CN206920009U - A kind of MEMS platform based on optical detection - Google Patents

A kind of MEMS platform based on optical detection Download PDF

Info

Publication number
CN206920009U
CN206920009U CN201720407299.1U CN201720407299U CN206920009U CN 206920009 U CN206920009 U CN 206920009U CN 201720407299 U CN201720407299 U CN 201720407299U CN 206920009 U CN206920009 U CN 206920009U
Authority
CN
China
Prior art keywords
platform
array
laser
vibration
diode array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201720407299.1U
Other languages
Chinese (zh)
Inventor
杜亦佳
周泉丰
代刚
张健
李顺
刘利芳
方雯
任尚清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronic Engineering of CAEP
Original Assignee
Institute of Electronic Engineering of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronic Engineering of CAEP filed Critical Institute of Electronic Engineering of CAEP
Priority to CN201720407299.1U priority Critical patent/CN206920009U/en
Application granted granted Critical
Publication of CN206920009U publication Critical patent/CN206920009U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

The utility model discloses a kind of MEMS platform based on optical detection, including:Main platform body, optical de-tection means and outer enclosure plate;Main platform body includes shaking platform;Main platform body and optical de-tection means are encapsulated in inside confined space by outer enclosure plate shape into confined space;Optical de-tection means include laser, speculum, diode array;Speculum is horizontally fixed at the top of shaking platform, and minute surface is towards the top of outer enclosure plate;Laser and diode array are located at outer enclosure plate inside top, and diode array includes multiple photodiodes;Diode array is centered around around laser;The illumination that laser is sent is mapped on speculum, and the reflected light formed after the reflection of speculum is irradiated on diode array;The light intensity of Diode Array Detector reflected light.MEMS platform disclosed in the utility model, the linearity of measurement result is improved, improves accuracy of detection.

