CN206370444U - Organic electroluminescent device - Google Patents
Organic electroluminescent device Download PDFInfo
- Publication number
- CN206370444U CN206370444U CN201621272629.2U CN201621272629U CN206370444U CN 206370444 U CN206370444 U CN 206370444U CN 201621272629 U CN201621272629 U CN 201621272629U CN 206370444 U CN206370444 U CN 206370444U
- Authority
- CN
- China
- Prior art keywords
- layer
- combination
- thickness
- organic electroluminescent
- electroluminescent device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002347 injection Methods 0.000 claims abstract description 31
- 239000007924 injection Substances 0.000 claims abstract description 31
- 239000002096 quantum dot Substances 0.000 claims abstract description 22
- 238000005401 electroluminescence Methods 0.000 claims description 10
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 9
- 229920000144 PEDOT:PSS Polymers 0.000 claims description 8
- IYZMXHQDXZKNCY-UHFFFAOYSA-N 1-n,1-n-diphenyl-4-n,4-n-bis[4-(n-phenylanilino)phenyl]benzene-1,4-diamine Chemical compound C1=CC=CC=C1N(C=1C=CC(=CC=1)N(C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 IYZMXHQDXZKNCY-UHFFFAOYSA-N 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims 3
- 230000027756 respiratory electron transport chain Effects 0.000 claims 3
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Inorganic materials O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 claims 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 claims 1
- 230000005525 hole transport Effects 0.000 abstract description 14
- 239000000463 material Substances 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 230000005281 excited state Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- AWXGSYPUMWKTBR-UHFFFAOYSA-N 4-carbazol-9-yl-n,n-bis(4-carbazol-9-ylphenyl)aniline Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(N(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 AWXGSYPUMWKTBR-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 101000837344 Homo sapiens T-cell leukemia translocation-altered gene protein Proteins 0.000 description 1
- 102100028692 T-cell leukemia translocation-altered gene protein Human genes 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
本实用新型涉及一种有机电致发光器件,所述有机电致发光器件包括从阳极层(7)一侧依次连接的空穴注入层(6)、空穴传输层(5)、发光层(4)、电子传输层(3)、电子注入层(2)以及阴极层(1);其中,所述发光层(4)为钙钛矿量子点层,所述发光层(4)的厚度为15~20nm。所述有机电致发光器件采用钙钛矿量子点层作为发光层,并严格控制其厚度,通过对其他各层的材料和厚度的选择,使本实用新型提供的有机电致发光器件的亮度达32090cd/m2,开启电压低至1.5V。
The utility model relates to an organic electroluminescent device, which comprises a hole injection layer (6), a hole transport layer (5), and a light emitting layer ( 4), electron transport layer (3), electron injection layer (2) and cathode layer (1); Wherein, described light-emitting layer (4) is perovskite quantum dot layer, and the thickness of described light-emitting layer (4) is 15-20nm. The organic electroluminescent device adopts the perovskite quantum dot layer as the light-emitting layer, and its thickness is strictly controlled. Through the selection of materials and thicknesses of other layers, the brightness of the organic electroluminescent device provided by the utility model can reach 32090cd/m 2 , the turn-on voltage is as low as 1.5V.
Description
技术领域technical field
本实用新型涉及光电领域,涉及一种光电器件,尤其涉及一种有机电致发光器件。The utility model relates to the field of optoelectronics, in particular to an optoelectronic device, in particular to an organic electroluminescent device.
背景技术Background technique
目前,电致发光器件是一种自发光器件,属于注入式发光,在正向偏压的作用下,阳极向电荷传输层注入空穴,在电场的作用下向传输层界面移动,而由阴极注入的电子也由电子传输层向界面移动,由于势垒的作用,电子不易进入电荷传输层,而在界面附近发光层一侧积累,从阴极注入的电子和从阳极注入的空穴在发光层相遇、复合,释放出能量,将能量传递给发光物质的分子,使其从基态跃迁到激发态,由于激发态很不稳定,受激分子发光从激发态回到基态,辐射跃迁而产生发光现象。At present, the electroluminescent device is a kind of self-luminous device, which belongs to injection light emission. Under the action of forward bias, the anode injects holes into the charge transport layer, and moves to the interface of the transport layer under the action of the electric field, while the cathode The injected electrons also move from the electron transport layer to the interface. Due to the effect of the potential barrier, the electrons are not easy to enter the charge transport layer, but accumulate on the side of the light-emitting layer near the interface. The electrons injected from the cathode and the holes injected from the anode are in the light-emitting layer. Meet, recombine, release energy, transfer energy to the molecules of the luminescent substance, and make it transition from the ground state to the excited state. Because the excited state is very unstable, the excited molecules emit light from the excited state back to the ground state, and radiative transition produces luminescence. .
