CN206654864U - The multifunction negative ion ceramics that can be breathed - Google Patents

The multifunction negative ion ceramics that can be breathed Download PDF

Info

Publication number
CN206654864U
CN206654864U CN201720286921.8U CN201720286921U CN206654864U CN 206654864 U CN206654864 U CN 206654864U CN 201720286921 U CN201720286921 U CN 201720286921U CN 206654864 U CN206654864 U CN 206654864U
Authority
CN
China
Prior art keywords
negative ion
kilograms
glazed layer
ceramics
glaze
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201720286921.8U
Other languages
Chinese (zh)
Inventor
马伟忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingyuan Meibang Ceramic Industrial Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201720286921.8U priority Critical patent/CN206654864U/en
Application granted granted Critical
Publication of CN206654864U publication Critical patent/CN206654864U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Glass Compositions (AREA)

Abstract

The utility model discloses a kind of multifunction negative ion ceramics that can be breathed.The ceramics include:Base substrate and the first glazed layer and the second glazed layer being covered in successively on base substrate, the base substrate, the first glazed layer and the second glazed layer are respectively provided with loose structure, the loose structure includes a plurality of micron openings and a plurality of nano-pores, and described a plurality of micron openings and a plurality of nano-pores, which are interconnected, forms channel network;Anion-generating material is evenly distributed with the ceramics, at least described second glazed layer includes catalysis material.The multifunction negative ion new ceramics provided by the utility model that can be breathed has substantial amounts of nano-pore and/or micron openings, it can be adsorbed to the pernicious gas of various molecular weight, and anion can also be discharged simultaneously with good desorption, air can be effectively purified, and it is without any side effects.