Description

Micro electro mechanical system platform based on optical detection
Technical Field
The utility model relates to a micro-electromechanical system field especially relates to a micro-electromechanical system platform based on optical detection.
Background
A Micro-Electro-Mechanical System (MEMS) platform is a Micro-scale platform that is supported by a special support structure. The micro electro mechanical system platform can realize multi-axis motion including vibration, translation and the like under the drive control of MEMS drive technologies such as electrostatic drive, electromagnetic drive, piezoelectric drive and the like, and can be applied to positioning and moving of MEMS small-sized devices.
The MEMS piezoelectric actuator for realizing drive control by utilizing the piezoelectric drive technology has the advantages of small volume, light weight, low price, high displacement resolution, large output force, large bearing load, high response speed, large instantaneous acceleration and the like, is widely concerned, and is a device suitable for providing high-resolution positioning and high-dynamic motion characteristics for a micro-electro-mechanical system platform.
However, the piezoelectric material used in the MEMS piezoelectric actuator is prone to creep, and the positioning accuracy and displacement accuracy of the MEMS piezoelectric actuator are greatly reduced under the influence of the creep. Creep is the phenomenon that strain of a fixing material increases with time under the condition of keeping the stress unchanged. Therefore, implementing feedback control for this type of mems platform is an effective way to precisely control the vibrational state of the mems platform.
The feedback control is also called closed-loop control, that is, a control mode for controlling the vibration state of the mems platform according to the output signal of the mems platform, that is, comparing the deviation between the output vibration and the expected vibration, and eliminating the deviation to obtain the expected vibration output. Therefore, to apply feedback control to the MEMS platform, the vibration state of the MEMS platform must be monitored.
In the prior art, the technical means for monitoring the vibration state of the mems platform mostly adopts the technical means of integrating a capacitor detection structure on the back of the mems platform to detect the vibration state of the mems platform, that is, a flat capacitor structure is integrated on the lower surface of the mems platform and the upper surface of the base, and the acceleration value of the vibration generated by the mems platform can be measured by measuring the output current of the flat capacitor.
However, the biggest problem of using the plate capacitor to measure the vibration is that the capacitance value is not linear with the displacement change of the mems platform in the vibration process, and needs to be corrected additionally, and because the capacitance value is small, the requirement on the input impedance of the measurement circuit is high, and the influence of factors such as parasitic capacitance and the like makes the signal processing difficult, the linearity of the measurement result of the technical means of integrating the capacitance detection structure on the mems platform is poor, and the detection precision is not high enough.
Disclosure of Invention
The utility model aims at providing an optical detection's micro-electromechanical system platform has improved measuring result's linearity, has improved the detection precision.
In order to achieve the above object, the utility model provides a following scheme:
an optical inspection-based mems platform, comprising: the optical detection device comprises a platform main body, an optical detection mechanism and an external packaging plate; the platform body comprises a vibration platform; the external packaging plate forms a closed space, and the platform main body and the optical detection mechanism are packaged in the closed space; the optical detection mechanism comprises a laser, a reflector and a diode array; the reflector is horizontally fixed on the top of the vibration platform, and the mirror surface faces the top of the external packaging plate; the laser and the diode array are located inside the top of the outer package plate, the diode array comprising a plurality of photodiodes; the diode array surrounding the laser; the light emitted by the laser irradiates the reflecting mirror, and reflected light formed after the light is reflected by the reflecting mirror irradiates the diode array; the diode array detects the intensity of the reflected light.
Optionally, the diode array comprises a first array and a second array; the first array is positioned at the periphery of the laser; the second array is located at the periphery of the first array; the number and arrangement of the photodiodes in the first array is the same as the number and arrangement of the photodiodes in the second array.
Optionally, the connecting lines of all adjacent photodiodes in the first array form an equilateral polygon; and the connecting lines of all the adjacent photodiodes in the second array form an equilateral polygon.
Optionally, a connection line between the position of the photodiode in any corner of the equilateral polygon in the second array and the corresponding position of the photodiode in the first array passes through the position of the laser.
Optionally, the optical detection mechanism further comprises a bias electrode; the bias electrode is installed on the external packaging plate, the laser and the diode array are electrically connected with an external device through the bias electrode, and the external device comprises a power supply for providing electric energy for the laser and a data processing device for analyzing electric signals of the diode array.
Optionally, the platform main body further comprises a driving structure, and the driving structure is located at the bottom and around the vibration platform and drives the vibration platform to vibrate.
Optionally, the driving structure includes a horizontal driving structure and a vertical driving structure; the horizontal driving structure is positioned at the periphery of the vibration platform and drives the vibration platform to generate horizontal vibration; the vertical driving structure is positioned at the bottom of the vibration platform and drives the vibration platform to generate vertical vibration.
Optionally, the platform body further comprises a support structure; the support structure is used for supporting the vibration platform and the driving structure.
