实用新型可以准确的测定隔振垫与土体横向厚度之间的对应关系,操作简单,具有良好的实用性。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
以上所述仅为本实用新型的优选实施例而已,并不用于限制本实用新型,对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (10)

1.一种隔振垫性能实验装置,其特征在于,用于测定隔振垫与土体横向厚度的对应关系,所述隔振垫性能实验装置包括隔振垫、混凝土桩、模型槽及测量模块;
所述模型槽包括底板及侧板,所述底板及侧板围成腔体,所述侧板包括可移动挡板,所述隔振垫可改变层数地贴紧于所述可移动挡板的内侧;
所述腔体内装有土体,且所述混凝土桩的一端设置于所述土体内,所述测量模块与所述混凝土桩及所述隔振垫均连接;
所述混凝土桩用于在冲击力锤的水平击振下产生弹性横波;
所述隔振垫用于对所述弹性横波进行衰减;
所述测量模块用于在可移动挡板的内侧设置第一层数的隔振垫和第二层数的隔振垫时分别获取所述弹性横波的第一信号幅值和第二信号幅值;
所述可移动挡板用于按照预设距离远离所述混凝土桩进行移动以改变腔体的体积,使得腔体内的土体量增加时土体的高度不变而横向厚度增加,以使所述第一信号幅值和第二信号幅值分别减小;
所述测量模块还用于在第一信号幅值和第二信号幅值分别减小至预设值时,对应获取所述可移动挡板与所述混凝土桩之间的第一距离和第二距离,以确定所述隔振垫与土体横向厚度的对应关系。
2.如权利要求1所述的隔振垫性能实验装置,其特征在于,所述测量模块包括传感器单元、电荷放大器和示波器,所述传感器单元可拆卸地安装于所述混凝土桩的另一端、以及所述隔振垫上,所述电荷放大器电性连接于所述传感器单元和所述示波器之间。
3.如权利要求2所述的隔振垫性能实验装置,其特征在于,所述传感器单元包括第一传感器、第二传感器及第三传感器,所述第一传感器可拆卸地安装于所述混凝土桩的另一端,所述第二传感器及所述第三传感器可拆卸地安装于所述隔振垫上,且所述第一传感器、第二传感器及第三传感器均与所述电荷放大器电性连接。
4.如权利要求3所述的隔振垫性能实验装置,其特征在于,所述第一传感器、第二传感器及第三传感器均为加速度传感器。
5.如权利要求3所述的隔振垫性能实验装置,其特征在于,所述可移动挡板包括挡板本体,所述挡板本体上设置有第一通孔及第二通孔,所述第二传感器可拆卸地安装于所述隔振垫上且与所述第一通孔对应,所述第三传感器可拆卸地安装于所述隔振垫上且与所述第二通孔对应。
6.如权利要求5所述的隔振垫性能实验装置,其特征在于,所述可移动挡板还包括第一盖板及第二盖板,所述第一盖板与所述挡板本体铰接以盖合所述第一通孔,所述第二盖板与所述挡板本体铰接以盖合所述第二通孔。
7.如权利要求6所述的隔振垫性能实验装置,其特征在于,所述第一盖板和所述第二盖板均通过合页铰链与所述挡板本体铰接。
8.如权利要求6所述的隔振垫性能实验装置,其特征在于,所述第一盖板和所述第二盖板上均安装有插销。
9.如权利要求5所述的隔振垫性能实验装置,其特征在于,所述第一通孔和所述第二通孔均与所述混凝土桩的侧面对齐。
10.一种隔振垫性能实验装置,其特征在于,用于测定隔振垫与土体横向厚度的对应关系,所述隔振垫性能实验装置包括冲击力锤、隔振垫、混凝土桩、模型槽及测量模块;
所述模型槽包括底板及侧板,所述底板及侧板围成腔体,所述侧板包括可移动挡板,所述隔振垫可改变层数地贴紧于所述可移动挡板的内侧;
所述腔体内装有土体,且所述混凝土桩的一端设置于所述土体内,所述测量模块与所述混凝土桩及所述隔振垫均连接;
所述混凝土桩用于在冲击力锤的水平击振下产生弹性横波;
所述隔振垫用于对所述弹性横波进行衰减;
所述测量模块用于在可移动挡板的内侧设置第一层数的隔振垫和第二层数的隔振垫时分别获取所述弹性横波的第一信号幅值和第二信号幅值;
所述可移动挡板用于按照预设距离远离所述混凝土桩进行移动以改变腔体的体积,使得腔体内的土体量增加时土体的高度不变而横向厚度增加,以使所述第一信号幅值和第二信号幅值分别减小;
所述测量模块还用于在第一信号幅值和第二信号幅值分别减小至预设值时,对应获取所述可移动挡板与所述混凝土桩之间的第一距离和第二距离,以确定所述隔振垫与土体横向厚度的对应关系。
CN201721045707.XU 2017-08-21 2017-08-21 隔振垫性能实验装置 Expired - Fee Related CN207067067U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201721045707.XU CN207067067U (zh) 2017-08-21 2017-08-21 隔振垫性能实验装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201721045707.XU CN207067067U (zh) 2017-08-21 2017-08-21 隔振垫性能实验装置