由于使用无机化合物制备的电致发光器件具有结构稳固,使用寿命长,稳定性强等优势,得到了广泛的应用,但是无机电致发光器件制作成功高,加工困难,效率低下,难以满足人们对信息显示设备的需求,有机电致发光器件材料选择范围宽,具有低电压驱动、高亮度、宽视角、响应速度快等特性,在显示照明等方面有良好的应用前景,在近年来得到了迅猛的发展,有机电致发光器件已经成为目前的研究热点之一。Due to the advantages of stable structure, long service life and strong stability, electroluminescent devices prepared by using inorganic compounds have been widely used. However, inorganic electroluminescent devices are highly successful in fabrication, difficult to process, and low in efficiency. In order to meet the needs of information display equipment, organic electroluminescent devices have a wide range of materials to choose from, and have the characteristics of low voltage drive, high brightness, wide viewing angle, and fast response speed. They have good application prospects in display lighting and other aspects, and have been rapidly developed in recent years. The development of organic electroluminescent devices has become one of the current research hotspots.
CN 103904178 A公开了一种量子点发光器件。该量子点发光器件包括依次相邻设置的阳极、空穴传输层、量子点发光层、电子传输层和阴极,量子点发光器件还包括电子阻挡层,设置在电子传输层中或设置在量子点发光层与电子传输层之间。利用设置电子阻挡层一方面保证载流子的平衡注入,另一方面隔 绝电子传输层与量子点发光层之间的电荷自发转移,保证了量子点电中性。所述量子点发光器件采用常用的CdSe、CdS等量子点,量子效率低,且发光性质不可控。CN 103904178 A discloses a quantum dot light emitting device. The quantum dot light-emitting device includes an anode, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode arranged adjacently in sequence. The quantum dot light-emitting device also includes an electron blocking layer, which is arranged in the electron transport layer or on the between the light-emitting layer and the electron-transporting layer. On the one hand, the electronic blocking layer ensures the balanced injection of carriers, and on the other hand, it isolates the spontaneous transfer of charges between the electron transport layer and the quantum dot light-emitting layer, thereby ensuring the electrical neutrality of the quantum dots. The quantum dot light-emitting device adopts commonly used quantum dots such as CdSe and CdS, which has low quantum efficiency and uncontrollable luminous properties.
CN 105720204 A公开了一种种反置结构的无机钙钛矿量子点发光二极管,包括ITO玻璃基板、沉积在ITO玻璃表面的ZnO电子传输层、无机钙钛矿CsPbX3量子点发光层、4,4’,4”-三(咔唑-9-基)三苯胺空穴传输层、空穴注入层和阳极电极材料。通过以下步骤制备:首先在洁净的ITO玻璃上采用磁控溅射法沉积ZnO电子传输层,之后取CsPbX3量子点的分散液旋涂在器件表面,然后热蒸发沉积TCTA空穴传输层,再热蒸发沉积空穴注入层,最后沉积阳极电极材料。所述发光二极管的发光层采用CsPbX3,通过X为Cl、Br和I任意两种的组合来调节发光层发光性质,但是两种化合物的简单掺杂并不能对发光层产生太大影响,不能从根本上改变发光层的发光性质,且容易造成发光不均匀的问题,同时外量子效率较低。CN 105720204 A discloses an inorganic perovskite quantum dot light-emitting diode with various inverted structures, including an ITO glass substrate, a ZnO electron transport layer deposited on the surface of the ITO glass, an inorganic perovskite CsPbX3 quantum dot light-emitting layer, 4,4 ',4"-tris(carbazol-9-yl)triphenylamine hole transport layer, hole injection layer and anode electrode material. It is prepared by the following steps: first, ZnO is deposited on clean ITO glass by magnetron sputtering Electron transport layer, get the dispersion liquid of CsPbX3 quantum dots and spin-coat on the device surface afterwards, then thermal evaporation deposits TCTA hole transport layer, then thermal evaporation deposits hole injection layer, and finally deposits anode electrode material. The light emitting layer of the light emitting diode Using CsPbX 3 , the light-emitting properties of the light-emitting layer can be adjusted by X being a combination of any two of Cl, Br, and I. However, the simple doping of the two compounds cannot have a great impact on the light-emitting layer, and cannot fundamentally change the light-emitting layer. Luminescent property, and it is easy to cause the problem of uneven luminescence, and at the same time, the external quantum efficiency is low.
