CN206620064U - Suitable for the adjustable single-phase optocoupler times flow pattern buck rectifier of high companding flow structure - Google Patents
Suitable for the adjustable single-phase optocoupler times flow pattern buck rectifier of high companding flow structure Download PDFInfo
- Publication number
- CN206620064U CN206620064U CN201720236141.2U CN201720236141U CN206620064U CN 206620064 U CN206620064 U CN 206620064U CN 201720236141 U CN201720236141 U CN 201720236141U CN 206620064 U CN206620064 U CN 206620064U
- Authority
- CN
- China
- Prior art keywords
- synchronous
- output port
- input end
- mouthful
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Rectifiers (AREA)
Abstract
The utility model discloses a kind of adjustable single-phase optocoupler times flow pattern buck rectifier suitable for high companding flow structure, including main circuit module, synchronous buck module and control circuit module three parts, described main circuit module includes two ac input ends mouthful, two direct current output ports and a main circuit, synchronism output port and a synchronous buck circuit that described synchronous buck module is depressured comprising two ac input ends mouthful, two, described control circuit module include two synchronous input ends mouthful and a control circuit.The utility model is compared with traditional current doubler rectifier, it may be directly applied to high-pressure type rectification circuit, without being depressured in input increase step-down transformer, it is not only suitable for conventional square wave, it is applied to the conversion of the powers of alterating and direct current such as sine wave, triangular wave, sawtooth waveforms again, and expansion output power of power supply can be directly realized by, the voltage of direct current output port can also be adjusted, and the ripple of output voltage can also be reduced.
Description
Technical field
The utility model is related to a times flow pattern rectifier, more specifically, is a kind of be related to suitable for high companding flow structure
Adjustable single-phase optocoupler times flow pattern buck rectifier.
Background technology
Currently, it is used in traditional current doubler rectifier in high-frequency rectification field more, compared with full-wave rectifying circuit, times stream rectification
The vice-side winding of the high frequency transformer of device only needs a single winding, without centre cap;Compared with full bridge rectifier, times stream
The few half of number of diodes that rectification circuit is used.Therefore, current-doubling rectifier combines full-wave rectifying circuit and full-bridge rectification
The advantage of both circuits.Certainly, current-doubling rectifier will be more using an output inductor, structure slightly complicated.But this electricity
The working frequency and conveying electric current of sense are the half of inductance used in full-wave rectifying circuit, therefore can be made smaller, also beneficial to scattered
Heat, additionally it is possible to reduce and improve the ripple of output voltage.But there is also person, some problems need into one traditional current doubler rectifier
Step is solved:
(1)Traditional current doubler rectifier is not directly applicable high-pressure type rectification circuit, to realize that step-down rectifier is exported, leads to
Often to be matched therewith in its input increase step-down transformer, thus can produce higher cost;
(2)Traditional current doubler rectifier is suitable only for high-frequency rectification circuit, its ac input end need to provide symmetrical high frequency just,
Negative square wave power, is generally unsuitable for the ac input end power supply of the other forms such as sine wave, triangular wave, sawtooth waveforms;
(3)The device used inside traditional current doubler rectifier is difficult to expand output current once solidifying, and is not easy to straight
Connect realization and expand output power of power supply;
(4)Traditional current doubler rectifier is difficult to the adjustment to its output voltage.
The content of the invention
In view of this, the utility model aims to provide a kind of adjustable single-phase optocoupler times flow pattern suitable for high companding flow structure
Buck rectifier, the defect that traditional current doubler rectifier can be overcome to exist.
Traditional current doubler rectifier will generally become to realize the function that step-down rectifier is exported in ac input end increase decompression
Depressor is matched therewith, and the primary conductive pathway of every half of work period is brought out from the one of the secondary side of step-down transformer
Hair, through inductance, output loading, one of diode, returns the other end of the secondary side of step-down transformer, now conforms to the principle of simplicity
From the point of view of in the quantitative relationship of change, output voltage subtracts the pressure on inductance equal to the AC-input voltage of the secondary side of step-down transformer
Drop and the pressure drop of diode, but the linear zone of diode is narrower, it operates mainly in switch region, because diode pressure drop very
It is small, if ignoring the pressure drop of diode, it is believed that it is secondary that the main output voltage of every half of work period is equal to step-down transformer
The AC-input voltage of side subtracts pressure drop on inductance.If the photoelectrical coupler that diode is substituted for linear zone wider range is defeated
Go out the multiple tube that part constitutes a darlington structure with triode, while rejecting step-down transformer, then current doubler rectifier is main
Output voltage subtracts the pressure drop on inductance equal to AC-input voltage, then subtracts the pressure between photoelectrical coupler output par, c port
Drop, can also realize that the device used inside the step-down rectifier output of current doubler rectifier, traditional current doubler rectifier once solidifies difficulty
Expand output current to realize, be not easy to be directly realized by expansion output power of power supply, further, traditional current doubler rectifier is difficult to reality
Now to the adjustment of its output voltage.
In order to realize the purpose of foregoing invention, the utility model is specifically provided suitable for the adjustable single-phase of high companding flow structure
Optocoupler times flow pattern buck rectifier technical scheme is:It is big including main circuit module, control circuit module and synchronous buck module three
Part.
(1)Described main circuit module includes two ac input ends mouthful, two direct current output ports and a main circuit,
Two of which ac input end mouthful is respectively ac input end mouthful ACH-in1With ac input end mouthful ACH-in2, two direct current outputs
Port is respectively direct current output port DCOUT+With direct current output port DCOUT-, further, main circuit again by inductance L1, inductance L2,
Photoelectrical coupler U1 output par, cs, triode T1, photoelectrical coupler U2 output par, cs and triode T2 compositions, wherein photoelectric coupling
Device U1 output par, cs constitute the transmitting of the multiple tube, i.e. photoelectrical coupler U1 output par, cs of a darlington structure with triode T1
Pole is connected with triode T1 base stage, and the colelctor electrode of photoelectrical coupler U1 output par, cs is connected with triode T1 colelctor electrode, and
Photoelectrical coupler U2 output par, cs constitute the multiple tube of another darlington structure, i.e. photoelectrical coupler U2 outputs with triode T2
Partial emitter stage is connected with triode T2 base stage, the colelctor electrode of photoelectrical coupler U2 output par, cs and triode T2 current collection
Extremely it is connected, ac input end mouthful ACH-in1Emitter stage, inductance L2 one end with triode T2 are connected, the inductance L2 other end with
Direct current output port DCOUT+, inductance L1 one end be connected, the inductance L1 other end and triode T1 emitter stage, exchange input
Port ACH-in2It is connected, triode T1 colelctor electrode and triode T2 colelctor electrode, direct current output port DCOUT-It is connected;
(2)The synchronism output port and one that described synchronous buck module is depressured comprising two ac input ends mouthful, two
Individual synchronous buck circuit, two of which ac input end mouthful is respectively ac input end mouthful ACL-in1With ac input end mouthful
ACL-in2, the synchronism output port of two decompressions is respectively synchronism output port SYOUT1With synchronism output port SYOUT2, synchronous drop
Volt circuit is made up of conventional device, and it acts on two ac input ends mouthful and synchronous buck module that are to maintain main circuit module
Signal is synchronous between two synchronism output ports, and reduces the amplitude of its output voltage, to match the control circuit mould
The running parameter of block;
(3)Described control circuit module includes two synchronous input ends mouthful and a control circuit, and two of which is synchronous
Input port is respectively synchronous input end mouthful SYin1With synchronous input end mouthful SYin2, further, control circuit is again by resistance R1, electricity
Hinder R2, adjustable resistance Rw, photoelectrical coupler U1 importations and photoelectrical coupler U2 importations composition, synchronous input end mouthful
SYin1It is connected with adjustable resistance Rw one end, the adjustable resistance Rw other end and resistance R1 one end and resistance R2 one end phase
Even, synchronous input end mouthful SYin2Diode cathode, photoelectrical coupler U2 importations with photoelectrical coupler U1 importations
Diode anode is connected, and the resistance R1 other end is connected with the diode anode of photoelectrical coupler U1 importations, resistance R2's
The other end is connected with the diode cathode of photoelectrical coupler U2 importations;
(4)The ac input end mouthful AC of described main circuit moduleH-in1, synchronous buck module ac input end mouthful
ACL-in1It is connected with external alternating current input bus Line1, the ac input end mouthful AC of main circuit moduleH-in2, synchronous buck
The ac input end mouthful AC of moduleL-in2It is connected with external alternating current input bus Line2, the synchronism output of synchronous buck module
Port SYOUT1With the synchronous input end mouthful SY of control circuit modulein1It is connected, the synchronism output port SY of synchronous buck moduleOUT2
With the synchronous input end mouthful SY of control circuit modulein2It is connected, the direct current output port DC of main circuit moduleOUT+With direct current output
Port DCOUT-Between be used for external load RL;
(5)The cycle of operating voltage between exchange input bus Line1 and exchange input bus Line2 is divided into positive half cycle
Phase and negative half-cycle two large divisions:
When being operated in positive half period, described synchronous buck module input only has a guiding path, synchronous buck
Also there was only a guiding path between module output end and control circuit module, described main circuit module there are two guiding paths
Footpath, the guiding path of wherein synchronous buck module input is through exchanging input bus Line1 until the friendship of synchronous buck module
Flow input port ACL-in1, the synchronous buck circuits of synchronous buck inside modules, the ac input end mouthful of synchronous buck module
ACL-in2, then to exchange input bus Line2, the guiding path between synchronous buck module output end and control circuit module is
Synchronism output port SYOUT1, control circuit module synchronous input end mouthful SYin1, adjustable resistance Rw, resistance R1, photoelectrical coupler
U1 importations, synchronous input end mouthful SYin2, synchronism output port SYOUT2With the synchronous buck electricity of synchronous buck inside modules
Road, returns synchronism output port SYOUT1;
And first guiding path of main circuit module is until main circuit mould through external alternating current input bus Line1
The ac input end mouthful AC of blockH-in1, inductance L2, direct current output port DCOUT+, external load RL, direct current output port DCOUT-、
Photoelectrical coupler U1 output par, cs constitute multiple tube and ac input end mouthful AC of darlington structure with triode T1H-in2, then arrive
External exchange input bus Line2;The Article 2 guiding path of main circuit module, mainly by inductance L1 through previous negative half
After cycle energy storage, the continuous current circuit formed in positive half period, i.e., by direct current output port DCOUT+, external load RL, direct current
Output port DCOUT-The multiple tube of darlington structure is constituted with photoelectrical coupler U1 output par, cs and triode T1, electricity is returned
Feel L1;
When being operated in negative half-cycle, described synchronous buck module input also only has a guiding path, synchronous drop
Also there was only a guiding path between die block output end and control circuit module, described main circuit module also there are two conductings
Path, the guiding path of wherein synchronous buck module input is through exchanging input bus Line2 until synchronous buck module
Ac input end mouthful ACL-in2, the synchronous buck circuits of synchronous buck inside modules, the ac input end mouthful of synchronous buck module
ACL-in1, then to exchange input bus Line1, the guiding path between synchronous buck module output end and control circuit module is
Synchronism output port SYOUT2, control circuit module synchronous input end mouthful SYin2, photoelectrical coupler U2 importations, resistance R2,
Adjustable resistance Rw, synchronous input end mouthful SYin1, synchronism output port SYOUT1With the synchronous buck electricity of synchronous buck inside modules
Road, returns synchronism output port SYOUT2;
And first guiding path of main circuit module is until main circuit mould through external alternating current input bus Line2
The ac input end mouthful AC of blockH-in2, inductance L1, direct current output port DCOUT+, external load RL, direct current output port DCOUT-、
Photoelectrical coupler U2 output par, cs constitute multiple tube and ac input end mouthful AC of darlington structure with triode T2H-in1, then arrive
External exchange input bus Line1;The Article 2 guiding path of main circuit module, mainly by inductance L2 through previous just half
After cycle energy storage, the continuous current circuit formed in negative half-cycle, i.e., from inductance L2, by direct current output port DCOUT+, it is outer
Load RL, the direct current output port DC connectOUT-Darlington structure is constituted with photoelectrical coupler U2 output par, cs and triode T2
Multiple tube, returns inductance L2;In a word, positive half period or negative half-cycle, direct current output port DC are either operated inOUT+'s
Voltage is higher than direct current output port DCOUT-Voltage, during which benefit from the effect of inductance L1 and inductance L2 energy storage and afterflow again, no
Single-phase rectifier function is only realized, expansion stream rectification function is also achieved, and can also reduce and improve the ripple of output voltage,
Further, can be to direct current output port DC due to adding adjustable resistance RwOUT+With direct current output port DCOUT-Between
Voltage is adjusted.
The beneficial effects of the utility model are to provide a kind of adjustable single-phase optocoupler times flow pattern suitable for high companding flow structure
Buck rectifier, with characteristic simple, rational in infrastructure, that structure is convenient, with low cost is designed, with traditional current doubler rectifier phase
Than may be directly applied to high-pressure type rectification circuit, without being depressured in input increase step-down transformer, being not only suitable for routine
Square wave, be applied to the conversion of the power of alterating and direct current such as sine wave, triangular wave, sawtooth waveforms again, and expansion power supply can be directly realized by
Power output, can also be adjusted to the voltage of direct current output port, and can also reduce and improve the line of output voltage
Ripple.
Brief description of the drawings
In order to illustrate more clearly of the utility model embodiment or technical scheme, embodiment or technical scheme will be retouched below
The accompanying drawing used required in stating is briefly described, it should be apparent that, drawings in the following description are only of the present utility model
The explanation of more typical example structure composition or circuit diagram, for those skilled in the art, is not paying creative work
On the premise of, other accompanying drawings can also be obtained according to these accompanying drawings.
Fig. 1 is a kind of canonical schema of traditional current doubler rectifier.
Fig. 2 applies to a kind of adjustable single-phase canonical schema of optocoupler times flow pattern buck rectifier of high companding flow structure.
The adjustable single-phase optocoupler times flow pattern buck rectifier that Fig. 3 applies to high companding flow structure is operated in positive half period and led
Path footpath schematic diagram.
The adjustable single-phase optocoupler times flow pattern buck rectifier that Fig. 4 applies to high companding flow structure is operated in negative half-cycle and led
Path schematic diagram.
Embodiment
It is new below in conjunction with this practicality to make the purpose, technical scheme and advantage of the utility model embodiment clearer
Accompanying drawing in type embodiment, is clearly and completely described to the utility model technology composition, technical scheme and embodiment, shows
So, described embodiment is only a part of embodiment of the present utility model, rather than whole embodiments.Based on this practicality
Embodiment in new, other implementations that those of ordinary skill in the art are obtained under the premise of creative work is not made
Example, belongs to the scope of the utility model protection.
The utility model is further illustrated in conjunction with the drawings and specific embodiments.
As shown in Figure 1, it is a kind of canonical schema of traditional current doubler rectifier.Traditional current doubler rectifier is depressured to realize
The function of rectification output, generally will therewith be matched in ac input end increase step-down transformer, every half of work period
Primary conductive pathway is one end of the secondary side from step-down transformer, through inductance, output loading, one of those two pole
Pipe, returns the other end of the secondary side of step-down transformer, now from simplified quantitative relationship, and output voltage is equal to drop
The AC-input voltage of the secondary side of pressure transformer subtracts the pressure drop on inductance and the pressure drop of diode, but diode is linear
Area is narrower, and it operates mainly in switch region, because of the pressure drop very little of diode, if ignoring the pressure drop of diode, it is believed that per half
The AC-input voltage that the main output voltage of individual work period is equal to step-down transformer secondary side subtracts pressure drop on inductance.In addition
There is a continuous current circuit every half of work period, additionally it is possible to reduces and improves the ripple of output voltage.
As shown in Figure 2, a kind of adjustable single-phase allusion quotation of optocoupler times flow pattern buck rectifier of high companding flow structure is applied to
Type schematic diagram, including main circuit module, synchronous buck module and control circuit module three parts;
(1)Described main circuit module includes two ac input ends mouthful, two direct current output ports and a main circuit,
Two of which ac input end mouthful is respectively ac input end mouthful ACH-in1With ac input end mouthful ACH-in2, two direct current outputs
Port is respectively direct current output port DCOUT+With direct current output port DCOUT-, further, main circuit again by inductance L1, inductance L2,
Photoelectrical coupler U1 output par, cs, triode T1, photoelectrical coupler U2 output par, cs and triode T2 compositions, wherein photoelectric coupling
Device U1 output par, cs constitute the transmitting of the multiple tube, i.e. photoelectrical coupler U1 output par, cs of a darlington structure with triode T1
Pole is connected with triode T1 base stage, and the colelctor electrode of photoelectrical coupler U1 output par, cs is connected with triode T1 colelctor electrode, and
Photoelectrical coupler U2 output par, cs constitute the multiple tube of another darlington structure, i.e. photoelectrical coupler U2 outputs with triode T2
Partial emitter stage is connected with triode T2 base stage, the colelctor electrode of photoelectrical coupler U2 output par, cs and triode T2 current collection
Extremely it is connected, ac input end mouthful ACH-in1Emitter stage, inductance L2 one end with triode T2 are connected, the inductance L2 other end with
Direct current output port DCOUT+, inductance L1 one end be connected, the inductance L1 other end and triode T1 emitter stage, exchange input
Port ACH-in2It is connected, triode T1 colelctor electrode and triode T2 colelctor electrode, direct current output port DCOUT-It is connected;
(2)The synchronism output port and one that described synchronous buck module is depressured comprising two ac input ends mouthful, two
Individual synchronous buck circuit, two of which ac input end mouthful is respectively ac input end mouthful ACL-in1With ac input end mouthful
ACL-in2, the synchronism output port of two decompressions is respectively synchronism output port SYOUT1With synchronism output port SYOUT2, synchronous drop
Volt circuit is made up of conventional device, and it acts on two ac input ends mouthful and synchronous buck module that are to maintain main circuit module
Signal is synchronous between two synchronism output ports, and reduces the amplitude of its output voltage, to match the control circuit mould
The running parameter of block;
(3)Described control circuit module includes two synchronous input ends mouthful and a control circuit, and two of which is synchronous
Input port is respectively synchronous input end mouthful SYin1With synchronous input end mouthful SYin2, further, control circuit is again by resistance R1, electricity
Hinder R2, adjustable resistance Rw, photoelectrical coupler U1 importations and photoelectrical coupler U2 importations composition, synchronous input end mouthful
SYin1It is connected with adjustable resistance Rw one end, the adjustable resistance Rw other end and resistance R1 one end and resistance R2 one end phase
Even, synchronous input end mouthful SYin2Diode cathode, photoelectrical coupler U2 importations with photoelectrical coupler U1 importations
Diode anode is connected, and the resistance R1 other end is connected with the diode anode of photoelectrical coupler U1 importations, resistance R2's
The other end is connected with the diode cathode of photoelectrical coupler U2 importations;
(4)The ac input end mouthful AC of described main circuit moduleH-in1, synchronous buck module ac input end mouthful
ACL-in1It is connected with external alternating current input bus Line1, the ac input end mouthful AC of main circuit moduleH-in2, synchronous buck
The ac input end mouthful AC of moduleL-in2It is connected with external alternating current input bus Line2, the synchronism output of synchronous buck module
Port SYOUT1With the synchronous input end mouthful SY of control circuit modulein1It is connected, the synchronism output port SY of synchronous buck moduleOUT2
With the synchronous input end mouthful SY of control circuit modulein2It is connected, the direct current output port DC of main circuit moduleOUT+With direct current output
Port DCOUT-Between be used for external load RL.
The cycle of operating voltage between exchange input bus Line1 and exchange input bus Line2 is divided into positive half period
With negative half-cycle two large divisions.
As shown in Figure 3, the adjustable single-phase optocoupler times flow pattern buck rectifier for applying to high companding flow structure is operated in
Positive half period guiding path schematic diagram, when being operated in positive half period, described synchronous buck module input only one is led
Path, also only has a guiding path, described main circuit mould between synchronous buck module output end and control circuit module
Block has two guiding paths, and the guiding path of wherein synchronous buck module input is through exchanging input bus Line1 until same
Walk the ac input end mouthful AC of voltage reduction moduleL-in1, the synchronous buck circuit of synchronous buck inside modules, the friendship of synchronous buck module
Flow input port ACL-in2, then to exchange input bus Line2, between synchronous buck module output end and control circuit module
Guiding path is synchronism output port SYOUT1, control circuit module synchronous input end mouthful SYin1, adjustable resistance Rw, resistance R1,
Photoelectrical coupler U1 importations, synchronous input end mouthful SYin2, synchronism output port SYOUT2It is same with synchronous buck inside modules
Reduction voltage circuit is walked, synchronism output port SY is returnedOUT1;
And first guiding path of main circuit module is until main circuit mould through external alternating current input bus Line1
The ac input end mouthful AC of blockH-in1, inductance L2, direct current output port DCOUT+, external load RL, direct current output port DCOUT-、
Photoelectrical coupler U1 output par, cs constitute multiple tube and ac input end mouthful AC of darlington structure with triode T1H-in2, then arrive
External exchange input bus Line2;The Article 2 guiding path of main circuit module, mainly by inductance L1 through previous negative half
After cycle energy storage, the continuous current circuit formed in positive half period, i.e., by direct current output port DCOUT+, external load RL, direct current
Output port DCOUT-The multiple tube of darlington structure is constituted with photoelectrical coupler U1 output par, cs and triode T1, electricity is returned
Feel L1.
As shown in Figure 4, the adjustable single-phase optocoupler times flow pattern buck rectifier for applying to high companding flow structure is operated in
Negative half-cycle guiding path schematic diagram, when being operated in negative half-cycle, described synchronous buck module input also only has one
Guiding path, also only has a guiding path, described main circuit between synchronous buck module output end and control circuit module
Module also has two guiding paths, and the guiding path of wherein synchronous buck module input is straight through exchanging input bus Line2
To the ac input end mouthful AC of synchronous buck moduleL-in2, the synchronous buck circuit of synchronous buck inside modules, synchronous buck module
Ac input end mouthful ACL-in1, then to exchange input bus Line1, synchronous buck module output end and control circuit module it
Between guiding path be synchronism output port SYOUT2, control circuit module synchronous input end mouthful SYin2, photoelectrical coupler U2 it is defeated
Enter part, resistance R2, adjustable resistance Rw, synchronous input end mouthful SYin1, synchronism output port SYOUT1With synchronous buck inside modules
Synchronous buck circuit, return synchronism output port SYOUT2;
And first guiding path of main circuit module is until main circuit mould through external alternating current input bus Line2
The ac input end mouthful AC of blockH-in2, inductance L1, direct current output port DCOUT+, external load RL, direct current output port DCOUT-、
Photoelectrical coupler U2 output par, cs constitute multiple tube and ac input end mouthful AC of darlington structure with triode T2H-in1, then arrive
External exchange input bus Line1;The Article 2 guiding path of main circuit module, mainly by inductance L2 through previous just half
After cycle energy storage, the continuous current circuit formed in negative half-cycle, i.e., from inductance L2, by direct current output port DCOUT+, it is outer
Load RL, the direct current output port DC connectOUT-Darlington structure is constituted with photoelectrical coupler U2 output par, cs and triode T2
Multiple tube, returns inductance L2;In a word, positive half period or negative half-cycle, direct current output port DC are either operated inOUT+'s
Voltage is higher than direct current output port DCOUT-Voltage, during which benefit from the effect of inductance L1 and inductance L2 energy storage and afterflow again, no
Single-phase rectifier function is only realized, expansion stream rectification function is also achieved, and can also reduce and improve the ripple of output voltage,
Further, can be to direct current output port DC due to adding adjustable resistance RwOUT+With direct current output port DCOUT-Between
Voltage is adjusted.
It is described above, only it is preferred embodiment of the present utility model, not makees any formal to the utility model
Limitation.If various changes and modifications are carried out to the utility model embodiment, but still in spirit of the present utility model and original
Within then, it should be included within claims of the present utility model.
Claims (1)
1. suitable for the adjustable single-phase optocoupler times flow pattern buck rectifier of high companding flow structure, including main circuit module, control electricity
Road module and synchronous buck module three parts, it is characterized in that:
(1)Described main circuit module includes two ac input ends mouthful, two direct current output ports and a main circuit, wherein
Two ac input ends mouthful are respectively ac input end mouthful ACH-in1With ac input end mouthful ACH-in2, two direct current output ports
Respectively direct current output port DCOUT+With direct current output port DCOUT-, further, main circuit is again by inductance L1, inductance L2, photoelectricity
Coupler U1 output par, cs, triode T1, photoelectrical coupler U2 output par, cs and triode T2 compositions, wherein photoelectrical coupler U1
Output par, c and triode T1 constitute the multiple tube of a darlington structure, the i.e. emitter stage of photoelectrical coupler U1 output par, cs with
Triode T1 base stage is connected, and the colelctor electrode of photoelectrical coupler U1 output par, cs is connected with triode T1 colelctor electrode, and photoelectricity
Coupler U2 output par, cs constitute the multiple tube of another darlington structure, i.e. photoelectrical coupler U2 output par, cs with triode T2
Emitter stage be connected with triode T2 base stage, the colelctor electrode of photoelectrical coupler U2 output par, cs and triode T2 colelctor electrode phase
Even, ac input end mouthful ACH-in1Emitter stage, inductance L2 one end with triode T2 are connected, inductance the L2 other end and direct current
Output port DCOUT+, inductance L1 one end be connected, the inductance L1 other end and triode T1 emitter stage, ac input end mouthful
ACH-in2It is connected, triode T1 colelctor electrode and triode T2 colelctor electrode, direct current output port DCOUT-It is connected;
(2)Described synchronous buck module is same comprising two ac input ends mouthful, the synchronism output port of two decompressions and one
Reduction voltage circuit is walked, two of which ac input end mouthful is respectively ac input end mouthful ACL-in1With ac input end mouthful ACL-in2, two
The synchronism output port of individual decompression is respectively synchronism output port SYOUT1With synchronism output port SYOUT2, synchronous buck circuit by
Conventional device is constituted, and two ac input ends mouthful that its effect is to maintain main circuit module are synchronous with two of synchronous buck module
Signal is synchronous between output port, and reduces the amplitude of its output voltage, the work to match the control circuit module
Parameter;
(3)Described control circuit module includes two synchronous input ends mouthful and a control circuit, and two of which is synchronously inputted
Port is respectively synchronous input end mouthful SYin1With synchronous input end mouthful SYin2, further, control circuit is again by resistance R1, resistance
R2, adjustable resistance Rw, photoelectrical coupler U1 importations and photoelectrical coupler U2 importations composition, synchronous input end mouthful SYin1
It is connected with adjustable resistance Rw one end, the adjustable resistance Rw other end is connected with one end of resistance R1 one end and resistance R2, together
Walk input port SYin2Diode cathode, the diode of photoelectrical coupler U2 importations with photoelectrical coupler U1 importations
Anode is connected, and the resistance R1 other end is connected with the diode anode of photoelectrical coupler U1 importations, the resistance R2 other end
It is connected with the diode cathode of photoelectrical coupler U2 importations;
(4)The ac input end mouthful AC of described main circuit moduleH-in1, synchronous buck module ac input end mouthful ACL-in1With
External alternating current input bus Line1 is connected, the ac input end mouthful AC of main circuit moduleH-in2, synchronous buck module friendship
Flow input port ACL-in2It is connected with external alternating current input bus Line2, the synchronism output port of synchronous buck module
SYOUT1With the synchronous input end mouthful SY of control circuit modulein1It is connected, the synchronism output port SY of synchronous buck moduleOUT2With control
The synchronous input end mouthful SY of circuit module processedin2It is connected, the direct current output port DC of main circuit moduleOUT+With direct current output port
DCOUT-Between be used for external load RL.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201720236141.2U CN206620064U (en) | 2017-03-13 | 2017-03-13 | Suitable for the adjustable single-phase optocoupler times flow pattern buck rectifier of high companding flow structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201720236141.2U CN206620064U (en) | 2017-03-13 | 2017-03-13 | Suitable for the adjustable single-phase optocoupler times flow pattern buck rectifier of high companding flow structure |
Publications (1)
Publication Number | Publication Date |
---|---|
CN206620064U true CN206620064U (en) | 2017-11-07 |
Family
ID=60232367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201720236141.2U Expired - Fee Related CN206620064U (en) | 2017-03-13 | 2017-03-13 | Suitable for the adjustable single-phase optocoupler times flow pattern buck rectifier of high companding flow structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN206620064U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106685248A (en) * | 2017-03-13 | 2017-05-17 | 湖南工业大学 | Adjustable single-phase optocoupler double current step-down rectifier suitable for high voltage current expansion structure |
US11259413B2 (en) | 2018-04-05 | 2022-02-22 | Abb Power Electronics Inc. | Inductively balanced power supply circuit and method of manufacture |
-
2017
- 2017-03-13 CN CN201720236141.2U patent/CN206620064U/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106685248A (en) * | 2017-03-13 | 2017-05-17 | 湖南工业大学 | Adjustable single-phase optocoupler double current step-down rectifier suitable for high voltage current expansion structure |
US11259413B2 (en) | 2018-04-05 | 2022-02-22 | Abb Power Electronics Inc. | Inductively balanced power supply circuit and method of manufacture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111953198B (en) | Full-range ZVS implementation method of totem-pole PFC converter | |
CN205283423U (en) | Three -phase PFC rectifier circuit | |
Lee et al. | Soft-switching two-switch resonant AC–DC converter with high power factor | |
CN103560674A (en) | Three-phase three-level LLC resonance direct current converter and control method of three-phase three-level LLC resonance direct current converter | |
CN107800312B (en) | A kind of output ripple and low pfc converter | |
CN108235509B (en) | A kind of single-stage LED drive circuit of integrated decompression Cuk and LLC circuit | |
CN110492769B (en) | Single-stage AC-DC converter circuit with power factor correction function | |
CN206620064U (en) | Suitable for the adjustable single-phase optocoupler times flow pattern buck rectifier of high companding flow structure | |
CN203327305U (en) | Bridge-free PFC plus T type three-level inversion frequency-conversion light modulator | |
CN206686096U (en) | The adjustable single-phase optocoupler times flow pattern buck rectifier for expanding flow structure | |
CN206585478U (en) | Suitable for the single-phase optocoupler times flow pattern buck rectifier of high pressure | |
CN104901550B (en) | A kind of bridge DC/DC converters of enjoying a double blessing based on variable inductance network | |
CN206620066U (en) | Adjustable single-phase optocoupler times flow pattern buck rectifier | |
CN206620065U (en) | Suitable for the single-phase optocoupler times flow pattern buck rectifier of high companding flow structure | |
CN106655831A (en) | Adjustable single-phase optocoupler current double type step-down rectifier applicable to high voltages | |
CN104578750B (en) | A kind of offset-type power supply | |
CN204089635U (en) | High-frequency electrical pulses plating power supply | |
CN206775406U (en) | Suitable for high pressure and adjustable single-phase optocoupler times flow pattern buck rectifier | |
CN206698139U (en) | Expand the single-phase optocoupler times flow pattern buck rectifier of flow structure | |
CN206620063U (en) | Single-phase optocoupler times flow pattern buck rectifier | |
CN106159965A (en) | A kind of minimal form compensates power supply | |
CN106685248A (en) | Adjustable single-phase optocoupler double current step-down rectifier suitable for high voltage current expansion structure | |
CN104967304B (en) | One kind is based on no bridge CUK isolated form Three Phase Power Factor Correction Converters | |
CN107070265A (en) | The adjustable single-phase optocoupler times flow pattern buck rectifier for expanding flow structure | |
CN106877702A (en) | Adjustable single-phase optocoupler times flow pattern buck rectifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171107 Termination date: 20180313 |
|
CF01 | Termination of patent right due to non-payment of annual fee |