CN206114563U - 基于3d球检测平台的工业ct检测装置 - Google Patents

基于3d球检测平台的工业ct检测装置 Download PDF

Info

Publication number
CN206114563U
CN206114563U CN201620715690.3U CN201620715690U CN206114563U CN 206114563 U CN206114563 U CN 206114563U CN 201620715690 U CN201620715690 U CN 201620715690U CN 206114563 U CN206114563 U CN 206114563U
Authority
CN
China
Prior art keywords
detector
detection
radiographic source
platform
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201620715690.3U
Other languages
English (en)
Inventor
尚宝刚
任慧
王成
王浩
夏海涛
戴东辉
高波
王艳伟
丁庆玲
李芳�
隋莹莹
孙德超
郭磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dandong Huari Electric Co., Ltd.
Original Assignee
DANDONG HUARI SCIENCE ELECTRIC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DANDONG HUARI SCIENCE ELECTRIC Co Ltd filed Critical DANDONG HUARI SCIENCE ELECTRIC Co Ltd
Priority to CN201620715690.3U priority Critical patent/CN206114563U/zh
Application granted granted Critical
Publication of CN206114563U publication Critical patent/CN206114563U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种基于3D球检测平台的工业CT检测装置。是由移动吊臂装置、3D球检测平台、射线源探测器扫描装置、系统控制台四部分构成。通过系统控制台对各信息进行反馈汇总后,发送驱动控制命令,移动射线源和探测器到达预定检测位置。控制驱动3D球检测平台中的万向驱动轮装置滚动,从而带动球形工件托盘承载内部工件沿着所需检测的轨迹方向转动,同时开启射线源探测器扫描装置扫描成像功能,完成CT扫描检测。本实用新型采用X射线机和直线加速器作为射线源,采用线阵探测器或数字平板探测器作为图像探测接收装置,大大拓宽了检测范围,克服了传统的技术缺陷,大大提高了检测灵敏度和检测精度,是一种更加程序化的工业CT扫描检测方法。