According to the utility model provides a concrete embodiment, the utility model discloses a following technological effect: the utility model discloses an optical detection mechanism has been integrated in the platform main part, and optical detection mechanism's speculum is installed on vibration platform, and along with vibration platform's vibration, the speculum can produce corresponding displacement to the light intensity that makes the reverberation of shining on the diode changes, thereby can analyze out vibration platform's vibration state through the change that detects the light intensity. The utility model discloses a detection device can guarantee that the displacement that vibration platform produced in the vibration process has linear relation with the light intensity that detects, has improved measuring result's linearity, has improved the detection precision. Simultaneously the utility model discloses an optical detection mechanism is mutually independent with the platform main part, has guaranteed the independence of production process, and loading and unloading are convenient. Because the setting of optical detection mechanism can not influence the motion state of platform main part, does not have too big correlation in the physical structure, makes the utility model discloses an optical detection mechanism can also use in various micro-electromechanical system, has the commonality.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required to be used in the embodiments will be briefly described below, and it is obvious that the drawings in the following description are only some embodiments of the present invention, and for those skilled in the art, other drawings can be obtained according to these drawings without inventive labor.
FIG. 1 is a diagram of a first embodiment of an optical inspection-based MEMS platform according to the present invention;
FIG. 2 is a diagram of a first embodiment of an optical inspection mechanism of the MEMS platform according to the present invention;
fig. 3 is a device structure diagram of an optical inspection mechanism according to the second embodiment of the mems platform based on optical inspection of the present invention.
Detailed Description
The technical solutions in the embodiments of the present invention will be described clearly and completely with reference to the accompanying drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only some embodiments of the present invention, not all embodiments. Based on the embodiments in the present invention, all other embodiments obtained by a person skilled in the art without creative work belong to the protection scope of the present invention.
In order to make the above objects, features and advantages of the present invention more comprehensible, the present invention is described in detail with reference to the accompanying drawings and the detailed description.
Fig. 1 is a device structure diagram of a mems platform based on optical detection according to the first embodiment of the present invention.
Referring to fig. 1, the mems platform based on optical detection includes: the device comprises a platform main body 1, an optical detection mechanism 2 and an external packaging plate 3;
the platform body 1 comprises a vibration platform 101, a driving structure 102 and a supporting structure 103; the driving structures 102 are located at the bottom and the periphery of the vibration platform 101 and drive the vibration platform 101 to vibrate; the supporting structure 103 is used for supporting the vibration platform 101 and the driving structure 102; the driving structure 102 includes a horizontal driving structure 1021 and a vertical driving structure 1022; the horizontal driving structure 1021 is positioned around the vibration platform 101 and drives the vibration platform 101 to generate horizontal vibration; the vertical driving structure 1022 is located at the bottom of the vibration platform 101, and drives the vibration platform 101 to generate vertical vibration;
the external packaging plate 3 forms a closed space, and the platform main body 1 and the optical detection mechanism 2 are packaged in the closed space; the external packaging plate 3 is made of silicon material and is processed by a deep silicon etching method.
The optical detection mechanism 2 comprises a laser 201, a reflector 202, a diode array 203 and a bias electrode 204; the reflector 202 is horizontally fixed on the top of the vibrating platform 101, and the mirror surface faces to the top of the external packaging plate 3; the Laser 201 is a Vertical Cavity Surface Emitting Laser (VCSEL), the Laser 201 and the diode array 203 are located on the inner side of the top of the external package board 3, and the diode array 203 includes a plurality of photodiodes; the diode array 203 surrounds the laser 201; the light emitted by the laser 201 is irradiated onto the reflecting mirror 202, and the reflected light formed after the reflection of the reflecting mirror 202 is irradiated onto the diode array 203; the diode array 203 detects the intensity of the reflected light. The bias electrode 204 is mounted on the external packaging plate 3, the laser 201 and the diode array 203 are electrically connected with an external device through the bias electrode 204, and the external device comprises a power supply for providing electric energy for the laser and a data processing device for analyzing electric signals of the diode array; the bias electrode 204 is a lead-out wire on the laser 201 and the diode array 203, and the bias electrode 204 passes through a lead-out through hole on the external packaging plate 3; the lead-out Through hole is processed by a Through Silicon Via (TSV) technology; the laser 201 and the diode array 203 are flip-chip mounted on top of the external package board 3.
The data processing device calculates the optical path of the light emitted by the laser 201 according to the light intensity of the reflected light detected by the diode array 203; and determining the vibration state of the vibration platform 101 according to the change of the optical path.
Fig. 2 is a device structure diagram of an optical inspection mechanism according to the first embodiment of the mems platform based on optical inspection of the present invention.
Referring to fig. 2, the diode array 203 includes a first array 2031 and a second array 2032; the first array 2031 is located at the periphery of the laser 201; the second array 2032 is located at the periphery of the first array 2031; the number and arrangement of the photodiodes in the first array 2031 is the same as the number and arrangement of the photodiodes in the second array 2032. In this embodiment, the number of photodiodes in the first array 2031 and the second array 2032 is 8.
The lines of all adjacent photodiodes in the first array 2031 form an equilateral polygon; the lines connecting all adjacent photodiodes in the second array 2032 form an equilateral polygon. The connection line between the photodiode position of any corner of the equilateral polygon in the second array 2032 and the corresponding photodiode position of the first array 2031 passes through the position of the laser 201, that is, any side of the equilateral polygon of the first array 2031 is parallel to the corresponding side of the equilateral polygon of the second array 2032. In this embodiment, the lines connecting all adjacent photodiodes in the first array 2031 form an equilateral octagon, and the lines connecting all adjacent photodiodes in the second array 2032 form an equilateral octagon.