因此,针对现有技术中有机电致发光器件的发光层采用CdSe、CdS等量子点,亮度低,开启电压高的问题,研究一种新的有机电致发光器件十分重要。Therefore, it is very important to study a new organic electroluminescent device in view of the problems of low brightness and high turn-on voltage of quantum dots such as CdSe and CdS used in the light-emitting layer of the organic electroluminescent device in the prior art.
实用新型内容Utility model content
针对现有技术中存在的问题,本实用新型的目的之一在于提供一种有机电致发光器件及其制备方法,所述有机电致发光器件发光亮度大,开启电压小,发光性质可控,所述制备方法工艺简单,可用于工业化生产。In view of the problems existing in the prior art, one of the purposes of the present utility model is to provide an organic electroluminescent device and a preparation method thereof. The organic electroluminescent device has a large luminous brightness, a small turn-on voltage, and controllable luminous properties. The preparation method has simple process and can be used in industrialized production.
为达此目的,本实用新型采用以下技术方案:For this purpose, the utility model adopts the following technical solutions:
一种有机电致发光器件,所述有机电致发光器件包括从阳极层一侧依次连接的空穴注入层、空穴传输层、发光层、电子传输层、电子注入层以及阴极层;An organic electroluminescent device, said organic electroluminescent device comprising a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer and a cathode layer sequentially connected from the anode layer side;
其中,所述发光层为钙钛矿量子点层,所述发光层的厚度为15~20nm。Wherein, the light-emitting layer is a perovskite quantum dot layer, and the thickness of the light-emitting layer is 15-20 nm.
所述放光层的厚度可以是15nm、16nm、17nm、18nm、19nm或20nm等,但并不仅限于所列举的数值,该数值范围内包含的其他未列举的数值也同样适用。其中钙钛矿量子点层为现有技术,参见CN 105720204 A。The thickness of the light-emitting layer can be 15nm, 16nm, 17nm, 18nm, 19nm or 20nm, etc., but is not limited to the listed values, and other unlisted values included in this range are also applicable. Wherein the perovskite quantum dot layer is a prior art, see CN 105720204 A.
以下作为本实用新型优选的技术方案,但不作为本实用新型提供的技术方案的限制,通过以下技术方案,可以更好的达到和实现本实用新型的技术目的和有益效果。The following is the preferred technical solution of the utility model, but not as a limitation of the technical solution provided by the utility model. Through the following technical solutions, the technical purpose and beneficial effects of the utility model can be better achieved and realized.
作为本实用新型优选的技术方案,所述阳极层选自ITO层、Au层或Cu层中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:ITO层和Au层的组合、Au层和Cu层的组合、ITO层和Cu层的组合或ITO层、Au层和Cu层的组合等,阳极层为ITO层时效果最好。As a preferred technical solution of the present invention, the anode layer is selected from any one or a combination of at least two of the ITO layer, the Au layer or the Cu layer, and the typical but non-limiting examples of the combination are: the ITO layer and the Au layer The combination of layers, the combination of Au layer and Cu layer, the combination of ITO layer and Cu layer, or the combination of ITO layer, Au layer and Cu layer, etc., the effect is best when the anode layer is an ITO layer.
作为本实用新型优选的技术方案,所述空穴注入层选自PEDOT:PSS层、MoO3层或TDATA层中任意一种或至少两种的组合,所述空穴注入层的厚度为10~30nm。As a preferred technical solution of the present invention, the hole injection layer is selected from any one or at least two combinations of PEDOT:PSS layer, MoO 3 layer or TDATA layer, and the thickness of the hole injection layer is 10~ 30nm.