Description

基于3D球检测平台的工业CT检测装置
技术领域
本实用新型涉及一种工业CT检测装置及检测方法,具体说涉及一种基于3D球检测平台的工业CT检测装置。
背景技术
近年来随着计算机技术的不断普及和发展,工业CT检测技术得到了进一步的发展,通过射线断层扫描、以二维断层图像或三维立体图像的形式,清晰、准确、直观地展示被检测物体的内部结构、组成、材质及缺损状况。现有技术的CT扫描方式是平移与旋转方式或单独旋转方式。工件垂直放置夹持到承载的旋转平台上,通过旋转平移进行扫描检测。而目前对立方体结构或球状结构等大形工件的工业CT检测,一般都将工件等放置夹持到承载的旋转平台上,受到承载工件检测平台的限制,其检测工件与接触的承载平台位置或者夹具夹持位置属于成像扫描限制区域,存在边界遮挡障碍缺陷,无法全方位清晰的一次检测完成射线的CT扫描检测,往往需要关闭射线系统后人工二次调换工件安装位置使其第一次放置时下面的接触面部分或第一次所夹持部位转到上面,进行第二次扫描,才能完成整个工件的检测。无法实现方便全方位的一次性连续的射线检测,大大降低了检测效率。另外对于一些结构复杂的工件,需要寻找一个最佳的透照角度,才能够实现最佳二维投影数据的采集,完成高精度的三维建模,,这对现有简单旋转平台的单一方向旋转移动方式是无法实现的,无法达到最佳的扫描成像效果。
在中国专利申请公开说明书CN201420746093,公开了一种工业CT专用可翻转检测台装置,利用翻转装置来实现检测系统对锻件多角度的检测,,该装置可用于工业CT检测系统,,使被检测件在CT检测过程中方便地翻转和旋转,满足锻件等大型件内部缺陷的检测需求。公示的该装置虽然可翻转一定角度,但提供的翻转检测角度是十分有限的,适用性也是很有局限性的,而且该装置因夹持遮挡无法有效一次性检测托盘底端夹持工件部分的检测。但本实用新型的设计可实现任意角度旋转和无遮挡夹持端的特性,可以避免翻转检测台装置的缺陷,具有选择角度灵活,扫描灵敏精确,检测效率高等优点,与已公开的专利相比具有明显的创新性和技术领先性。
发明内容
针对现有立方体结构或球状结构等大型工件工业CT检测方法存在的缺陷,本实用新型提出一种检测效率高,不受空间广域局限,全方位,可灵活选择透照方向角度,连续高精度高灵敏度扫描的基于3D球检测平台的工业CT检测装置及检测方法。
解决上述技术问题的具体技术措施是:一种基于3D球检测平台的工业CT检测装置。如图1所示,是由移动吊臂装置1、3D球检测平台2、射线源探测器扫描装置3、系统控制台4四部分构成,移动吊臂1由Y轴纵向移动装置11,横向导向架12,射线源前后移动机构13,探测器前后移动机构14,探测器升降机构15,射线源升降机构16,探测器固定架17,射线源固定架18构成,其中Y轴纵向移动装置11安装在检测探伤室的房顶上的Y轴纵向工字钢轨道上,在探测器升降机构15下面装有探测器固定架17固定安装探测器,在射线源升降机构16的下面装有射线源固定架18固定安装射线源。射线源探测器扫描装置3主要由射线源和对应接收的探测器核心部件构成,3D球检测平台2由万向驱动轮装置 21,牛眼万向球 22,上下支撑架 23,上连接法兰板24,立架25,升降丝杠副装置26,升降直线导轨27,中间连接板28,球形工件托盘29构成,球形壳体连同工件用吸盘吊装到3D球检测平台2的下支撑架上,系统控制台4将移动吊臂1移动到3D球检测平台2球壳中心两侧。
移动吊臂装置1如图2所示,是已有的成型技术,作为基础结构技术,在本实用新型中为辅助结构,其结构是:由Y轴纵向移动装置11,横向导向架12,射线源前后移动机构13,探测器前后移动机构14,探测器升降机构15,射线源升降机构16,探测器固定架17,射线源固定架18构成。
3D球检测平台2如图3图4所示,其结构是:由万向驱动轮装置 21,牛眼万向球 22,上下支撑架 23,上连接法兰板24,立架25,升降丝杠副装置26,升降直线导轨27,中间连接板28,球形工件托盘29构成。
射线源探测器扫描装置3属于成型的已有技术,主要由射线源和对应接收的探测器核心部件构成。本装置针对不同厚度不同形状的工件选用不同的射线源探测器配置,对于尺寸相对较小厚度较小等工件,选择XY-450KV型号移动射线机,配用XRD0822AP3 平板探测器成像板进行扫描成像,对于尺寸相对较大厚度较大等工件射线机功率无法穿透,采用2-9MeV的直线加速器,配用XIH8808系列线阵器,进行扫描。
系统控制台4作为智能检测系统的控制中心,采用已有自动化的设计控制方式的型号为XRC-MCC型系统控制台,为已有成型技术,其控制结构如图5所示。
使用上述装置的检测方法,检测流程如图4所示:第一步,装载上件阶段:将待检测工件安装其设计尺寸,在其最外沿边角处垫上专用胶垫后,将立方体形状的合金铸件放置到聚氨酯球形工件托盘29下半球内,再旋紧扣上上半球球壳,将球形壳体连同工件用吸盘吊装到3D球检测平台2的下支撑架上,驱动电机调节升降丝杠副装置降下上支撑架使得上下支撑架23上面的牛眼万向球22与球形工件托盘29的外球壳紧密接触起到支撑导向作用。