The utility model discloses a vibration platform's vibration state's detection principle as follows: when the vibration platform 101 vibrates, the reflector 202 is driven by the vibration platform 101 to vibrate synchronously, and when light emitted by the laser 201 irradiates the reflector 202, the optical path of the light emitted by the laser 201 changes due to the continuous change of the position of the reflector 202, so that the light intensity reaching the diode array 203 changes; the light intensity of the reflected light detected by the diode array 203 can obtain the change of the optical path of the light emitted from the laser 201, so that the vibration state of the vibration platform 101 can be obtained through analysis according to the change of the optical path.
The utility model discloses a detection device can guarantee that the displacement that vibration platform produced in the vibration process has linear relation with the light intensity that detects, has improved measuring result's linearity, has improved the detection precision. Simultaneously the utility model discloses an optical detection mechanism is mutually independent with the platform main part, has guaranteed the independence of production process, and loading and unloading are convenient. Because the setting of optical detection mechanism can not influence the motion state of platform main part, does not have too big correlation in the physical structure, makes the utility model discloses an optical detection mechanism can also use in various micro-electromechanical system, has the commonality.
Utilize the utility model discloses a micro-electromechanical system platform detects method of vibration platform motion state based on optical detection includes:
establishing a rectangular coordinate system by taking the laser 201 as an origin and taking the emitting direction of the light emitted by the laser 201 as a z-axis, and acquiring the light intensity of each coordinate position (x, y, z):
wherein I (x, y, z) represents the light intensity at the coordinate position (x, y, z); p represents the total power of the light emitted by the laser; w (z) represents the radius of the light after a distance of z is emitted downward, andawindicating the divergence angle of the light emitted by the laser.
Acquiring the optical power detected by each photodiode in the first array;
acquiring the optical power detected by each photodiode in the second array;
calculating the sum of the optical powers detected by all the photodiodes in the first array to obtain the total optical power of the first array;
calculating the sum of the optical power detected by each photodiode in the second array to obtain the total optical power of the second array;
comprehensively analyzing the optical path of the light by the total optical power of the first array, the total optical power of the second array and the light intensity at the coordinate position (x, y, z);
and determining the vibration state of the vibration platform according to the optical path of the light.
Or,
establishing a rectangular coordinate system by taking the laser 201 as an origin and taking the emitting direction of the light emitted by the laser 201 as a z-axis, and acquiring the light intensity of each coordinate position (x, y, z);
calculating the difference values of the optical power detected by all two photodiodes which are symmetrical relative to the center of the origin in the first array to obtain the difference value of the first array;
calculating the difference values of the optical power detected by all the two photodiodes which are symmetrical relative to the center of the origin in the second array to obtain the difference values of the second array;
calculating the difference value of the optical power detected by the photodiodes in the first array and the second array opposite to the direction of the origin to obtain the difference value between the arrays;
comprehensively analyzing the light path of the light by the first array differential value, the second array differential value, the inter-array differential value and the light intensity at the coordinate position (x, y, z);
and determining the vibration state of the vibration platform according to the optical path of the light.
In the present invention, the distance z between the reflector 202 and the laser 201mDirectly influence the linearity between the detected optical power and the optical path in the present invention, with the total optical power of the first array and the distance zmAnd the second array total optical power vs. distance zmThe relationship (2) is explained as an example. When the distance between the reflecting mirror 202 and the laser 201 is set to be 1000 μm to 1200 μm or 3900 μm to 4400 μm, a good linear relationship between the detected optical power and the optical path can be ensured, so that the detection accuracy is improved. When the optical path is determined according to the total optical power of the first array, the distance between the reflector 202 and the laser 201 is set to be 1000-1200 μm, so that the detection precision is better than 0.8 μm, and the measurement error is limited within 0.4%; when the total optical power of the second array is usedWhen the optical path is determined, the distance between the reflecting mirror 202 and the laser 201 is set to be 3900-4400 μm, so that the detection precision is better than 6 μm, and the measurement error is limited within 1.2%.
Fig. 3 is a device structure diagram of an optical inspection mechanism according to the second embodiment of the mems platform based on optical inspection of the present invention.
Referring to fig. 3, in this embodiment, the other device is the same as the device of the first embodiment of the mems platform based on optical detection, except that the lines of all the adjacent photodiodes in the first array 2031 of this embodiment form an equilateral quadrilateral, and the lines of all the adjacent photodiodes in the second array 2032 form an equilateral quadrilateral.
The embodiments in the present description are described in a progressive manner, each embodiment focuses on differences from other embodiments, and the same and similar parts among the embodiments are referred to each other.
The principle and the implementation of the present invention are explained herein by using specific examples, and the above description of the embodiments is only used to help understand the method and the core idea of the present invention; meanwhile, for the general technical personnel in the field, according to the idea of the present invention, there are changes in the concrete implementation and the application scope. In summary, the content of the present specification should not be construed as a limitation of the present invention.