其中所述组合典型但非限制性实例有PEDOT:PSS层和MoO3层的组合、MoO3层和TDATA层的组合、PEDOT:PSS层和TDATA层的组合或PEDOT:PSS)层、MoO3层和TDATA层的组合等,空穴注入层为PEDOT:PSS层时效果最好;所述空穴注入层的厚度可以是10nm、12nm、15nm、18nm、20nm、22nm、25nm、28nm或30nm等,但并不仅限于所列举的数值,该数值范围内包含的其他未列举的数值也同样适用。Wherein said combination typical but non-limiting example has the combination of PEDOT:PSS layer and MoO 3 layer, the combination of MoO 3 layer and TDATA layer, the combination of PEDOT:PSS layer and TDATA layer or PEDOT:PSS) layer, MoO 3 layer And the combination of TDATA layer etc., effect is best when hole injection layer is PEDOT:PSS layer; The thickness of described hole injection layer can be 10nm, 12nm, 15nm, 18nm, 20nm, 22nm, 25nm, 28nm or 30nm etc., However, it is not limited to the numerical values listed, and other unlisted numerical values included in the numerical range are also applicable.
作为本实用新型优选的技术方案,所述空穴传输层选自TPD层、Poly-TPD层或NPD层中任意一种或至少两种的组合,所述空穴传输层的厚度为5~30nm。As a preferred technical solution of the present invention, the hole transport layer is selected from any one or a combination of at least two of TPD layer, Poly-TPD layer or NPD layer, and the thickness of the hole transport layer is 5-30nm .
其中所述组合典型但非限制性实例有:TPD层和Poly-TPD层的组合、Poly-TPD层和NPD层的组合、TPD层和NPD层的组合或TPD层、Poly-TPD 层和NPD层的组合等,所述空穴传输层为Poly-TPD层时效果最好;所述空穴传输层的厚度可以是5nm、8nm、10nm、12nm、15nm、18nm、20nm、22nm、25nm、28nm或30nm等,但并不仅限于所列举的数值,该数值范围内包含的其他未列举的数值也同样适用。Wherein said combination typical but non-limiting example has: the combination of TPD layer and Poly-TPD layer, the combination of Poly-TPD layer and NPD layer, the combination of TPD layer and NPD layer or TPD layer, Poly-TPD layer and NPD layer combination etc., the effect is best when the hole transport layer is a Poly-TPD layer; the thickness of the hole transport layer can be 5nm, 8nm, 10nm, 12nm, 15nm, 18nm, 20nm, 22nm, 25nm, 28nm or 30nm, etc., but not limited to the enumerated numerical values, and other unenumerated numerical values included in this numerical range are also applicable.
作为本实用新型优选的技术方案,所述电子传输层选自Alq3层、PBD层或TPBi层中任意一种或至少两种的组合,所述电子传输层的厚度为30~50nm。As a preferred technical solution of the present invention, the electron transport layer is selected from any one or a combination of at least two of Alq 3 layer, PBD layer or TPBi layer, and the thickness of the electron transport layer is 30-50 nm.
其中所述组合典型但非限制性实例有,Alq3层和PBD层的组合、PBD层和TPBi层的组合、Alq3层和TPBi层的组合或Alq3层、PBD层和TPBi层的组合等,所述电子传输层为TPBi层时效果最好;所述电子传输层的厚度可以是30nm、32nm、35nm、38nm、40nm、42nm、45nm、48nm或50nm等,但并不仅限于所列举的数值,该数值范围内包含的其他未列举的数值也同样适用。Wherein said combination typical but non-limiting example has, the combination of Alq 3 layer and PBD layer, the combination of PBD layer and TPBi layer, the combination of Alq 3 layer and TPBi layer or the combination of Alq 3 layer, PBD layer and TPBi layer etc. , the effect is best when the electron transport layer is a TPBi layer; the thickness of the electron transport layer can be 30nm, 32nm, 35nm, 38nm, 40nm, 42nm, 45nm, 48nm or 50nm, etc., but is not limited to the listed values , other unlisted values included in this value range are also applicable.
作为本实用新型优选的技术方案,所述电子注入层选自LiF层、ZnO层或TiO2层中任意一种或至少两种的组合,所述电子注入层的厚度为1~5nm。As a preferred technical solution of the present invention, the electron injection layer is selected from any one or a combination of at least two of LiF layer, ZnO layer or TiO2 layer, and the thickness of the electron injection layer is 1-5 nm.