再分别调整上下位置的万向轮驱动装置21与球壳中心顶紧,调整侧面的万向轮驱动装置21与球壳侧面中心顶紧;第二步,射线源探测器准备阶段:系统控制台4发送驱动命令,将移动吊臂1移动到3D球检测平台2球壳中心两侧,驱动调整探测器升降机构15和射线源升降机构16将高度调整到待检测位置,调整射线源前后移动机构13和探测器前后移动机构14分别向中心轴线的X1轴和X2轴前后移动调节到最佳焦距位置;第三步,CT扫描阶段:系统控制台4发送驱动命令,驱动上下部万向轮驱动装置21及中间水平的万向轮驱动装置21的伺服电机转动,沿着W1,W2,W3,W4轴向转动,从而带动滚球滚动,滚球通过摩擦将动能传导到聚氨酯球壳,从而使得检测工件伴随球壳做所需各方向转动,根据不同型号工件,将球壳连同工件调整到最佳透照旋转角度位置。射线源探测器开启扫描检测工件,同时系统控制台控制驱动聚氨酯球沿最佳透照角度旋转,旋转空位精度20"(秒),直至旋转一周,扫描结束,若工件较大无法一次扫描全部,则系统控制台驱动平移移动吊臂1升降或横向移动一个检测扫描有效区至下一个扫描区域,再次开启射线源探测器扫描检测工件,按旋转空位精度要求,驱动旋转工件,直至旋转一周,扫描结束。重复扫描检测动作直至整体工件全部检测完毕;第四步,图像重建阶段:系统控制台4通过自身计算机所加载的CT扫描软件,将透照后探测器采集到的二维投影数据,通过软件的特殊软件算法进行三维重建,构建可视化的三维图像模型或断层切片图像;第五步,缺陷识别判断阶段:系统控制台4通过自身计算机软件对构建的三维图像模型或断层切片图像,进行图像分析,识别缺陷位置及缺陷大小,进行缺陷定位,完成后进行检查存档,并支持导出检测结果;第六步,结束收尾阶段:扫描结束后关闭射线系统,移走移动吊臂,吊装卸下聚氨酯球,取出工件,完成检测。
本实用新型的有益效果:本实用新型克服了传统立体铸件在CT扫描检测中,因承载平台位置或者是夹具夹持位置限制无法一次连续检测完成的缺陷,具有高自动化,定位精度高等优点,大大提高了检测效率。又因为本实用新型采用3D球平台三维运动可以调节多种透照角度,相比传统的只能一个方向的透照技术,可使投影数据的采集达到最佳的检测灵敏度,提高了图像重建后三维效果的灵敏度,也有效的提高并保证了工业CT系统的检测精度。是一种更加程序化的工业CT检测方法,本实用新型采用X射线机或直线加速器作为射线源,采用数字平板探测器或线阵探测器作为图像接收装置,拓宽了检测应用的范围,推动了无损检测技术的进一步发展。可广泛应用于无损检测领域,具有广阔的发展空间。
附图说明
图1是本实用新型的结构示意图
图2是图1中的移动吊臂的结构示意图
图3是图1中的3D球检测平台的结构示意主视图
图4是图1中的3D球检测平台的结构示意侧视图
图5是图1中系统控制台硬件控制结构图;
图6是检测方法的程序流程框图
图中:1.移动吊臂装置,2.3D球检测平台,3射线源探测器扫描装置,4系统控制台,11Y轴纵向移动装置, 12横向导向架,13射线源前后移动机构,14探测器前后移动机构,15探测器升降机构,16射线源升降机构,17探测器固定架,18射线源固定架, 21万向驱动轮装置,22牛眼万向球,23上下支撑架,24上连接法兰板,25立架,26升降丝杠副装置,27升降直线导轨,28中间连接板,29球形工件托盘。
具体实施方式
结合附图说明本实用新型的结构构成及方法原理。
一种基于3D球检测平台的工业CT检测装置。如图1所示,是由移动吊臂装置1、3D球检测平台2、射线源探测器扫描装置3、系统控制台4四部分构成。通过系统控制台4对各信息进行反馈汇总后,发送驱动控制命令,先后驱动移动吊臂装置1各轴驱动电机分别移动升降射线源和探测器到达预定检测位置。系统控制台4控制驱动3D球检测平台2中的万向驱动轮装置滚动,从而带动球形工件托盘承载内部工件沿着所需检测的轨迹方向转动,同时开启射线源探测器扫描装置扫描成像功能,完成CT扫描检测。
移动吊臂1如图2所示,是已有的成型技术,作为基础结构技术,在本实用新型中为辅助结构,其结构是:由Y轴纵向移动装置11,横向导向架12,射线源前后移动机构13,探测器前后移动机构14,探测器升降机构15,射线源升降机构16,探测器固定架17,射线源固定架18构成。其中Y轴纵向移动装置11安装在检测探伤室的房顶上的Y轴纵向工字钢轨道上,上述Y轴纵向移动装置结构与工程上广泛应用的移动行走吊装电动葫芦的行走车结构相似,由车轮及驱动电机构成,属已有技术,可以实现整个检测室内Y轴纵向轨迹移动的功能。在Y轴纵向移动装置11下面安装横向导向架12,射线源前后移动机构13上装有行走转轮,行走转轮上装有横向移动电机,行走转轮安装在横向导向架12内的一端,探测器前后移动机构14上装有行走转轮,行走转轮上装有横向移动电机,行走转轮安装在横向导向架12内的另一端,沿导向架方向可前后移动,可实现射线源前后移动机构13和探测器前后移动机构14分别向中心轴线的X1轴和X2轴前后移动调节焦距位置。在射线源前后移动机构13和探测器前后移动机构14下面分别装有探测器升降机构15和射线源升降机构16,在升降机构上装有升降电动机,可实现沿Z轴升降移动,在探测器升降机构15下面装有探测器固定架17固定安装探测器。在射线源升降机构16的下面装有射线源固定架18固定安装射线源。