Description

The multifunction negative ion ceramics that can be breathed
Technical field
A kind of ceramics are the utility model is related to, more particularly to a kind of multifunction negative ion ceramics that can be breathed, belong to environmental protection Technical field.
Background technology
The economic development in China has reached certain altitude.But environmental pollution is extremely serious, the environmental consciousness of people occurs Fundamental shifts, it is desirable to have good a living environment and quality of life;Wherein living environment is healthy of crucial importance.
With the enhancing of people's environmental consciousness and the increasingly raising of living standard, and the development of science and technology, to breathing The demand of multi-functional ceramic material can greatly increase.Demand and research to breathing multifunctional ceramic material, also increasingly increase.
Japan begins to research and develop respiratory function ceramic material from the last century 80's, wherein Japan is in the material product Research and development application in terms of the multiple fields such as the leading world, application of result covering cultural relic conservation, weaving, chemical industry, construction material.In recent years Come the western countries such as Spain, Germany and also successively carry out research to humidity adjusting material.With requirement of the people to environment, to this kind of The requirement of material is not merely Significance for Environment, and rises to environmentally friendly height.Some national respiratory functions such as current Japan, South Korea Ceramic Market comparative maturity, Comparatively speaking, domestic respiratory function ceramics are researched and developed or market all still belongs to primary rank Section, domestic consumer also have little understanding for the concept of respiratory function ceramics, but with attention of the people to energy-conserving and environment-protective, not The market for carrying out respiratory function ceramics is extremely wide.
The ceramic tile of commercial type is divided at present:Glazed tile, all-body tile, polished bricks, vitrified tile and mosaic etc., are typically adopted With clay, flint and feldspar material manufacture.Product is used as the ornament materials of building wall, according to different needs Used in different places, there are some function ceramic tiles, as patent application CN103553564A discloses one kind based on diatomite Composition is wanted to make with the method for inhaling the ceramic tile for putting sexual function, the diatomite ceramic tile of production, which has, inhales playing function, common ceramic tile base There was only decoration functions in sheet, almost do not acted in terms of the improvement to indoor environment, although diatomite ceramic tile has part regulation room The effect of interior humidity, but because its technological reason causes its adsorption effect greatly to weaken, reason is as follows:Diatomite contains largely Micropore, it just has the function of regulation humidity before not burning till, and cavity is easily sealed diatomite in process of production, in high temperature mistake The space of diatom is easily destroyed in journey, and micropore is not easy to connect, and forms closed pore, so that adsorptivity, circulation and release property drop It is low.
The country also uses sepiolite, zeolite, the breathing brick that medical stone raw material is done, because there is substantial amounts of micropore in itself, has one Fixed suction-operated, but there be not viscosity, can not solidify, and add viscous material shaping, cause what micropore blocked, if burn till because There is substantial amounts of calcium, magnesium, iron, potassium, sodium, the rise of temperature, lose the structure of micropore.Sepiolite, zeolite, medical stone is because of iron-holder Height, the bad control of base substrate color, the brick class burnt till are also low.Natural sepiolite, zeolite, medical stone raw material are uncomfortable than sparser Breathing brick is done in conjunction.
Therefore, how to improve breathing brick adsorption capacity and decomposition and inversion ability be new breathing brick technology focus.
Utility model content
Main purpose of the present utility model be to provide it is a kind of can breathing multifunction negative ion ceramics, improve breathing material Performance is put in the suction of material, so as to overcome the deficiencies in the prior art.
To realize foregoing purpose of utility model, the technical solution adopted in the utility model includes:
The utility model embodiment provides a kind of multifunction negative ion ceramics that can be breathed, including:Base substrate and cover successively The first glazed layer and the second glazed layer on base substrate, the base substrate, the first glazed layer and the second glazed layer are respectively provided with porous knot Structure, the loose structure include a plurality of micron openings and a plurality of nano-pores, described a plurality of micron openings and a plurality of nanometers Hole is interconnected and forms channel network.
Preferably, it is evenly distributed with anion-generating material in the ceramics.
Preferably, at least described second glazed layer includes catalysis material.
Preferably, the aperture of the nano-pore is 1~500nm.
Preferably, the aperture of the micron openings is 1~10 μm.
Preferably, the shape of first glazed layer and the second glazed layer is identical with blank shape.
Preferably, the thickness of the base substrate is more than 5mm, preferably 5~20mm.
Preferably, the thickness of first glazed layer is 1~500 μm.
Preferably, the thickness of second glazed layer is 1~300 μm.
Further, the porosity of the multifunction negative ion ceramics is more than 20%, and preferably 30~60%.
The preparation method of the multifunction negative ion ceramics that can be breathed, including:
Blank raw material is provided, the blank raw material includes:
By the blank raw material co-grinding, the blank raw material is post-processed to form base powder, then by the base powder Compacting forms base substrate, and the body drying processing is formed into semi-finished product afterwards;
The first glaze paint raw material is provided, the first glaze paint raw material includes:
The first glaze paint raw material mixed powder is broken, the first glaze is made, by first glaze cover in described half into On product, the first glazed layer is formed;
The second glaze paint raw material is provided, the second glaze paint raw material includes:
By the second glazing type material co-grinding, the second glaze is made, second glaze is covered in described first On glazed layer, the second glazed layer is formed, is fired afterwards;Preferably, the firing temperature is 700~1000 DEG C, during firing Between be 30~150 minutes.
In some more specific embodiment, the preparation method can also be:
The first glaze paint raw material mixed powder is broken, the first glaze is made, by first glaze cover in described half into On product, the first glazed layer is formed, carries out first time firing afterwards;Preferably, the first time firing temperature is 700~1000 DEG C, firing time first time is 30~150 minutes;
By the second glazing type material co-grinding, the second glaze is made, second glaze is covered in described first On glazed layer, the second glazed layer is formed, second is carried out afterwards and fires;Preferably, second of firing temperature be 600 DEG C with Under, preferably 400~600 DEG C, second of firing time is 20~100 minutes.
In some more specific embodiment, the post processing includes spraying and/or drying process.
In some more specific embodiment, the moisture content of the base powder is 7.0~9.0wt%.
In some more specific embodiment, the particle diameter distribution of the base powder is:More than 20 mesh 0~5wt%, 20 ~45 mesh 60~75wt%, 45~60 mesh 15~20wt%, 60~100 8~15wt% of mesh, 0~10wt% below 100 mesh.