Publications (1)

Publication Number Publication Date
CN207067067U true CN207067067U (zh) 2018-03-02

Family

ID=61516128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201721045707.XU Expired - Fee Related CN207067067U (zh) 2017-08-21 2017-08-21 隔振垫性能实验装置

Country Status (1)

Country Link
CN (1) CN207067067U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107271563A (zh) * 2017-08-21 2017-10-20 兰州交通大学 隔振垫性能实验装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107271563A (zh) * 2017-08-21 2017-10-20 兰州交通大学 隔振垫性能实验装置及方法
CN107271563B (zh) * 2017-08-21 2023-03-31 兰州交通大学 隔振垫性能实验装置及方法

Similar Documents

Publication Publication Date Title
CN106836317B (zh) 一种考虑土塞效应的沉桩模型试验装置及其应用
CN103149078A (zh) 一种基于拉压扭剪耦合的应力路径三轴仪
CN103510503B (zh) 一种夯点土体加固状态振动实时监控方法
Kim et al. A shear wave velocity tomography system for geotechnical centrifuge testing
CN106124316A (zh) 散粒体岩土材料各向异性的室内真三轴试验方法
Nazarian et al. Quality management of flexible pavement layers with seismic methods
US20230251221A1 (en) In-situ evaluation method and system for loess collapsibility based on non-destructive time-domain reflection technology
CN107843711A (zh) 一种基于冲击加速度的强夯施工效果检测方法
CN207067067U (zh) 隔振垫性能实验装置
CN107345883B (zh) 硅溶胶加固大范围砂土的强度分析装置及方法
CN209798849U (zh) 采用双气压膜竖向加载的分层式桩基试验装置
CN207066593U (zh) 横波衰减测量装置
CN114910367A (zh) 一套适用于土体大小应变测量的室内静力触探、弯曲元联合试验系统
CN108343099B (zh) 动波压力下桩的水平承载力测试装置及测试方法
CN107271563A (zh) 隔振垫性能实验装置及方法
CN207067064U (zh) 隔振垫性能实验装置
CN208350200U (zh) 一种测量粗粒土剪切波速的试验装置及系统
CN207066594U (zh) 纵波衰减测量装置
CN107356675A (zh) 隔振垫性能实验装置及方法
CN107356317A (zh) 横波衰减测量装置及方法
Amat Elastic stiffness moduli of Hostun sand
CN201221940Y (zh) 一种裂缝深度测试仪
CN108931449A (zh) 一种利用标定罐的可变能量动力触探方法
CN109030629B (zh) 一种基于pzt的钢混结构胶结质量评价装置及方法
CN110307946B (zh) 一种燃气管道泄漏检测用模拟测量装置及其测试方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180302

Termination date: 20210821

CF01 Termination of patent right due to non-payment of annual fee