3D球检测平台2如图3图4所示,其结构是:由万向驱动轮装置 21牛眼万向球,22上下支撑架 23,上连接法兰板24,立架25,升降丝杠副装置26,升降直线导轨27,中间连接板28,球形工件托盘29构成。其中升降丝杠副装置26中的丝杠通过标准轴承座安装固定在立架25的上下端,上端连接固定驱动电机驱动。在立架25的侧立面上安装固定升降直线导轨27,直线导轨与连接法兰板24螺钉连接固定,连接法兰板24另一端用螺钉固定上下支撑架23的上支撑架,上支撑架四角处螺钉安装固定4个标准件牛眼万向球22,并在支撑架中间用螺钉固定万向驱动轮装置 21,立架25底端通过螺钉与上下支撑架 23的下支撑架连接固定,下支撑架同样四角处螺钉安装固定4个标准件牛眼万向球22,并在支撑架中间用螺钉固定万向驱动轮装置 21,在立架25中间位置,螺钉安装中间连接板28,中间连接板28上螺钉固定安装一组万向驱动轮装置 21。在上下支撑架 23的牛眼万向球22中间放置需要承载工件的球形工件托盘29。上下支撑架23上面的牛眼万向球22与球形工件托盘29的外球壳紧密接触起到支撑导向作用。再通过上下部万向轮驱动装置21及中间水平的万向轮驱动装置21的伺服电机转动,从而带动滚球滚动,沿着W1,W2,W3,W4轴向的水平轴向转动和垂直轴向的转动,滚球通过摩擦将动能传导到聚氨酯球壳,从而使得检测工件伴随球壳做所需任意轨迹方向转动。球形工件托盘29根据其具体检测工件配套制作,采用高强度低密度的聚氨酯材料加工,氨酯球壳分上下半球,下半球放置工件后再旋紧扣上上半球球壳,形成一个封闭圆滑球体。既可以很好的承载工件,也可减少射线透照衰减,在图像重建之后,通过软件可以将聚氨酯托盘过滤去除。
射线源探测器扫描装置3属于成型的已有技术,主要由射线源和对应接收的探测器核心部件构成。本装置针对不同厚度不同形状的工件选用不同的射线源探测器配置,对于尺寸相对较小厚度较小等工件,选择XYD-450KV型号移动射线机,配用XRD 0822AP3成像板进行扫描成像,对于尺寸相对较大厚度较大等工件普通射线机功率无法穿透,采用2MeV~9MeV的直线加速器,配用XIH8808系列线阵器,进行扫描。射线源探测器扫描装置3受系统控制台4控制,开启工作时,射线源发射出X射线或高速粒子流穿透被检测工件,照在靠近工件检测位置的数字探测器上,探测器将接收到的信号转换成图像数字信号,再将信号传输到系统控制台4上,系统控制台4装有专用CT扫描成像软件,对图像进行断层扫描,扫描一个固定圆周后,通过计算机进行系统图像重建,形成断层扫描图片和三维模型,再进行内部缺陷判断及存贮等综合处理。
系统控制台4作为智能检测系统的控制中心,采用已有自动化的设计控制方式的型号为XRC-MCC型系统控制台,为已有成型技术,其控制结构如图5所示。在系统控制台4的计算机通过以太网连接运动控制部分的运动控制器、电机驱动装置、位置反馈单元、探测器成像采集单元、射线源控制单元等,运动控制器通过伺服驱动器完成控制移动吊臂X轴伺服电机A、移动吊臂 Y轴伺服电机B、移动吊臂 Z轴伺服电机C、3D球工件CT平台Z轴伺服电机D、3D球工件CT平台 W1轴伺服电机E、3D球工件CT平台 W2轴伺服电机F转动,通过采集位置反馈信息实现各轴电机的精确定位,从而完成整套装置检测流程自动化,操作台采用一体化工业计算机作为控制软件运行平台,实现人机交互控制,可完成机械传动定位控制,运动状态的监控,运动位置校正,射线发射与图像采集的同步控制,工作报警提示等。系统控制台4通过其核心软件系统,根据透照射线断层扫描采集的数字信息,进行系统图像重建过程,生成三维工件扫描模型或断层切片图像。最后再进行工件内部识别。
使用上述装置的检测方法,检测流程如图4所示:第一步,装载上件阶段:将待检测工件安装其设计尺寸,在其最外沿边角处垫上专用胶垫后,将立方体形状的合金铸件放置到聚氨酯球形工件托盘29下半球内,再旋紧扣上上半球球壳,将球形壳体连同工件用吸盘吊装到3D球检测平台2的下支撑架上,驱动电机调节升降丝杠副装置降下上支撑架使得上下支撑架23上面的牛眼万向球22与球形工件托盘29的外球壳紧密接触起到支撑导向作用。再分别调整上下位置的万向轮驱动装置21与球壳中心顶紧,调整侧面的万向轮驱动装置21与球壳侧面中心顶紧;第二步,射线源探测器准备阶段:系统控制台4发送驱动命令,将移动吊臂1移动到3D球检测平台2球壳中心两侧,驱动调整探测器升降机构15和射线源升降机构16将高度调整到待检测位置,调整射线源前后移动机构13和探测器前后移动机构14分别向中心轴线的X1轴和X2轴前后移动调节到最佳焦距位置;第三步,CT扫描阶段:系统控制台4发送驱动命令,驱动上下部万向轮驱动装置21及中间水平的万向轮驱动装置21的伺服电机转动,沿着W1,W2,W3,W4轴向转动,从而带动滚球滚动,滚球通过摩擦将动能传导到聚氨酯球壳,从而使得检测工件伴随球壳做所需各方向转动,根据不同型号工件,将球壳连同工件调整到最佳透照旋转角度位置。射线源探测器开启扫描检测工件,同时系统控制台控制驱动聚氨酯球沿最佳透照角度旋转,旋转空位精度20"(秒),直至旋转一周,扫描结束,若工件较大无法一次扫描全部,则系统控制台驱动平移移动吊臂1升降或横向移动一个检测扫描有效区至下一个扫描区域,再次开启射线源探测器扫描检测工件,按旋转空位精度要求,驱动旋转工件,直至旋转一周,扫描结束。重复扫描检测动作直至整体工件全部检测完毕;第四步,图像重建阶段:系统控制台4通过自身计算机所加载的CT扫描软件,将透照后探测器采集到的二维投影数据,通过软件的特殊软件算法进行三维重建,构建可视化的三维图像模型或断层切片图像;第五步,缺陷识别判断阶段:系统控制台4通过自身计算机软件对构建的三维图像模型或断层切片图像,进行图像分析,识别缺陷位置及缺陷大小,进行缺陷定位,完成后进行检查存档,并支持导出检测结果;第六步,结束收尾阶段:扫描结束后关闭射线系统,移走移动吊臂,吊装卸下聚氨酯球,取出工件,完成检测。