Claims (8)

1. An optical inspection-based mems platform, comprising: the optical detection device comprises a platform main body, an optical detection mechanism and an external packaging plate; the platform body comprises a vibration platform; the external packaging plate forms a closed space, and the platform main body and the optical detection mechanism are packaged in the closed space; the optical detection mechanism comprises a laser, a reflector and a diode array; the reflector is horizontally fixed on the top of the vibration platform, and the mirror surface faces the top of the external packaging plate; the laser and the diode array are located inside the top of the outer package plate, the diode array comprising a plurality of photodiodes; the diode array surrounding the laser; the light emitted by the laser irradiates the reflecting mirror, and reflected light formed after the light is reflected by the reflecting mirror irradiates the diode array; the diode array detects the intensity of the reflected light.
2. An optical detection-based mems platform as claimed in claim 1, wherein the diode array includes a first array and a second array; the first array is positioned at the periphery of the laser; the second array is located at the periphery of the first array; the number and arrangement of the photodiodes in the first array is the same as the number and arrangement of the photodiodes in the second array.
3. An optical detection-based mems platform as claimed in claim 2, wherein the connections of all adjacent photodiodes in the first array form an equilateral polygon; and the connecting lines of all the adjacent photodiodes in the second array form an equilateral polygon.
4. An optical detection-based mems platform as claimed in claim 3, wherein the line connecting the position of the photodiode in any corner of the equilateral polygon in the second array with the corresponding position of the photodiode in the first array passes through the position of the laser.
5. An optical detection-based mems platform as claimed in claim 1, wherein the optical detection mechanism further comprises a bias electrode; the bias electrode is installed on the external packaging plate, the laser and the diode array are electrically connected with an external device through the bias electrode, and the external device comprises a power supply for providing electric energy for the laser and a data processing device for analyzing electric signals of the diode array.
6. The mems platform of claim 1, wherein the platform body further comprises a driving structure disposed at the bottom and around the vibration platform for driving the vibration platform to vibrate.
7. An optical detection-based mems platform as claimed in claim 6, wherein the driving structure comprises a horizontal driving structure and a vertical driving structure; the horizontal driving structure is positioned at the periphery of the vibration platform and drives the vibration platform to generate horizontal vibration; the vertical driving structure is positioned at the bottom of the vibration platform and drives the vibration platform to generate vertical vibration.
8. An optical inspection-based mems platform as claimed in claim 7, wherein the platform body further includes a support structure; the support structure is used for supporting the vibration platform and the driving structure.
CN201720407299.1U 2017-04-18 2017-04-18 A kind of MEMS platform based on optical detection Expired - Fee Related CN206920009U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201720407299.1U CN206920009U (en) 2017-04-18 2017-04-18 A kind of MEMS platform based on optical detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201720407299.1U CN206920009U (en) 2017-04-18 2017-04-18 A kind of MEMS platform based on optical detection

Publications (1)

Publication Number Publication Date
CN206920009U true CN206920009U (en) 2018-01-23

Family

ID=61306974

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201720407299.1U Expired - Fee Related CN206920009U (en) 2017-04-18 2017-04-18 A kind of MEMS platform based on optical detection

Country Status (1)

Country Link
CN (1) CN206920009U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106949955A (en) * 2017-04-18 2017-07-14 中国工程物理研究院电子工程研究所 A kind of MEMS platform based on optical detection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106949955A (en) * 2017-04-18 2017-07-14 中国工程物理研究院电子工程研究所 A kind of MEMS platform based on optical detection

Similar Documents

Publication Publication Date Title
CN109154552B (en) Optical particle sensor
US11073686B2 (en) Monitoring of MEMS mirror properties
CN106949955B (en) Micro electro mechanical system platform based on optical detection
CN1866030B (en) Microstructure probe card, and microstructure inspecting device
Sandner et al. Large aperture MEMS scanner module for 3D distance measurement
EP1794598B1 (en) Methods and apparatus for reducing vibration rectification errors in closed-loop accelerometers
Ishikawa et al. Integrated micro-displacement sensor that measures tilting angle and linear movement of an external mirror
JPS61239164A (en) Optical seismoscope
Bicen et al. Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms
CN109891250A (en) Sensor element, inertial sensor and electronic equipment
Zhan et al. A high-resolution optical displacement detection method for piezoelectric microvibratory stage
CN206920009U (en) A kind of MEMS platform based on optical detection
CN110531443B (en) Calibration device of earthquake intensity meter
CN108413878B (en) Optical displacement threshold sensor, optical displacement threshold detection method and system
CN110726378A (en) Three-dimensional micro-contact type measuring device and method based on four-quadrant photoelectric detector
US6435000B1 (en) Method for calibrating sensitivity of acceleration sensor
CN105627949A (en) Optical sensing-type three-dimensional high-precision contact scanning measurement probe
CN101655368A (en) Electromagnet driven gyroscope based on nanometer film quantum tunneling effect
CN116113597A (en) MEMS mirror device based on glass substrate and manufacturing method thereof
JP2005169541A (en) Semiconductor device and its manufacturing method
CN206767638U (en) Micro electro mechanical device and micro projector
CN1844937A (en) High-sensitivity MEMS photoelectric galvanometer, making and detecting method thereof
JP2006017624A (en) Angular velocity sensor
Tang et al. High aspect-ratio low-noise multi-axis accelerometers made from thick silicon
CN116953374A (en) Inertial sensor inspection mass block surface charge quantity testing system

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180123

Termination date: 20210418

CF01 Termination of patent right due to non-payment of annual fee