其中所述组合典型但非限制性实例有LiF层和ZnO层的组合、ZnO层和TiO2的组合、LiF层和TiO2层的组合或LiF层、ZnO层和TiO2层等,所述电子注入层为LiF层时效果最好;所述电子注入层的厚度可以是1nm、1.5nm、2nm、2.5nm、3nm、3.5nm、4nm、4.5nm或5nm等,但并不仅限于所列举的数值,该数值范围内包含的其他未列举的数值也同样适用。Wherein said combination typical but non-limiting example has the combination of LiF layer and ZnO layer, the combination of ZnO layer and TiO2 , the combination of LiF layer and TiO2 layer or LiF layer, ZnO layer and TiO2 layer etc., described electron The effect is best when the injection layer is a LiF layer; the thickness of the electron injection layer can be 1nm, 1.5nm, 2nm, 2.5nm, 3nm, 3.5nm, 4nm, 4.5nm or 5nm, etc., but not limited to the listed values , other unlisted values included in this value range are also applicable.
作为本实用新型优选的技术方案,所述阴极层选自Al层、Mg层或Li层中人分宜一种或至少两种的组合,所述阴极层的厚度为100~200nm。As a preferred technical solution of the present invention, the cathode layer is preferably selected from one or a combination of at least two of Al layer, Mg layer or Li layer, and the thickness of the cathode layer is 100-200nm.
其中所述组合典型但非限制性实例有,Al层和Mg层的组合、Mg层和Li层的组合、Al层和Li层的组合或Al层、Mg层和Li层的组合等,所述阴极层为Al时效果最好;所述阴极层的厚度可以是100nm、110nm、120nm、130nm、 140nm、150nm、160nm、170nm、180nm、190nm或200nm等,但并不仅限于所列举的数值,该数值范围内包含的其他未列举的数值也同样适用。Wherein the typical but non-limiting examples of the combination include a combination of an Al layer and a Mg layer, a combination of a Mg layer and a Li layer, a combination of an Al layer and a Li layer, or a combination of an Al layer, a Mg layer and a Li layer, etc., the The effect is best when the cathode layer is Al; the thickness of the cathode layer can be 100nm, 110nm, 120nm, 130nm, 140nm, 150nm, 160nm, 170nm, 180nm, 190nm or 200nm, etc., but not limited to the listed values, the Other unrecited values included in the numerical ranges also apply.
与现有技术方案相比,本实用新型至少具有以下有益效果:Compared with the prior art solutions, the utility model has at least the following beneficial effects:
本实用新型提供的有机电致发光器件采用钙钛矿量子点层作为发光层,并严格控制其厚度,通过对其他各层的材料和厚度的选择,使本实用新型提供的有机电致发光器件的亮度达32090cd/m2,开启电压低至1.5V。The organic electroluminescent device provided by the utility model adopts the perovskite quantum dot layer as the light-emitting layer, and its thickness is strictly controlled, and the organic electroluminescent device provided by the utility model is made The brightness reaches 32090cd/m 2 , and the turn-on voltage is as low as 1.5V.
附图说明Description of drawings
图1是本实用新型提供的有机电致发光器件的结构示意图;Fig. 1 is the structural representation of the organic electroluminescent device provided by the utility model;
图中:1-阴极层,2-电子注入层,3-电子传输层,4-发光层,5-空穴传输层,6-空穴注入层,7-阳极层。In the figure: 1-cathode layer, 2-electron injection layer, 3-electron transport layer, 4-light-emitting layer, 5-hole transport layer, 6-hole injection layer, 7-anode layer.
具体实施方式detailed description
下面结合附图并通过具体实施方式来进一步说明本实用新型的技术方案。The technical scheme of the utility model will be further described below in conjunction with the accompanying drawings and through specific embodiments.
本实用新型具体实施例部分,提供了一种如图1所示的有机电致发光器件,所述有机电致发光器件包括从阳极层7一侧依次连接的空穴注入层6、空穴传输层5、发光层4、电子传输层3、电子注入层2以及阴极层1;The specific embodiment part of the utility model provides an organic electroluminescent device as shown in Figure 1, the organic electroluminescent device comprises a hole injection layer 6 connected sequentially from the anode layer 7 side, a hole transport Layer 5, light emitting layer 4, electron transport layer 3, electron injection layer 2 and cathode layer 1;
其中,所述发光层4为钙钛矿量子点层,所述放光层4的厚度为15~20nm。Wherein, the light-emitting layer 4 is a perovskite quantum dot layer, and the thickness of the light-emitting layer 4 is 15-20 nm.