Claims (1)

1.一种基于3D球检测平台的工业CT检测装置,其特征在于:是由移动吊臂装置(1)、3D球检测平台(2)、射线源探测器扫描装置(3)、系统控制台(4)四部分构成,移动吊臂(1)由Y轴纵向移动装置(11),横向导向架(12),射线源前后移动机构(13),探测器前后移动机构(14),探测器升降机构(15),射线源升降机构(16),探测器固定架(17),射线源固定架(18)构成,其中Y轴纵向移动装置(11)安装在检测探伤室的房顶上的Y轴纵向工字钢轨道上,在探测器升降机构(15)下面装有探测器固定架(17)固定安装探测器,在射线源升降机构(16)的下面装有射线源固定架(18)固定安装射线源,射线源探测器扫描装置(3)主要由射线源和对应接收的探测器核心部件构成,3D球检测平台(2)由万向驱动轮装置 (21),牛眼万向球 (22),上下支撑架(23),上连接法兰板(24),立架(25),升降丝杠副装置(26),升降直线导轨(27),中间连接板(28),球形工件托盘(29)构成,球形壳体连同工件用吸盘吊装到3D球检测平台(2)的下支撑架上,系统控制台(4)发送驱动命令,将移动吊臂(1)移动到3D球检测平台(2)球壳中心两侧。
CN201620715690.3U 2016-07-08 2016-07-08 基于3d球检测平台的工业ct检测装置 Active CN206114563U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620715690.3U CN206114563U (zh) 2016-07-08 2016-07-08 基于3d球检测平台的工业ct检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620715690.3U CN206114563U (zh) 2016-07-08 2016-07-08 基于3d球检测平台的工业ct检测装置