In some more specific embodiment, the briquetting pressure of the base substrate is 300kg/cm2~450kg/cm2
In some more specific embodiment, the moisture content of the semi-finished product is less than 0.5wt%.
In some more specific embodiment, the ejection temperature of the semi-finished product is 20~100 DEG C.
In some more specific embodiment, the generation type of first glazed layer includes spraying, centrifugation, printing In any one or two or more combinations, but not limited to this.
In some more specific embodiment, the proportion of first glazing type material is 1.1g/cm3~1.9g/cm3
In some more specific embodiment, the glaze volume of first glazing type material is 50g/m2~500g/m2
In some more specific embodiment, the generation type of second glazed layer includes spraying.
In some more specific embodiment, the proportion of second glazing type material is 1.1g/cm3~1.6g/cm3
In some more specific embodiment, the second glazing type material glaze volume is 20g/m2~300g/m2
In some more specific embodiment, the base substrate, the first glazed layer and the second glazed layer all have plural number Individual nano-pore and/or micron openings, and a plurality of nano-pores and/or micron openings are interconnected and form netted microchannel;It is excellent Choosing, the aperture of the nano-pore is 1~500nm, and the aperture of the micron openings is 1~10 μm.
Preferably, the porosity of the multifunction negative ion ceramics is more than 20%, and preferably 30~60%.
The utility model additionally provide it is a kind of can breathing multifunction negative ion ceramic material, including base substrate and cover successively The first glazed layer and the second glazed layer on base substrate, the base substrate, the first glazed layer and the second glazed layer are respectively provided with porous knot Structure, the loose structure include a plurality of micron openings and a plurality of nano-pores, described a plurality of micron openings and a plurality of nanometers Hole is interconnected and forms channel network, is evenly distributed with anion-generating material in the ceramic material, and at least described the Two glazed layers include catalysis material.
In some more specific embodiment, the base substrate is mainly (20~70) by mass ratio:(5~40):(0 ~50):(5~60):(0~30):(0.5~10):(0.5~10):(0~10):(0~30):The aluminium hydroxide of (0~5), (volcanic ash, silicon ash, flue dust), silica sand, fat clay, carbon block, negative ion powder, nanometer pore creating material, borax, glass, trimerization Sodium phosphate mixed sintering is formed;
First glazed layer is mainly (0~100) by mass ratio:(0~60):(3~100):(5~100):(0~ 60):(0.5~10):(0.5~10):(0~10):The blank raw material of (0~10), zirconium silicate, ball clay, harmless low melting point melt Block, aluminium hydroxide, nanometer pore creating material, negative ion powder, sodium carboxymethylcellulose, sodium tripolyphosphate mixed sintering are formed;
Second glazed layer is mainly (0~100) by mass ratio:(3~50):(0~80):(0~5):(0~5):(0 ~10):(0.5~10):(0.5~10):(0~10):Silica sand, ball clay, harmless low melting point frit, the rutile-type of (0~10) Titanium dioxide, anatase titanium dioxide, zinc oxide, nanometer pore creating material, negative ion powder, sodium carboxymethylcellulose, sodium tripolyphosphate Mixed sintering is formed;
Preferably, the firing temperature is 700~1000 DEG C, and the firing time is 30~150 minutes.
In some more specific embodiment, the ceramic material includes following chemical constituent:
In some more specific embodiment, the aperture of the nano-pore is 1~500nm.
In some more specific embodiment, the aperture of the micron openings is 1~10 μm.
The multifunction negative ion ceramic material that can be breathed is in the application of building field.
Such as using the multifunction negative ion ceramic material that can be breathed as ornament materials.
Compared with prior art, include the advantages of the utility model:The Multifunctional negative provided by the utility model that can be breathed Ion new ceramics has substantial amounts of nanometer micropore, and it can be adsorbed to the pernicious gas of various molecular weight, and be had Good desorption;And anion can be discharged, play air purification effect;
Other ceramics provided by the utility model pernicious gas can be catalytically decomposed in the presence of light, carry significantly High clean-up effect and service life;
And ceramics provided by the utility model are easy fireds, calculated compared with inner-wall ceramic tile, energy usage amount about subtracts Few 44%, cause the carbon dioxide of global warming substances also to reduce 52%, the utility model also uses stove caused by each flue Slag, cullet so that waste and old raw material, which retrieves, to be recycled, and also greatlys save production cost.
Brief description of the drawings
Fig. 1 is the structural representation that multifunction negative ion ceramics can be breathed in the exemplary embodiments of the utility model one;
Fig. 2 is the cross-section structure signal that multifunction negative ion ceramics can be breathed in the exemplary embodiments of the utility model one Figure;
Description of reference numerals:The glazed layers of 1- first;The glazed layers of 2- second;3- base substrates.
Embodiment
In view of deficiency of the prior art, inventor is able to propose that this practicality is new through studying for a long period of time and largely putting into practice The technical scheme of type.The technical scheme, its implementation process and principle etc. will be further explained as follows.
To realize foregoing purpose of utility model, the technical solution adopted in the utility model includes:
The utility model embodiment provides a kind of multifunction negative ion ceramics that can be breathed, including:Base substrate and cover successively The first glazed layer 1 and the second glazed layer 2 on base substrate, the base substrate 3, the first glazed layer 1 and the second glazed layer 2 are respectively provided with more Pore structure, the loose structure include a plurality of micron openings and a plurality of nano-pores, described a plurality of micron openings and a plurality of Nano-pore is interconnected and forms channel network.
Preferably, it is evenly distributed with anion-generating material in the ceramics.
Preferably, at least described second glazed layer includes catalysis material.
Preferably, the aperture of the nano-pore is 1~500nm.
Preferably, the aperture of the micron openings is 1~10 μm.
Preferably, the shape of first glazed layer and the second glazed layer is identical with blank shape.
Preferably, the thickness of the base substrate is more than 5mm, preferably 5~20mm.
Preferably, the thickness of first glazed layer is 1~500 μm.
Preferably, the thickness of second glazed layer is 1~300 μm.
Further, the porosity of the multifunction negative ion ceramics is more than 20%, and preferably 30~60%.
The preparation method of the multifunction negative ion ceramics that can be breathed, including:
Blank raw material is provided, the blank raw material includes:
By the blank raw material co-grinding, the blank raw material is post-processed to form base powder, then by the base powder Compacting forms base substrate, and the body drying processing is formed into semi-finished product afterwards;
The first glaze paint raw material is provided, the first glaze paint raw material includes:
The first glaze paint raw material mixed powder is broken, the first glaze is made, by first glaze cover in described half into On product, the first glazed layer is formed;
The second glaze paint raw material is provided, the second glaze paint raw material includes:
By the second glazing type material co-grinding, the second glaze is made, second glaze is covered in described first On glazed layer, the second glazed layer is formed, is fired afterwards;Preferably, the firing temperature is 700~1000 DEG C, during firing Between be 30~150 minutes.
In some more specific embodiment, the preparation method can also be:
The first glaze paint raw material mixed powder is broken, the first glaze is made, by first glaze cover in described half into On product, the first glazed layer is formed, carries out first time firing afterwards;Preferably, the first time firing temperature is 700~1000 DEG C, firing time first time is 30~150 minutes;
By the second glazing type material co-grinding, the second glaze is made, second glaze is covered in described first On glazed layer, the second glazed layer is formed, second is carried out afterwards and fires;Preferably, second of firing temperature be 600 DEG C with Under, preferably 400~600 DEG C, second of firing time is 20~100 minutes.
In some more specific embodiment, the post processing includes spraying and/or drying process.
In some more specific embodiment, the moisture content of the base powder is 7.0~9.0wt%.
In some more specific embodiment, the particle diameter distribution of the base powder is:More than 20 mesh 0~5wt%, 20 ~45 mesh 60~75wt%, 45~60 mesh 15~20wt%, 60~100 8~15wt% of mesh, 0~10wt% below 100 mesh.
In some more specific embodiment, the briquetting pressure of the base substrate is 300kg/cm2~450kg/cm2
In some more specific embodiment, the moisture content of the semi-finished product is less than 0.5wt%.
In some more specific embodiment, the ejection temperature of the semi-finished product is 20~100 DEG C.
In some more specific embodiment, the generation type of first glazed layer includes spraying, centrifugation, printing In any one or two or more combinations, but not limited to this.
In some more specific embodiment, the proportion of first glazing type material is 1.1g/cm3~1.9g/cm3
In some more specific embodiment, the glaze volume of first glazing type material is 50g/m2~500g/m2
In some more specific embodiment, the generation type of second glazed layer includes spraying.
In some more specific embodiment, the proportion of second glazing type material is 1.1g/cm3~1.6g/cm3
In some more specific embodiment, the second glazing type material glaze volume is 20g/m2~300g/m2
In some more specific embodiment, the base substrate, the first glazed layer and the second glazed layer all have plural number Individual nano-pore and/or micron openings, and a plurality of nano-pores and/or micron openings are interconnected and form netted microchannel;It is excellent Choosing, the aperture of the nano-pore is 1~500nm, and the aperture of the micron openings is 1~10 μm.
Preferably, the porosity of the multifunction negative ion ceramics is more than 20%, and preferably 30~60%.
The utility model additionally provide it is a kind of can breathing multifunction negative ion ceramic material, including base substrate and cover successively The first glazed layer and the second glazed layer on base substrate, the base substrate, the first glazed layer and the second glazed layer are respectively provided with porous knot Structure, the loose structure include a plurality of micron openings and a plurality of nano-pores, described a plurality of micron openings and a plurality of nanometers Hole is interconnected and forms channel network, is evenly distributed with anion-generating material in the ceramic material, and at least described the Two glazed layers include catalysis material.
In some more specific embodiment, the base substrate is mainly (20~70) by mass ratio:(5~40):(0 ~50):(5~60):(0~30):(0.5~10):(0.5~10):(0~10):(0~30):The aluminium hydroxide of (0~5), (volcanic ash, silicon ash, flue dust), silica sand, fat clay, carbon block, negative ion powder, nanometer pore creating material, borax, glass, trimerization Sodium phosphate mixed sintering is formed;
First glazed layer is mainly (0~100) by mass ratio:(0~60):(3~100):(5~100):(0~ 60):(0.5~10):(0.5~10):(0~10):The blank raw material of (0~10), zirconium silicate, ball clay, harmless low melting point melt Block, aluminium hydroxide, nanometer pore creating material, negative ion powder, sodium carboxymethylcellulose, sodium tripolyphosphate mixed sintering are formed;
Second glazed layer is mainly (0~100) by mass ratio:(3~50):(0~80):(0~5):(0~5):(0 ~10):(0.5~10):(0.5~10):(0~10):Silica sand, ball clay, harmless low melting point frit, the rutile-type of (0~10) Titanium dioxide, anatase titanium dioxide, zinc oxide, nanometer pore creating material, negative ion powder, sodium carboxymethylcellulose, sodium tripolyphosphate Mixed sintering is formed;
Preferably, the firing temperature is 700~1000 DEG C, and the firing time is 30~150 minutes.
In some more specific embodiment, the ceramic material includes following chemical constituent:
In some more specific embodiment, the aperture of the nano-pore is 1~500nm.
In some more specific embodiment, the aperture of the micron openings is 1~10 μm.
The multifunction negative ion ceramic material that can be breathed is in the application of building field.
Such as using the multifunction negative ion ceramic material that can be breathed as ornament materials.
In some specific embodiments, the preparation method of the multifunction negative ion ceramics that can be breathed specifically includes:
(1) according to offer blank raw material table 1 Suo Shi:
Table 1
Above blank raw material is carried out below co-grinding to 325 mesh, the blank raw material is post-processed to form base powder, The base powder pressing is formed into base substrate, the body drying processing is formed into semi-finished product afterwards;
The proportion of base powder after wherein described crushing is 1.68~1.75g/cm3, its viscosity is 25~35Pa.s, described The moisture content of base powder is 7.0~9.0wt%, and the particle diameter distribution of the base powder is:More than 20 mesh 0~5wt%, 20~45 mesh 60~75wt%, 45~60 mesh 15~20wt%, 60~100 8~15wt% of mesh, 0~10wt% below 100 mesh.
And the briquetting pressure of the base substrate is 300kg/cm2~450kg/cm2;The moisture content of dried semi-finished product is small In 0.5%;The ejection temperature of the semi-finished product is 20~100 DEG C.
(2) according to the first glaze paint raw material of offer table 2 Suo Shi:
Table 2
The first glaze paint raw material mixed powder is broken, the first glaze below 325 mesh is made, the level of residue is less than 0.5%, first glaze is covered on the semi-finished product, forms the first glazed layer;Wherein, the shape of first glazed layer Include any one in spraying, centrifugation, printing or two or more combinations, but not limited to this into mode;First glaze paint The proportion of material is 1.1g/cm3~1.9g/cm3;The glaze volume of first glazing type material is 50g/m2~500g/m2
Wherein, it with the addition of zirconium silicate and play the color for covering base substrate, and be easy to mix colours, also cover the pin of base substrate in addition Hole, shrinkage cavity etc.;Low temperature frit and borax play a part of cohesive base and second glaze, it is not easy to peel off.In some implementation cases, Printing powder is made after first glaze can also being dried, printing, which is formed, on first of glaze decorates, such as roller, half tone or spray Ink, then re-form second glaze.
(3) according to the second glaze paint raw material of offer table 3 Suo Shi:
Table 3
The second glaze paint raw material mixed powder is broken, the second glaze below 325 mesh is made, the level of residue is less than 0.5%, second glaze is formed in the first glaze paint, forms the second glaze paint;Wherein, the generation type of second glaze paint Including spraying;The proportion of second glazing type material is 1.1g/cm3~1.6g/cm3;The glaze volume of first glazing type material is 20g/m2~100g/m2
Wherein described rutile titanium dioxide (10 sodium rice~20 nanometer), anatase titanium dioxide (is received 10 sodium rice~20 Rice) zinc oxide (40~60 nanometers) can be with self-cleaning, catalytic decomposition pernicious gas, and plays the role of energy transmission to anion, its In, nanometer pore creating material can connect first of glaze, nano-pore is interconnected;Second glaze takes the clear frit of the low aluminium of high silicon, Play decoration function.
(4) burn till:
Firing temperature is 700~1000 DEG C, and the firing time is 30~150 minutes.