为更好地说明本实用新型,便于理解本实用新型的技术方案,本实用新型的典型但非限制性的实施例如下:In order to better illustrate the utility model and facilitate understanding of the technical solution of the utility model, the typical but non-limiting examples of the utility model are as follows:
实施例1Example 1
一种有机电致发光器件,阳极层7为ITO层,空穴注入层6为20nm厚的PEDOT:PSS层,空穴传输层5为18nm厚的Poly-TPD层,发光层4为18nm厚的钙钛矿量子点层,电子传输层3为40nm厚的TPBi层,电子注入层2为3nm厚的LiF层,阴极层1位150nm厚的Al层。An organic electroluminescent device, the anode layer 7 is an ITO layer, the hole injection layer 6 is a 20nm thick PEDOT:PSS layer, the hole transport layer 5 is a 18nm thick Poly-TPD layer, and the light emitting layer 4 is a 18nm thick The perovskite quantum dot layer, the electron transport layer 3 is a 40nm thick TPBi layer, the electron injection layer 2 is a 3nm thick LiF layer, and the cathode layer 1 is a 150nm thick Al layer.
制备得到的OLED器件的发光亮度为32090cd/m2,开启电压为1.8V。The luminance of the prepared OLED device was 32090cd/m 2 , and the turn-on voltage was 1.8V.
实施例2Example 2
一种有机电致发光器件,阳极层7为Au层,空穴注入层6为10nm厚的TDATA层,空穴传输层5为5nm厚的TPD层,发光层4为10nm厚的钙钛矿量子点层,电子传输层3为30nm厚的PBD层,电子注入层2为1nm厚的ZnO层,阴极层1位100nm厚的Li层。An organic electroluminescent device, the anode layer 7 is an Au layer, the hole injection layer 6 is a 10nm thick TDATA layer, the hole transport layer 5 is a 5nm thick TPD layer, and the light emitting layer 4 is a 10nm thick perovskite quantum The dot layer, the electron transport layer 3 is a PBD layer with a thickness of 30nm, the electron injection layer 2 is a ZnO layer with a thickness of 1nm, and the cathode layer is a Li layer with a thickness of 100nm.
制备得到的OLED器件的发光亮度为30785cd/m2,开启电压为1.62V。The luminance of the prepared OLED device was 30785cd/m 2 , and the turn-on voltage was 1.62V.
实施例3Example 3
一种有机电致发光器件,阳极层7为Cu层,空穴注入层6为30nm厚的MoO3层,空穴传输层5为30nm厚的NPD层,发光层4为30nm厚的钙钛矿量子点层,电子传输层3为50nm厚的Alq3层,电子注入层2为5nm厚的TiO2层,阴极层1位200nm厚的Mg层。An organic electroluminescent device, the anode layer 7 is a Cu layer, the hole injection layer 6 is a 30nm thick MoO 3 layer, the hole transport layer 5 is a 30nm thick NPD layer, and the light emitting layer 4 is a 30nm thick perovskite The quantum dot layer, the electron transport layer 3 is a 50nm thick Alq 3 layer, the electron injection layer 2 is a 5nm thick TiO 2 layer, and the cathode layer 1 is a 200nm thick Mg layer.
制备得到的OLED器件的发光亮度为31057cd/m2,开启电压为1.56V。The luminance of the prepared OLED device was 31057cd/m 2 , and the turn-on voltage was 1.56V.
实施例4Example 4
一种有机电致发光器件,除了阳极层7为Au层和Cu层的组合外,其他条件均与实施例1相同。An organic electroluminescence device, except that the anode layer 7 is a combination of Au layer and Cu layer, other conditions are the same as in Example 1.
制备得到的OLED器件的发光亮度为29700cd/m2,开启电压为1.66V。The luminance of the prepared OLED device was 29700cd/m 2 , and the turn-on voltage was 1.66V.
实施例5Example 5
一种有机电致发光器件,除了空穴注入层6为PEDOT:PSS层和TDATA层的组合外,其他条件均与实施例1相同。An organic electroluminescent device, except that the hole injection layer 6 is a combination of PEDOT:PSS layer and TDATA layer, other conditions are the same as in Example 1.
制备得到的OLED器件的发光亮度为30220cd/m2,开启电压为1.62V。The luminance of the prepared OLED device was 30220cd/m 2 , and the turn-on voltage was 1.62V.