Publications (1)

Publication Number Publication Date
CN206114563U true CN206114563U (zh) 2017-04-19

Family

ID=58509151

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620715690.3U Active CN206114563U (zh) 2016-07-08 2016-07-08 基于3d球检测平台的工业ct检测装置

Country Status (1)

Country Link
CN (1) CN206114563U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107367518A (zh) * 2017-08-24 2017-11-21 丹东华日理学电气股份有限公司 多功能ct检测平台装置
CN112881442A (zh) * 2021-01-26 2021-06-01 西安增材制造国家研究院有限公司 一种可拆装滑动门式工业在线ct
CN115598716A (zh) * 2021-07-07 2023-01-13 同方威视技术股份有限公司(Cn) 用于射线扫描设备的射线源的安装定位结构以及射线扫描设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107367518A (zh) * 2017-08-24 2017-11-21 丹东华日理学电气股份有限公司 多功能ct检测平台装置
CN112881442A (zh) * 2021-01-26 2021-06-01 西安增材制造国家研究院有限公司 一种可拆装滑动门式工业在线ct
CN112881442B (zh) * 2021-01-26 2023-04-07 西安增材制造国家研究院有限公司 一种可拆装滑动门式工业在线ct
CN115598716A (zh) * 2021-07-07 2023-01-13 同方威视技术股份有限公司(Cn) 用于射线扫描设备的射线源的安装定位结构以及射线扫描设备

Similar Documents

Publication Publication Date Title
CN106018443A (zh) 基于3d球检测平台的工业ct检测装置及检测方法
CN108120390B (zh) 测量设备及测量方法
CN206114563U (zh) 基于3d球检测平台的工业ct检测装置
CN105856216B (zh) 工件取出机器人系统以及工件取出方法
CN105973918A (zh) 工业ct用3d球检测平台
CN105293070A (zh) 涡轮部件焊缝检测设备及检测方法
CN106568786B (zh) 一种小型筒体环焊缝的射线自动检测装置
CN106770370A (zh) 双工位pcb板检测分选设备
CN105372270A (zh) 龙门式x射线无损检测装置
CN206838549U (zh) 模拟安装状态板弯翘检测机
CN112845161B (zh) 一种基于视觉传感装置的外观检测装置及其检测方法
CN205222060U (zh) 涡轮部件焊缝检测设备
CN206114562U (zh) 工业ct用3d球检测平台
CN206411033U (zh) 双工位pcb板检测分选设备
CN206146850U (zh) 一种自动检测线
CN114791368A (zh) 一种轮式多机器人多功能测试平台及测试方法
CN208636228U (zh) 一种融合机器视觉和超声检测圆柱形壳体无损检测装置
CN110133008A (zh) 用于罐体的焊缝探伤系统
CN102590246A (zh) X射线数字平板成像检测系统的摄像扫描定位装置
CN107421626A (zh) 基于多相机的柔性臂空间振动特性分析装置与方法
CN106824828A (zh) 一种带废品剔除功能的聚合物软包锂电池自动检测机
Li et al. The development and application of an original 3D laser scanning: a precise and nondestructive structural measurements system
CN107966118A (zh) 一种移动平面检测设备及其检测方法
CN113984801B (zh) 数字射线自动检测装置
CN206772244U (zh) 一种电芯r角检测装置及电芯r角检测箱

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 118001 139 Dongping Avenue, Zhen An District, Dandong, Liaoning.

Patentee after: Dandong Huari Electric Co., Ltd.

Address before: 118001 139 Dongping Avenue, Zhen An District, Dandong, Liaoning.

Patentee before: DANDONG HUARI SCIENCE ELECTRIC CO., LTD.