Or the preparation method can also be after the first glazed layer is formed, first time firing, the first time are carried out The temperature of firing is 700~1000 DEG C, and the firing time is 30~150 minutes;Second of firing is carried out after forming the second glazed layer, The firing temperature is 400~600 DEG C, and the firing time is 20~100 minutes.
In some embodiments, between the first glaze paint of the formation and the second glaze paint, the first glaze paint can be included in The process that pattern is formed on layer, such as roll printing or screen painting etc., but not limited to this.
Wherein described, harmless low melting point frit waits poisonous metal low melting point frit to be not leaded, in addition, the utility model institute The raw material used can be with acquisition purchased in market.
Wherein, rutile titanium dioxide is poor to the adsorption capacity of oxygen, and defect is more, and crystallite dimension is larger, simultaneously Its specific surface area is smaller, therefore its photocatalytic activity will be less than anatase titanium dioxide;But when the two of this two kinds of crystalline structures When titanium oxide mixes, mixed crystal is produced, the catalytic performance of titanium dioxide can be higher.In addition, because of rutile titanium dioxide, anatase titanium dioxide Unstability be present in the crystalline structure of titanium dioxide, can with after the ultraviolet light in absorption air and other energy with photocatalyst side Formula radially outward or absorbs energy, thus also has energy transmission effect to anion caused by anion material, it is empty to strengthen its Gas clean-up effect.
After the completion of firing, the first glazed layer has the nano-pore and/or micron openings similar with base substrate, the nano-pore Aperture is preferably 1~500nm, and the aperture of the micron openings is preferably 1~10 μm;Nanometer pore creating material can be by the nano-pore And/or the micron openings is interconnected, and enhances respiratory function;Wherein described nanometer pore creating material is that the low temperature of Nano grade is easily waved The organic matter of hair, such as nanometer grade resins, nano-scale rice starch or nano level graphite powder, it is preferred that the particle diameter of pore creating material is 3 ~15nm.
The utility model embodiment additionally provide by it is above-mentioned can breathing multifunction negative ion ceramics preparation method or on State the application for the multifunction negative ion ceramic material that can be breathed, such as the ornament materials such as Ceramic Tiles.
The wherein described multifunction negative ion new ceramics that can be breathed can be applied to numerous places, example as ornament materials Such as family's interior decoration, or the public place such as school, market, home for destitute, due to it is described can breathing multifunction negative ion it is new Type ceramics have substantial amounts of nanometer micropore, and it can be adsorbed to the pernicious gas of various molecular weight, and have well Desorption;And the multifunction negative ion new ceramics provided by the utility model that can be breathed under any circumstance can Constantly absorption, is adsorbed in the case where the moisture of surrounding is excessive, and moisture tails off release, and can also discharge 1000~2000/cm3 Anion, can effectively purify air;Other ceramics provided by the utility model can enter in the presence of light to pernicious gas Row catalytic decomposition, substantially increases clean-up effect and service life;And the anion in technical solutions of the utility model is put The amount of penetrating meets standard as defined in GB6566-2010, will not produce and cause the side effects such as radioactive pollution.
And ceramics provided by the utility model are easy fireds, calculated compared with inner-wall ceramic tile, energy usage amount about subtracts Few 44%, cause the carbon dioxide of global warming substances also to reduce 52%, the utility model also uses clinker caused by each flue, Cullet so that waste and old raw material, which retrieves, to be recycled, and also greatlys save production cost.
The technical scheme, its implementation process and principle etc. will be further explained in conjunction with specific embodiments as follows It is bright.
Embodiment 1
Blank raw material 1-1) is provided:250 kilograms of aluminium hydroxide (325 mesh), 150 kilograms of silica sand, 425 kilograms of ball clay, borax 20 kilograms, 25 kilograms of negative ion powder, 100 kilograms of coal power generation factory ashes, 30 kilograms of sodium tripolyphosphate;Add water into above-mentioned raw materials 450 kilograms, 5~8 hours of ball mill ball milling are put into, below the raw mill to 325 mesh;
Ground raw material 1-2) is fabricated to base powder, the moisture content of the base powder is by spray drying 8.5wt%;Each particle diameter distribution is as shown in table 4 in wherein described base powder:
Table 4
Above-mentioned base powder 1-3) is put into oil pressure forcing press with 350kg/cm2Pressure be pressed into 100mm × 50mm × 6mm base substrate, and the base substrate is dried to form semi-finished product.
1-4) the making of glaze:
1-4-1) first of glaze:
First glaze is provided:65 kilograms of benchmark base soil, 6 kilograms of ball clay, 15 kilograms of zirconium silicate, 1 kilogram of borax, low temperature is harmless 4.5 kilograms of frit, 2 kilograms of nanometer pore creating material, 4 kilograms of negative ion powder, 0.5 kilogram of sodium carboxymethylcellulose, sodium tripolyphosphate 2 are public Jin;
Above-mentioned first glaze is put into ball mill and adds 60 kilograms of progress ball millings of water, the first muffle painting slurry is made;It is tuned into ratio Weight is 1.4g/cm3
By above-mentioned first muffle painting slurry with 200g/m2Dosage be sprayed on the surfaces of the semi-finished product, form the first glaze paint Layer.
1-4-1) second glaze:
Second glaze is provided:70 kilograms of silica sand, 5.5 kilograms of ball clay, (fusing point is at 400 DEG C ± 100 for harmless low melting point frit DEG C) 15 kilograms, 0.5 kilogram of rutile titanium dioxide (10~20 nanometers), anatase titanium dioxide (10~20 nanometers) 1.5 Kilogram, 0.5 kilogram of zinc oxide (40~60 nanometers), 3 kilograms of negative ion powder (technical grade), 1.5 kilograms of nanometer pore creating material, carboxymethyl 0.5 kilogram of sodium cellulosate, 2 kilograms of sodium tripolyphosphate;
Above-mentioned second glaze is put into ball mill and adds 60 kilograms of progress ball millings of water, the second muffle painting slurry is made, is tuned into ratio Weight is 1.2g/cm3
By the second muffle painting slurry with 150g/m2Dosage be sprayed at the surface of the first glazed layer, form the second glazed layer;
Then it is fired, wherein the maximum sintering temperature is 840 DEG C, the firing time is 1 hour.
Embodiment 2
Blank raw material 2-1) is provided:350 kilograms of aluminium hydroxide, 325 kilograms of ball clay, 20 kilograms of borax, negative ion powder 25 are public Jin, 250 kilograms of coal power generation factory ashes, 30 kilograms of sodium tripolyphosphate;
Above raw material is added into 450 kilograms of water, 5~8 hours of ball mill ball milling are put into, by the raw mill to 325 mesh Below;
Ground raw material 2-2) is fabricated to base powder, the moisture content of the base powder is by spray drying 8.5wt%;Each particle diameter distribution is as shown in table 5 in wherein described base powder
Table 5
Above-mentioned base powder 2-3) is put into oil pressure forcing press with 350kg/cm2Pressure be pressed into 100mm × 50mm × 6mm base substrate, and the base substrate is subjected to drying and forms semi-finished product;
2-4) the making of glaze
2-4-1) first of glaze
First glaze is provided:75 kilograms of benchmark base soil, 5.5 kilograms of ball clay, 10 kilograms of zirconium silicate, the harmless frit 2 of low temperature are public Jin, 2 kilograms of nanometer pore creating material, 3 kilograms of negative ion powder, 0.5 kilogram of sodium carboxymethylcellulose, 2 kilograms of sodium tripolyphosphate;