实施例6Example 6
一种有机电致发光器件,除了空穴传输层5为TPD层和Poly-TPD层的组 合外,其他条件均与实施例1相同。An organic electroluminescent device, except that the hole transport layer 5 is a combination of a TPD layer and a Poly-TPD layer, other conditions are the same as in Example 1.
制备得到的OLED器件的发光亮度为31980cd/m2,开启电压为1.5V。The luminance of the prepared OLED device was 31980cd/m 2 , and the turn-on voltage was 1.5V.
实施例7Example 7
一种有机电致发光器件,除了电子传输层3为PBD层和TPBi层的组合外,其他条件均与实施例1相同。An organic electroluminescent device, except that the electron transport layer 3 is a combination of a PBD layer and a TPBi layer, and other conditions are the same as in Example 1.
制备得到的OLED器件的发光亮度为29520cd/m2,开启电压为1.57V。The luminance of the prepared OLED device was 29520cd/m 2 , and the turn-on voltage was 1.57V.
实施例8Example 8
一种有机电致发光器件,除了电子注入层2为LiF层和ZnO层的组合外,其他条件均与实施例1相同。An organic electroluminescence device, except that the electron injection layer 2 is a combination of a LiF layer and a ZnO layer, other conditions are the same as those in Embodiment 1.
制备得到的OLED器件的发光亮度为28710cd/m2,开启电压为1.78V。The luminance of the prepared OLED device was 28710cd/m 2 , and the turn-on voltage was 1.78V.
实施例9Example 9
一种有机电致发光器件,除了阴极层1为Al层和Mg层的组合外,其他条件均与实施例1相同。An organic electroluminescent device, except that the cathode layer 1 is a combination of an Al layer and a Mg layer, and other conditions are the same as in the embodiment 1.
制备得到的OLED器件的发光亮度为27960cd/m2,开启电压为1.74V。The luminance of the prepared OLED device was 27960cd/m 2 , and the turn-on voltage was 1.74V.
通过实施例1-9可以看出,本实用新型提供的有机电致发光器件,使用钙钛矿量子点作为发光层,并严格控制其厚度,对器件其他各层做出合理的选择并控制其厚度,可以使发光亮度达32090cd/m2,开启电压低至1.5V。同时通过对有机电致发光器件除发光层外其他各层的选择,并调整其厚度,可以得到不同发光强度以及开启电压的有机电致发光器件。As can be seen from Examples 1-9, the organic electroluminescent device provided by the utility model uses perovskite quantum dots as the light-emitting layer, and strictly controls its thickness, and makes reasonable choices and controls the other layers of the device. The thickness can make the luminous brightness reach 32090cd/m 2 , and the turn-on voltage is as low as 1.5V. At the same time, organic electroluminescent devices with different luminous intensities and turn-on voltages can be obtained by selecting all layers of the organic electroluminescent device except the light-emitting layer and adjusting their thickness.
申请人声明,本实用新型通过上述实施例来说明本实用新型的详细结构特征,但本实用新型并不局限于上述详细结构特征,即不意味着本实用新型必须依赖上述详细结构特征才能实施。所属技术领域的技术人员应该明了,对本实用新型的任何改进,对本实用新型所选用部件的等效替换以及辅助部件的增 加、具体方式的选择等,均落在本实用新型的保护范围和公开范围之内。The applicant declares that the utility model illustrates the detailed structural features of the present utility model through the above-mentioned embodiments, but the utility model is not limited to the above-mentioned detailed structural features, that is, it does not mean that the utility model must rely on the above-mentioned detailed structural features to be implemented. Those skilled in the art should understand that any improvement of the utility model, the equivalent replacement of the selected components of the utility model, the addition of auxiliary components, the selection of specific methods, etc., all fall within the scope of protection and disclosure of the utility model within.
以上详细描述了本实用新型的优选实施方式,但是,本实用新型并不限于上述实施方式中的具体细节,在本实用新型的技术构思范围内,可以对本实用新型的技术方案进行多种简单变型,这些简单变型均属于本实用新型的保护范围。The preferred embodiment of the utility model has been described in detail above, but the utility model is not limited to the specific details in the above embodiment, and within the scope of the technical concept of the utility model, various simple modifications can be made to the technical solution of the utility model , these simple modifications all belong to the protection scope of the present utility model.
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本实用新型对各种可能的组合方式不再另行说明。In addition, it should be noted that the various specific technical features described in the above specific embodiments can be combined in any suitable way if there is no contradiction. The combination method will not be explained separately.