Above-mentioned first glaze is put into ball mill and adds 500 kilograms of progress ball millings of water, the first muffle painting slurry is made, is tuned into proportion For 1.45g/cm3
By above-mentioned first muffle painting slurry with 250g/m2Dosage be sprayed at the surfaces of semi-finished product, form the first glazed layer;
2-4-1) second glaze
Second glaze is provided:60 kilograms of silica sand, 10 kilograms of ball clay, harmless low melting point frit (fusing point is at 400 degree ± 100 degree) 20 kilograms, 1 kilogram of rutile titanium dioxide (10~20 nanometers), 1 kilogram of anatase titanium dioxide (10~20 nanometers), oxygen Change 1.5 kilograms of zinc (40~60 nanometers), 3 kilograms of negative ion powder (technical grade), 1 kilogram of nanometer pore creating material, sodium carboxymethylcellulose 0.5 kilogram, 2 kilograms of sodium tripolyphosphate;
Above-mentioned second glaze is put into ball mill and adds 60 kilograms of progress ball millings of water, the second muffle painting slurry is made, is tuned into proportion For 1.1g/cm3
By above-mentioned second muffle painting slurry with 100g/m2Amount be sprayed at the surface of half first glazed layer, form second Glazed layer;
Fire again afterwards, the maximum sintering temperature is 800 DEG C, and the firing time is 50 minutes.
Embodiment 3
Blank raw material 3-1) is provided:400 kilograms of aluminium hydroxide (325 mesh), 50 kilograms of nano-aluminum hydroxide, silica sand 85 are public Jin, 250 kilograms of ball clay, 30 kilograms of borax, 40 kilograms of carbon block, 25 kilograms of negative ion powder, 100 kilograms of coal power generation factory ashes, trimerization 30 kilograms of sodium phosphate;
Above raw material is added into 450 kilograms of water, 5~8 hours of ball mill ball milling are put into, by the raw mill to 325 mesh Below;
Ground raw material 3-2) is fabricated to base powder, the moisture content of the base powder is by spray drying 8.5wt%;Each particle diameter distribution is as shown in table 6 in wherein described base powder
Table 6
Above-mentioned base powder 3-3) is put into oil pressure forcing press with 400kg/cm2Pressure be pressed into 100mm × 50mm × 6mm base substrate, and the base substrate is subjected to drying and forms semi-finished product;
3-4) the making of glaze
3-4-1) first of glaze
First glaze is provided:40 kilograms of benchmark base soil, 5 kilograms of ball clay, 10 kilograms of aluminium hydroxide, 20 kilograms of zirconium silicate are low Harmless 16.5 kilograms of the frit of temperature, 3 kilograms of nanometer pore creating material, 3 kilograms of negative ion powder, 0.5 kilogram of sodium carboxymethylcellulose, trimerization phosphorus Sour 2 kilograms of sodium;
Above-mentioned first glaze is put into ball mill and adds 60 kilograms of progress ball millings of water, the first muffle painting slurry is made, is tuned into proportion For 1.5g/cm3
By the first muffle painting slurry with 350g/m2Amount be sprayed at the surfaces of semi-finished product, form the first glazed layer;
3-4-1) second glaze
Second glaze is provided:50 kilograms of silica sand, 15 kilograms of ball clay, harmless low melting point frit (fusing point is at 400 DEG C ± 100 DEG C) 25 kilograms, 1 kilogram of rutile titanium dioxide (10~20 nanometers), 0.5 kilogram of anatase titanium dioxide (10~20 nanometers), 1.5 kilograms of zinc oxide (40~60 nanometers), 3 kilograms of negative ion powder (technical grade), 1.5 kilograms of nanometer pore creating material, carboxymethyl cellulose Plain 0.5 kilogram of sodium, 2 kilograms of sodium tripolyphosphate;
Above-mentioned second glaze is put into ball mill and adds 60 kilograms of progress ball millings of water, the second muffle painting slurry is made, is tuned into proportion For 1.25g/cm3
By above-mentioned second muffle painting slurry with 120g/m2Dosage be sprayed at the surface of the first glazed layer, form the second glaze paint Layer;
It is fired afterwards, the maximum sintering temperature is 800 DEG C, and the firing time is 1.1 hours.
Embodiment 4
Blank raw material 4-1) is provided:400 kilograms of aluminium hydroxide (325 mesh), 50 kilograms of nano-aluminum hydroxide, silica sand 85 are public Jin, 250 kilograms of ball clay, 30 kilograms of borax, 40 kilograms of carbon block, 25 kilograms of negative ion powder, 100 kilograms of coal power generation factory ashes, trimerization 30 kilograms of sodium phosphate;
Above raw material is added into 450 kilograms of water, 5~8 hours of ball mill ball milling are put into, by the raw mill to 325 mesh Below;
Ground raw material 4-2) is fabricated to base powder, the moisture content of the base powder is by spray drying 8.5wt%;Each particle diameter distribution is as shown in table 7 in wherein described base powder
Table 7
Above-mentioned base powder 4-3) is put into oil pressure forcing press with 400kg/cm2Pressure be pressed into 100mm × 50mm × 6mm base substrate, and the base substrate is subjected to drying and forms semi-finished product;
4-4) the making of glaze
4-4-1) first of glaze
First glaze is provided:40 kilograms of benchmark base soil, 5 kilograms of ball clay, 10 kilograms of aluminium hydroxide, 20 kilograms of zirconium silicate are low Harmless 16.5 kilograms of the frit of temperature, 3 kilograms of nanometer pore creating material, 3 kilograms of negative ion powder, 0.5 kilogram of sodium carboxymethylcellulose, trimerization phosphorus Sour 2 kilograms of sodium;
Above-mentioned first glaze is put into ball mill and adds 500 kilograms of progress ball millings of water, the first muffle painting slurry is made, is tuned into proportion For 1.5g/cm3
By the first muffle painting slurry with 350g/m2Amount be sprayed at the surfaces of semi-finished product, form the first glazed layer, afterwards It is fired, firing temperature is 800 DEG C, and the firing time is 1.1 hours;
4-4-1) second glaze
Second glaze is provided:50 kilograms of silica sand, 15 kilograms of ball clay, harmless low melting point frit (fusing point is at 400 DEG C ± 100 DEG C) 25 kilograms, 1 kilogram of rutile titanium dioxide (10~20 nanometers), 0.5 kilogram of anatase titanium dioxide (10~20 nanometers), 1.5 kilograms of zinc oxide (40~60 nanometers), 3 kilograms of negative ion powder (technical grade), 1.5 kilograms of nanometer pore creating material, carboxymethyl cellulose Plain 0.5 kilogram of sodium, 2 kilograms of sodium tripolyphosphate;
Above-mentioned second glaze is put into ball mill and adds 60 kilograms of progress ball millings of water, the second muffle painting slurry is made, is tuned into proportion For 1.25g/cm3
By above-mentioned second muffle painting slurry with 120g/m2Dosage be sprayed at the surface of the first glazed layer, form the second glaze paint Layer;
Carry out firing for second afterwards, the firing temperature is 500 DEG C, and the firing time is 1 hour.
Due to the unstability of anatase titanium dioxide itself, as temperature raises, after temperature is more than 600 DEG C, urge Changing effect can reduce, and therefore, fire twice, and control second of firing temperature to improve catalytic effect below 600 DEG C.
Raw material in above example can be with acquisition purchased in market.
The test result of the multifunction negative ion that can the be breathed ceramics of embodiment 1-4 acquisitions is as shown in table 8:
Table 8
In addition, being found by testing, the exit dose of the multifunction negative ion ceramics of embodiment 1-4 institutes capacitation breathing also complies with GB- 66562010 A levels standard requirement.
It should be appreciated that above-described embodiment is only to illustrate technical concepts and features of the present utility model, it is ripe its object is to allow Content of the present utility model can be understood and implement according to this by knowing the personage of technique, can not be limited with this of the present utility model Protection domain.All equivalent change or modifications made according to the utility model Spirit Essence, should all cover of the present utility model Within protection domain.

Claims (10)

  1. A kind of 1. multifunction negative ion ceramics that can be breathed, it is characterised in that including:Base substrate and be covered in successively on base substrate One glazed layer and the second glazed layer, the base substrate, the first glazed layer and the second glazed layer are respectively provided with loose structure, the porous knot Structure includes a plurality of micron openings and a plurality of nano-pores, and described a plurality of micron openings and a plurality of nano-pores, which are interconnected, to be formed Channel network.
  2. 2. the multifunction negative ion ceramics that can be breathed according to claim 1, it is characterised in that:The aperture of the nano-pore is 1~500nm.
  3. 3. the multifunction negative ion ceramics that can be breathed according to claim 1, it is characterised in that:The aperture of the micron openings is 1~10 μm.
  4. 4. the multifunction negative ion ceramics that can be breathed according to claim 1, it is characterised in that:First glazed layer and The shape of two glazed layers is identical with blank shape.
  5. 5. according to the multifunction negative ion ceramics that can be breathed of claim 1 or 4, it is characterised in that:The thickness of the base substrate For more than 5mm.
  6. 6. the multifunction negative ion ceramics that can be breathed according to claim 5, it is characterised in that:The thickness of the base substrate is 5 ~20mm.
  7. 7. according to the multifunction negative ion ceramics that can be breathed of claim 1 or 4, it is characterised in that:First glazed layer Thickness be 1~500 μm.
  8. 8. according to the multifunction negative ion ceramics that can be breathed of claim 1 or 4, it is characterised in that:Second glazed layer Thickness be 1~300 μm.
  9. 9. according to the multifunction negative ion ceramics that can be breathed of claim 1 or 4, it is characterised in that:The Multifunctional negative from The porosity of sub- ceramics is more than 20%.
  10. 10. the multifunction negative ion ceramics that can be breathed according to claim 9, it is characterised in that:The multifunction negative ion The porosity of ceramics is 30~60%.
CN201720286921.8U 2017-03-23 2017-03-23 The multifunction negative ion ceramics that can be breathed Active CN206654864U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201720286921.8U CN206654864U (en) 2017-03-23 2017-03-23 The multifunction negative ion ceramics that can be breathed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201720286921.8U CN206654864U (en) 2017-03-23 2017-03-23 The multifunction negative ion ceramics that can be breathed

Publications (1)

Publication Number Publication Date
CN206654864U true CN206654864U (en) 2017-11-21

Family

ID=60315596

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201720286921.8U Active CN206654864U (en) 2017-03-23 2017-03-23 The multifunction negative ion ceramics that can be breathed

Country Status (1)

Country Link
CN (1) CN206654864U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108164281A (en) * 2018-01-05 2018-06-15 广东净雨环保科技有限公司 Open spontaneous multi-functional water-permeable brick of generation negative oxygen ion and preparation method thereof
CN108424114A (en) * 2018-05-23 2018-08-21 广州怡威空调机电工程有限公司 A kind of interior decoration enviroment protective ceramic brick and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108164281A (en) * 2018-01-05 2018-06-15 广东净雨环保科技有限公司 Open spontaneous multi-functional water-permeable brick of generation negative oxygen ion and preparation method thereof
CN108164281B (en) * 2018-01-05 2018-11-23 广东净雨环保科技有限公司 Open spontaneous multi-functional water-permeable brick of generation negative oxygen ion and preparation method thereof
CN108424114A (en) * 2018-05-23 2018-08-21 广州怡威空调机电工程有限公司 A kind of interior decoration enviroment protective ceramic brick and its manufacturing method
CN108424114B (en) * 2018-05-23 2022-08-26 佛山市合新创展陶瓷有限公司 Interior decoration environment-friendly ceramic tile and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN106830893B (en) Multifunction negative ion ceramics that can be breathed and preparation method thereof and application
CN102515875B (en) Full polished glaze porcelain tile capable of self-exciting to produce negative ions, and preparation method for full polished glaze porcelain tile
CN103553564B (en) Method for producing ceramic tiles with absorption and release functions by using kieselguhr as main component
CN105084867B (en) It is a kind of using flyash as antibacterial ceramic products of primary raw material and preparation method thereof
CN102603357B (en) Method for manufacturing foam ceramic heat-insulation plate with closed pores
CN103351683A (en) Preparation method of interior wall putty
CN109665814A (en) A method of gradient pore water-permeable brick is manufactured using ceramic solid waste
CN102515727A (en) Making method of diatomite for interior decoration and product
CN107663084B (en) Air-purifying humidity-adjusting ceramic tile and preparation method thereof
KR20080101373A (en) Manufacture method of water soluble functional paint
CN109776055B (en) Multifunctional environment-friendly zeolite diatom ooze interior wall coating
CN112321270A (en) Photocatalytic anion ceramic tile containing modified porous material and preparation process thereof
CN206654864U (en) The multifunction negative ion ceramics that can be breathed
CN107651851A (en) A kind of photocatalysis glaze applied to damping Ceramic Tiles and preparation method thereof
CN109467997A (en) Type blue bricks wall covering modelled after an antique is built in a kind of light steel house spray
CN103351130A (en) Preparation method and using method of anti-stripping exterior wall putty powder
CN104628323B (en) A kind of attapulgite dry powder for decoration wall material and the preparation method of decoration wall material
CN102133521A (en) Preparation method of indoor and outdoor air purifying agent for activating treatment of natural zeolite and environmental protection
CN112723745A (en) Antibacterial purification glaze and preparation method of glazed tile using same
CN101186508A (en) Method for preparing porous sintering functionality ceramic tile
CN105130396A (en) Negative ion ceramic product adopting fly ash as main raw material, and preparation method thereof
CN105693192A (en) Burn-free ceramic product with air purifying function and preparing method of burn-free ceramic product
CN109836121A (en) A kind of preparation method of the multi-functional micropore diatom ecological brick of novel anti-pollution
CN106495556B (en) A kind of modified clayey lake mud building materials and preparation method
CN113024226B (en) Respiratory function rock plate

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180711

Address after: 511875 Yunlong ceramic industrial base No. C3-2, Qingyun District, Qingyuan, Guangdong

Patentee after: Qingyuan MEIBANG Ceramic Industrial Co. Ltd.

Address before: 215127 Qinggang (2) 69, qingkong port, Luzhi Town, Wuzhong District, Suzhou, Jiangsu

Patentee before: Ma Weizhong