此外,本实用新型的各种不同的实施方式之间也可以进行任意组合,只要其不违背本实用新型的思想,其同样应当视为本实用新型所公开的内容。In addition, any combination of various implementations of the present invention can also be made, as long as they do not violate the idea of the present invention, they should also be regarded as the disclosed content of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621272629.2U CN206370444U (en) | 2016-11-24 | 2016-11-24 | Organic electroluminescent device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621272629.2U CN206370444U (en) | 2016-11-24 | 2016-11-24 | Organic electroluminescent device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN206370444U true CN206370444U (en) | 2017-08-01 |
Family
ID=59388704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201621272629.2U Active CN206370444U (en) | 2016-11-24 | 2016-11-24 | Organic electroluminescent device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN206370444U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107768528A (en) * | 2017-09-13 | 2018-03-06 | 北京大学深圳研究生院 | Application of the fluoro alcoholic solvent in perovskite photoelectric device is prepared |
CN109256475A (en) * | 2018-09-19 | 2019-01-22 | 电子科技大学 | A kind of perovskite light emitting diode and preparation method based on ultraviolet thermal anneal process |
WO2021114366A1 (en) * | 2019-12-10 | 2021-06-17 | 深圳市华星光电半导体显示技术有限公司 | Light-emitting device and preparation method therefor |
-
2016
- 2016-11-24 CN CN201621272629.2U patent/CN206370444U/en active Active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107768528A (en) * | 2017-09-13 | 2018-03-06 | 北京大学深圳研究生院 | Application of the fluoro alcoholic solvent in perovskite photoelectric device is prepared |
CN107768528B (en) * | 2017-09-13 | 2019-10-29 | 北京大学深圳研究生院 | Fluoro alcoholic solvent is preparing the application in perovskite photoelectric device |
CN109256475A (en) * | 2018-09-19 | 2019-01-22 | 电子科技大学 | A kind of perovskite light emitting diode and preparation method based on ultraviolet thermal anneal process |
CN109256475B (en) * | 2018-09-19 | 2020-02-07 | 电子科技大学 | Perovskite light-emitting diode based on ultraviolet thermal annealing process and preparation method |
WO2021114366A1 (en) * | 2019-12-10 | 2021-06-17 | 深圳市华星光电半导体显示技术有限公司 | Light-emitting device and preparation method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11653512B2 (en) | Light-emitting diode and light-emitting device with reduced hole and current leakages | |
CN103733373B (en) | Organic light emitting device | |
CN106450021A (en) | Organic electroluminescent device and preparation method thereof | |
WO2018153107A1 (en) | Display panel, electroluminescent light-emitting device, and method for fabricating same | |
WO2019095565A1 (en) | Tandem quantum-dot light-emitting device, panel and display | |
CN102169966A (en) | Organic light emitting diode | |
CN105161637A (en) | Quantum dot light emitting diode containing doped hole injection layer and fabrication method of quantum dot light emitting diode | |
CN105206715A (en) | QLED with exciton confinement structure and manufacturing method thereof | |
KR101973207B1 (en) | Anode including metal oxides and an organic light emitting device having the anode | |
CN206370444U (en) | Organic electroluminescent device | |
WO2007047779A1 (en) | Method and apparatus for light emission utilizing an oled with a microcavity | |
CN206293474U (en) | The enhanced blue light organic emissive diode of plasma resonance | |
US8026512B2 (en) | Mobility engineered electroluminescent devices | |
KR101419809B1 (en) | Inverted organic light-emitting diode and display apparatus including the same | |
CN101919082A (en) | Organic electroluminescent device | |
CN104934541A (en) | Organic electroluminescent light emitting device and preparation method thereof | |
TWI540779B (en) | Organic light emitting device | |
CN109980105A (en) | A kind of QLED device | |
KR101959812B1 (en) | Organic light emitting device | |
KR20170112452A (en) | Organic light emitting device | |
CN110391344A (en) | An OLED with improved efficiency and stability based on an anode modification layer | |
CN111200078A (en) | Light extraction structure for organic light emitting device and organic light emitting device including the same | |
CN111129343B (en) | Display device | |
CN103296217A (en) | Organic electroluminescence device and preparing method thereof | |
TWI406441B (en) | White-emitting organic light emitting diode (oled) structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |