CN205939980U - 一种麦冬药材用具有温度调节功能的烘干节能系统 - Google Patents

一种麦冬药材用具有温度调节功能的烘干节能系统 Download PDF

Info

Publication number
CN205939980U
CN205939980U CN201620368639.XU CN201620368639U CN205939980U CN 205939980 U CN205939980 U CN 205939980U CN 201620368639 U CN201620368639 U CN 201620368639U CN 205939980 U CN205939980 U CN 205939980U
Authority
CN
China
Prior art keywords
resistance
pole
audion
polar capacitor
outfan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201620368639.XU
Other languages
English (en)
Inventor
汪多敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Rong Xing Industrial Co Ltd
Original Assignee
Sichuan Rong Xing Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Rong Xing Industrial Co Ltd filed Critical Sichuan Rong Xing Industrial Co Ltd
Priority to CN201620368639.XU priority Critical patent/CN205939980U/zh
Application granted granted Critical
Publication of CN205939980U publication Critical patent/CN205939980U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Amplifiers (AREA)

Abstract

本实用新型公开了一种麦冬药材用具有温度调节功能的烘干节能系统,其特征在于,主要由温度补偿装置,烘烤风道(1),设置在烘烤风道(1)上方的进风风道(2),设置在进风风道(2)进风口处的除湿机(3),设置在进风风道(2)出风口处的抽风机(4)等组成;所述温度补偿装置由控制系统(71),发热器(72),以及鼓风机(73)组成;所述的控制系统71由控制芯片,温度信号处理电路,电感降压式恒流驱动电路,温度传感器(74),以及蜂鸣器组成。本实用新型采用热泵来取代了传统的电加热装置,使其耗电量仅为传统烘干装置的1/4,本实用新型还设置了温度补偿装置,有效的提高了本系统的烘干温度的稳定性、烘干效率。

Description

一种麦冬药材用具有温度调节功能的烘干节能系统
技术领域
本实用新型涉及节能环保领域,具体的说,是一种麦冬药材用具有温度调节功能的烘干节能系统。
背景技术
中医在我国有着悠久的历史,其以调理为主治疗为辅的治疗方式而被国内外的病痛患者所青睐。中医使用的许多药材都需要烘干,“麦冬”是中医常用的一种中药材,它在烘干时对温度的准确性要求很高,“麦冬”在烘干时的温度高了则会被烤焦,而温度低了则又会使“麦冬”干燥度不够,长时间存放时出现发霉或变质。
然而,现有的中药材烘干时多采用电烘烤的方式,由于这种烘干方式的耗电量非常高,同时该烘干方式的烘干效率低,因此使得中药材的烘干的成本偏高,极大的浪费了电力资源。
因此,提供一种既能提高烘干效率,又能确保恒定温度的麦冬药材烘干系统便是当务之急。
实用新型内容
本实用新型的目的在于克服现有技术中的中药材“麦冬”烘干时不仅烘干的温度不稳定,而且烘干效率低的缺陷,提供的一种麦冬药材用具有温度调节功能的烘干节能系统。
本实用新型通过以下技术方案来实现:一种麦冬药材用具有温度调节功能的烘干节能系统,主要由温度补偿装置,烘烤风道,设置在烘烤风道上方的进风风道,设置在进风风道进风口处的除湿机,设置在进风风道出风口处的抽风机,设置在烤风道的内部底面的网状烘干架,以及设置在进风风道中部的加热装置组成;所述进风风道的进风口和出风口均与烘烤风道相连通。
所述温度补偿装置由控制系统,以及均与控制系统相连接的发热器和鼓风机组成;所述控制系统由控制芯片,均与控制芯片相连接的温度信号处理电路、 电感降压式恒流驱动电路、数据储存器、蜂鸣器、电源、显示器和键盘,以及与温度信号处理电路相连接的温度传感器组成;所述控制芯片与鼓风机相连接。
所述温度信号处理电路由输入端与温度传感器相连接的信号采样电路,和输入端与信号采样电路的输出端相连接的信号滤波放大电路;所述信号滤波放大电路的输出端与控制芯片相连接。
所述信号采样电路由放大器P1,放大器P2,正极经电阻R22后与放大器P的正极相连接、负极作为信号采样电路的输入端的极性电容C7,N极经电阻R26后与放大器P1的输出端相连接、P极经电阻R25后与放大器P的正极相连接的二极管D6,负极经电阻R24后与放大器P1的输出端相连接、正极经电阻R23后与放大器P1的负极相连接的极性电容C8,一端与放大器P1的输出端相连接、另一端与放大器P2的正极相连接的电阻R27,负极与放大器P2的负极相连接、正极经电阻R29后与放大器P2的输出端相连接的极性电容C9,以及N极与放大器P2的输出端相连接、P极经电阻R30后与放大器P2的负极相连接的二极管D7组成;所述放大器P2的负极接地,其输出端与放大器P1的输出端共同形成信号采样电路的输出端。
所述信号滤波放大电路由三极管VT4,放大器P3,三极管VT5,正极顺次经电阻R31和电阻R28后与放大器P1的输出端相连接、负极经电阻R32后与三极管VT4的集电极相连接的极性电容C10,负极与三极管VT5发射极相连接、正极顺次经可调电阻R33和电阻R35后与三极管VT4的基极相连接的极性电容C11,负极经电阻R38后与放大器P3的正极相连接、正极经电阻R34后与可调电阻R33与电阻R35的连接点相连接的极性电容C12,P极与极性电容C12的正极相连接、N极经电阻R36后与三极管VT4的发射极相连接的二极管D8,以及一端与二极管D8的N极相连接。另一端与放大器P3的负极相连接的电阻R37组成;所述三极管VT4的集电极接地;所述三极管VT5的基极与放大器P2的输出端相连接,该三极管VT5的集电极接地;所述放大器P3的输出端作为信号滤波放大电路的输出端。
所述电感降压式恒流驱动电路由输入端与控制芯片相连接的电感缓冲电 路,输入端与电感缓冲电路的输出端相连接的驱动调节电路,以及输入端与驱动调节电路的输出端相连接的原边反馈式恒流电路组成;所述原边反馈式恒流电路的输出端与发热器相连接。
所述电感缓冲电路由三极管VT1,三极管VT2,三极管VT3,正极经电感L后与三极管VT1的基极相连接、负极顺次经电阻R1和电阻R4后与三极管VT2的基极相连接的极性电容C1,正极与电阻R1与电阻R4的连接点相连接、负极经电阻R10后与三极管VT3的发射极相连接的极性电容C3,一端与三极管VT1的基极相连接、另一端与极性电容C3的正极相连接的电阻R2,一端与三极管VT2的发射极相连接、另一端与三极管VT3的发射极相连接的电阻R6,N极与三极管VT3的基极相连接、P极经电阻R5后与三极管VT2的集电极相连接的二极管D2,以及P极顺次经电阻R13和电阻R3后与三极管VT1的发射极相连接、N极与三极管VT3的集电极共同形成电感缓冲电路的输出端的二极管D1组成;所述三极管VT1的集电极接地,其基极与极性电容C1的负极共同形成电感缓冲电路的输入端。
所述驱动调节电路由驱动芯片U,场效应管MOS,P极与驱动芯片U的FB管脚相连接、N极经电阻R11后与三极管VT3的集电极相连接的二极管D3,一端与驱动芯片U的VDD管脚相连接、另一端与三极管VT3的集电极相连接的电阻R14,正极经电阻R19后与驱动芯片U的CS管脚相连接、负极经电阻R15后与三极管VT3的集电极相连接的极性电容C6,正极经电阻R21后与场效应管MOS的源极相连接、负极经电阻R20后与极性电容C6的负极相连接的极性电容C7,以及N极经电阻R18后与场效应管MOS的栅极相连接、P极与驱动芯片U的GD管脚相连接的稳压二极管D4组成;所述驱动芯片U的GND管脚接地,其INV管脚与二极管D1的N极相连接,同时其COMP管脚与场效应管MOS的漏极共同形成驱动调节电路的输出端;所述极性电容C7的负极接地。
所述原边反馈式恒流电路由变压器T,正极经电阻R7后与变压器T原边电感线圈的非同名端相连接、负极顺次经电阻R8和电阻R9后与驱动芯片U的COMP管脚相连接的极性电容C2,正极经电阻R12后与变压器T原边电感线圈 的同名端相连接、负极与场效应管MOS的漏极相连接的极性电容C8,正极与变压器T副边电感线圈的同名端相连接、负极与变压器T副边电感线圈的非同名端相连接的极性电容C4,一端与极性电容C4的正极相连接、另一端与极性电容C4的负极相连接的电阻R17,正极与极性电容C4的正极相连接、负极与极性电容C4的负极相连接的极性电容C5,以及P极经电阻R16后与极性电容C4的正极相连接、N极与极性电容C5的正极相连接的二极管D5组成;所述变压器T副边电感线圈的同名端与非同名端共同形成原边反馈式恒流电路的输出端。
为了更好的实施本实用新型,所述驱动芯片U则优先采用了CL1100集成芯片来实现。
为了确保本实用新型的除湿效果,所述除湿机为三台,且其中两台除湿机平行的分布在进风风道的两侧,而另一台则设置在烘烤风道的出风口与进风风道的进风口连接处。
进一步地,所述加热装置为热泵,且该热泵的机组位于进风风道的外侧,而其冷凝管则设置在进风风道的内部;所述冷凝管在进风风道的内部呈波浪形或螺旋形布置。
为确保使用效果,所述热泵为空气热泵、水源热泵和地源热泵。
为确保烘烤的麦冬药材能均匀的受热,同时提高麦冬药材的烘干效率,因此在本实用新型的烘烤风道的内部还设置了网孔为直径为1~1.5cm的圆形孔。
本实用新型与现有技术相比,具有以下优点及有益效果:
(1)本实用新型采用热泵来取代了传统的电加热装置,不仅能极大的降低用电的能耗,使其耗电量仅为传统烘干装置的1/4,同时,本实用新型还设置了温度补偿装置,该温度补偿装置能通过对烘烤风道温度采集的温度信息对烘烤风道内进行温度补偿,有效的提高了本系统的烘干温度的稳定性、烘干效率。
(2)本实用新型的温度信号处理电路能将温度传感器输出的电信号中的干扰信号进行消除,同时该电路将处理后的电信号进行滤波,使电信号的传输频率的无用频率被消除或减弱,该电路还能将滤波后的电信号进行放大后传输给 控制芯片,从而有效的确保了控制芯片接收的信号的准确性。
(3)本实用新型的电感降压式恒流驱动电路能对控制芯片输出的瞬间高电流进行降流,同时该电路利用原边反馈工作原理,在恒流控制中的多模式运作的使用实现了驱动的高性能和高效率,以及通过输出线压降补偿实现了有效的对驱动电流的调节,使该电路输出稳定的驱动电流,有效的确保了本实用新型的温度补偿装置的加热的准确性。
(4)本实用新型的整体结构简单,操作方便。同时,本实用新型的网状烘烤架能使热风通过网孔均匀的对麦冬药材进行烘干,从而确保了麦冬药材的烘干质量,并有效的提高了本实用新型的烘烤效率。
(5)本实用新型的网状烘烤架的网孔为直径为1~1.5cm的圆形孔,该网孔可让热风通过对麦冬药材的烘干时形成对流,有效的提高了本实用新型的烘干效率,同时防止了麦冬药材从网状烘烤架上掉落。
附图说明
图1为本实用新型的整体结构示意图。
图2为本实用新型的圆形网孔的网状烘烤架的俯视结构示意图。
图3为本实用新型的温度补偿装置的控制系统的结构框图。
图4为本实用新型的电感降压式恒流驱动电路的电路结构示意图。
图5为本实用新型的温度信号处理电路的电路结构示意图。
具体实施方式
下面结合实施例及其附图对本实用新型作进一步地详细说明,但本实用新型的实施方式不限于此。
实施例
如图1、2、3所示,本实用新型包括温度补偿装置,烘烤风道1,进风风道2,除湿机3,抽风机4,加热装置5,以及网状烘干架6组成。其中,烘烤风道1是由水泥和砖垒砌而成,其内部底面设有用于网状烘干架6移动的轨道,该网状烘干架6的网孔为直径为1~1.5cm的圆形孔,烘烤风道1内的热风通过网状烘干架6的网孔形成对流,从而有效的提高了本发明的烘干效率。进风风道2 位于烘烤风道1的上方,其由位于烘烤风道1顶部的隔板隔离而成,也可以用单独的金属、水泥或木材等构成。
本实用新型的温度补偿装置则如图1所示,其由控制系统71,发热器72,以及鼓风机73组成。其中,所述的控制系统71如图3所示,其由控制芯片,以及均与控制芯片相连接的电感降压式恒流驱动电路、温度信号处理电路、温度传感器74、数据储存器、蜂鸣器、电源、显示器和键盘组成。为了更好的实施本实用新型,所述的控制芯片则优先采用了FM8PE59B单片机来实现,该FM8PE59B单片机的SCK管脚与键盘相连接,FKIN管脚与数据储存器相连接,CKI管脚与显示器相连接,ROUT2管脚与鼓风机73相连接,ROUT3管脚与蜂鸣器相连接,VSS管脚与电源相连接。其中,FM8PE59B单片机的ROUT2管脚则与鼓风机73的控制端相连接。所述电源为12V直流电压,该12V直流电压为控制芯片供电。
实施时,用于检测烘烤风道1的温度传感器74则设置在烘烤风道1的进风口下端的内侧,本实用新型则优先采用了DS18B20温度传感器来实现,该温度传感器74将检测到的烘烤风道1内的温度信息转换为电信号经温度信号处理电路输出,该温度信号处理电路将温度传感器输出的电信号中的干扰信号进行消除,同时该电路将处理后的电信号进行滤波,使电信号的传输频率的无用频率被消除或减弱,该电路还能将滤波后的电信号进行放大后传输给控制芯片,该控制芯片将接收的电信号进行分析处理后转换为数据信号,同时该控制芯片根据对该数据信号进行分析后得到烘烤风道1内的实际温度值。本实用新型所述的数据储存器则优先采用了KH25L160EM2C-12G数据储存器,该数据储存器用于储存麦冬药材所需的烘干温度值,该烘干温度值为控制芯片控制烘烤风道1内的温度提供参照值。其用于对烘烤风道1进行温度补偿的发热器72设置在烘烤风道1的进风口端内侧底面,该发热器72本实用新型则优先采用了平行分布的发热片组成的发热器,该发热器72加热后则需要鼓风机73对发热器72进行散热,使发热器72的加热的温度均匀的分布到烘烤风道1内来增加烘烤风道1内的温度。
其中,当温度传感器7采集的温度小于麦冬药材所需的烘干温度值时,单片机控制芯片接受到该信息后则同时输出控制控制电流给电感降压式恒流驱动电路,该电感降压式恒流驱动电路对控制芯片输出的瞬间高电流进行降流,同时该电路利用原边反馈工作原理,在恒流控制中的多模式运作的使用实现了驱动的高性能和高效率,以及通过输出线压降补偿实现了有效的对驱动电流的调节,使该电路输出稳定的驱动电流给发热器72,有效的确保了本实用新型的温度补偿装置的加热的准确性。此时,发热器72得电则开始加热,同时控制芯片输出控制信号控制鼓风机73开始转动,鼓风机73对发热器72进行散热,使烘烤风道1内的温度达到麦冬药材所需的烘干温度值。当温度传感器7采集的温度大于麦冬药材所需的烘干温度值时,单片机控制芯片接受到该信息后则输出控制电流给鼓风机73,鼓风机73开始工作,使烘烤风道1内热空气的流动速度加快,使烘烤风道1内的温度及时降低到麦冬药材所需的烘干温度值范围内。从而有效的确保了麦冬药材能在正常的烘干温度下进行烘干,有效的提高了麦冬药材烘干的质量,同时有效的提高了本实用新型的烘干效率。
同时,为了操作者能更好的了解烘烤风道1的温度信息,本实用新型设置了显示器和键盘,该显示器用于显示温度传感器74所检测到烘烤风道1的实际温度值,该显示器还能显示烘干的产品的所需的正常温度值。所述蜂鸣器则用于在温度补偿装置开始与停止对解烘烤风道1内进行温度补偿时发出提示音,便于操作者及时了解温度补偿装置的工作状态。其键盘则用于操作者将烘干产品的所需温度值输入到单片机控制芯片内进行储存,从而使操作者的操作更方便。
为更好的实施本实用新型,所述进风风道2设有一个进风口和一个出风口,且该进风口和出风口均与烘烤风道1相连通。为确保能将进风风道2内高温空气输送到烘烤风道1内部进行麦冬药材烘烤,因此在进风风道2的出风口处设有抽风机4。同时,为确保进风风道2内能产生干燥的高温空气,因此本发明在烘烤风道1的出风口与进风风道2的进风口连接处设置了一台除湿机3,同时在沿着进风风道2的中心轴线方向平行的设置了两台除湿机3,以确保在进风风道 2的进风口处形成“S”形的空气流动通道。为了对所述进风风道2吸入外部的新鲜空气进行除湿加热,使其形成干燥的高温空气,因此本实用新型独创性的采用热泵来作为加热装置5,以取代传统的电加热方式。
为了确保对干燥冷空气的加热效果,本实用新型的热泵需要进行部分结构改动,如图1所示,即将传统的热泵的机组51和其冷凝管52进行分离,使其机组51部分位于进风风道2的外侧,而其冷凝管52则位于进风风道2的内部。如此设置后,机组51内部的冷媒从外界空气中吸收热能后形成高温气体,经压缩机压缩后形成高温高压气体,且该高温高压气体输送至位于进风风道2内部的冷凝管52内部。从进风口进入的冷空气经除湿机3除湿后,再与冷凝管52进行充分的接触,使得冷凝管释放出的高温能充分的对干燥的冷空气进行加热,从而使得进风风道2内部的高温干燥空气能从出风口进入到烘烤风道1中,以对麦冬药材进行烘烤。
为了确保冷凝管52对干燥冷空气的加热效果,该冷凝管52需要在进风风道2的内部呈波浪形或螺旋形布置。根据情况,该冷凝管52需要均匀的分布在进风风道2的内部,即冷凝管52呈波浪形或螺旋形的平面需要与进风风道2的中心轴线垂直。该冷凝管52在进风风道2内部的排列层数可以根据实际情况来确定,优先制作为3排以上。同时,本实用新型为了确保进风风道2内的空气的流通,便也在进风风道2内设置了用于加快空气流通的抽风机4。
本实用新型的热泵优先采用空气源热泵来实现,能有效的节约电力资源。根据实际情况,也可以采用水源热泵或地源热泵来实现。
如图4所示,所述电感降压式恒流驱动电路由电感缓冲电路,驱动调节电路,以及原边反馈式恒流电路组成;所述电感缓冲电路由三极管VT1,三极管VT2,三极管VT3,电阻R1,电阻R2,电阻R3,电阻R4,电阻R5,电阻R6,电阻R10,电阻R13,电感L,极性电容C1,极性电容C3,二极管D1,以及二极管D2组成。
连接时,极性电容C1的正极经电感L后与三极管VT1的基极相连接、负极顺次经电阻R1和电阻R4后与三极管VT2的基极相连接。极性电容C3的正 极与电阻R1与电阻R4的连接点相连接、负极经电阻R10后与三极管VT3的发射极相连接。电阻R2的一端与三极管VT1的基极相连接、另一端与极性电容C3的正极相连接。电阻R6的一端与三极管VT2的发射极相连接、另一端与三极管VT3的发射极相连接。
同时,二极管D2的N极与三极管VT3的基极相连接、P极经电阻R5后与三极管VT2的集电极相连接。二极管D1的P极顺次经电阻R13和电阻R3后与三极管VT1的发射极相连接、N极与三极管VT3的集电极共同形成电感缓冲电路的输出端并与驱动调节电路相连接;所述三极管VT1的集电极接地,其基极与FM8PE59B单片机的ROUT1管脚相连接;所述极性电容C1的负极与FM8PE59B单片机的ROUT4管脚相连接。
其中,所述驱动调节电路由驱动芯片U,场效应管MOS,电阻R11,电阻R14,电阻R15,电阻R18,电阻R19,电阻R20,电阻R21,极性电容C6,极性电容C7,二极管D3,以及二极管D4组成。
连接时,二极管D3的P极与驱动芯片U的FB管脚相连接、N极经电阻R11后与三极管VT3的集电极相连接。电阻R14的一端与驱动芯片U的VDD管脚相连接、另一端与三极管VT3的集电极相连接。极性电容C6的正极经电阻R19后与驱动芯片U的CS管脚相连接、负极经电阻R15后与三极管VT3的集电极相连接。极性电容C7的正极经电阻R21后与场效应管MOS的源极相连接、负极经电阻R20后与极性电容C6的负极相连接。
其中,稳压二极管D4的N极经电阻R18后与场效应管MOS的栅极相连接、P极与驱动芯片U的GD管脚相连接。所述驱动芯片U的GND管脚接地,其INV管脚与二极管D1的N极相连接,同时其COMP管脚与场效应管MOS的漏极共同形成驱动调节电路的输出端并与原边反馈式恒流电路相连接;所述极性电容C7的负极接地。
进一步地,所述原边反馈式恒流电路由变压器T,电阻R7,电阻R8,电阻R9,电阻R12,电阻R16,电阻R17,极性电容C2,极性电容C4,极性电容C5,极性电容C8,以及二极管D5组成。
连接时,极性电容C2的正极经电阻R7后与变压器T原边电感线圈的非同名端相连接、负极顺次经电阻R8和电阻R9后与驱动芯片U的COMP管脚相连接。极性电容C8的正极经电阻R12后与变压器T原边电感线圈的同名端相连接、负极与场效应管MOS的漏极相连接。极性电容C4的正极与变压器T副边电感线圈的同名端相连接、负极与变压器T副边电感线圈的非同名端相连接。
同时,电阻R17的一端与极性电容C4的正极相连接、另一端与极性电容C4的负极相连接。极性电容C5的正极与极性电容C4的正极相连接、负极与极性电容C4的负极相连接。二极管D5的P极经电阻R16后与极性电容C4的正极相连接、N极与极性电容C5的正极相连接。所述变压器T副边电感线圈的同名端与非同名端共同形成原边反馈式恒流电路的输出端并与发热器72相连接。
运行时,电感降压式恒流驱动电路能对控制芯片输出的瞬间高电流进行降流,同时该电路利用原边反馈工作原理,在恒流控制中的多模式运作的使用实现了驱动的高性能和高效率,以及通过输出线压降补偿实现了有效的对驱动电流的调节,使该电路输出稳定的驱动电流,有效的确保了本实用新型的温度补偿装置的加热的准确性。为了更好的实施本实用新型,所述驱动芯片U则优先采用了性能稳定的CL1100集成芯片来实现。
如图5所示,所述温度信号处理电路由信号采样电路和信号滤波放大电路;所述信号采样电路由放大器P1,放大器P2,电阻R22,电阻R23,电阻R24,电阻R25,电阻R26,电阻R27,电阻R29,电阻R30,极性电容C7,极性电容C8,极性电容C9,二极管D6,以及二极管D7组成。
连接时,极性电容C7的正极经电阻R22后与放大器P的正极相连接、负极作为信号采样电路的输入端并与温度传感器72相连接。二极管D6的N极经电阻R26后与放大器P1的输出端相连接、P极经电阻R25后与放大器P的正极相连接。极性电容C8的负极经电阻R24后与放大器P1的输出端相连接、正极经电阻R23后与放大器P1的负极相连接。
其中,电阻R27的一端与放大器P1的输出端相连接、另一端与放大器P2的正极相连接。极性电容C9的负极与放大器P2的负极相连接、正极经电阻R29 后与放大器P2的输出端相连接。二极管D7的N极与放大器P2的输出端相连接、P极经电阻R30后与放大器P2的负极相连接。所述放大器P2的负极接地,其输出端与放大器P1的输出端共同形成信号采样电路的输出端并与信号滤波放大电路相连接。
进一步地,所述信号滤波放大电路由三极管VT4,放大器P3,三极管VT5,电阻R28,电阻R31,电阻R32,可调电阻R33,电阻R34,电阻R35,电阻R36,电阻R37,电阻R38,极性电容C10,极性电容C11,极性电容C12,以及二极管D8组成。
连接时,极性电容C10的正极顺次经电阻R31和电阻R28后与放大器P1的输出端相连接、负极经电阻R32后与三极管VT4的集电极相连接。极性电容C11的负极与三极管VT5发射极相连接、正极顺次经可调电阻R33和电阻R35后与三极管VT4的基极相连接。极性电容C12的负极经电阻R38后与放大器P3的正极相连接、正极经电阻R34后与可调电阻R33与电阻R35的连接点相连接。
同时,二极管D8的P极与极性电容C12的正极相连接、N极经电阻R36后与三极管VT4的发射极相连接。电阻R37的一端与二极管D8的N极相连接。另一端与放大器P3的负极相连接。所述三极管VT4的集电极接地;所述三极管VT5的基极与放大器P2的输出端相连接,该三极管VT5的集电极接地;所述放大器P3的输出端作为信号滤波放大电路的输出端并与FM8PE59B单片机的INT管脚相连接。
运行时,温度信号处理电路能将温度传感器输出的电信号中的干扰信号进行消除,同时该电路将处理后的电信号进行滤波,使电信号的传输频率的无用频率被消除或减弱,该电路还能将滤波后的电信号进行放大后传输给控制芯片,从而有效的确保了控制芯片接收的信号的准确性。
按照上述实施例,即可很好的实现本实用新型。

Claims (10)

1.一种麦冬药材用具有温度调节功能的烘干节能系统,其特征在于,主要由温度补偿装置,烘烤风道(1),设置在烘烤风道(1)上方的进风风道(2),设置在进风风道(2)进风口处的除湿机(3),设置在进风风道(2)出风口处的抽风机(4),设置在烘烤风道(1)的内部底面的网状烘干架(6),以及设置在进风风道(2)中部的加热装置(5)组成;所述进风风道(2)的进风口和出风口均与烘烤风道(1)相连通;所述温度补偿装置由控制系统(71),以及均与控制系统(71)相连接的发热器(72)和鼓风机(73)组成;所述控制系统(71)由控制芯片,均与控制芯片相连接的温度信号处理电路、电感降压式恒流驱动电路、数据储存器、蜂鸣器、电源、显示器和键盘,以及与温度信号处理电路相连接的温度传感器(74)组成;所述控制芯片与鼓风机(73)相连接;所述温度信号处理电路由输入端与温度传感器(74)相连接的信号采样电路,和输入端与信号采样电路的输出端相连接的信号滤波放大电路;所述信号滤波放大电路的输出端与控制芯片相连接。
2.根据权利要求1所述的一种麦冬药材用具有温度调节功能的烘干节能系统,其特征在于,所述信号采样电路由放大器P1,放大器P2,正极经电阻R22后与放大器P的正极相连接、负极作为信号采样电路的输入端的极性电容C7,N极经电阻R26后与放大器P1的输出端相连接、P极经电阻R25后与放大器P的正极相连接的二极管D6,负极经电阻R24后与放大器P1的输出端相连接、正极经电阻R23后与放大器P1的负极相连接的极性电容C8,一端与放大器P1的输出端相连接、另一端与放大器P2的正极相连接的电阻R27,负极与放大器P2的负极相连接、正极经电阻R29后与放大器P2的输出端相连接的极性电容C9,以及N极与放大器P2的输出端相连接、P极经电阻R30后与放大器P2的负极相连接的二极管D7组成;所述放大器P2的负极接地,其输出端与放大器P1的输出端共同形成信号采样电路的输出端。
3.根据权利要求2所述的一种麦冬药材用具有温度调节功能的烘干节能系统,其特征在于,所述信号滤波放大电路由三极管VT4,放大器P3,三极管VT5,正极顺次经电阻R31和电阻R28后与放大器P1的输出端相连接、负极经 电阻R32后与三极管VT4的集电极相连接的极性电容C10,负极与三极管VT5发射极相连接、正极顺次经可调电阻R33和电阻R35后与三极管VT4的基极相连接的极性电容C11,负极经电阻R38后与放大器P3的正极相连接、正极经电阻R34后与可调电阻R33与电阻R35的连接点相连接的极性电容C12,P极与极性电容C12的正极相连接、N极经电阻R36后与三极管VT4的发射极相连接的二极管D8,以及一端与二极管D8的N极相连接;另一端与放大器P3的负极相连接的电阻R37组成;所述三极管VT4的集电极接地;所述三极管VT5的基极与放大器P2的输出端相连接,该三极管VT5的集电极接地;所述放大器P3的输出端作为信号滤波放大电路的输出端。
4.根据权利要求3所述的一种麦冬药材用具有温度调节功能的烘干节能系统,其特征在于,所述电感降压式恒流驱动电路由输入端与控制芯片相连接的电感缓冲电路,输入端与电感缓冲电路的输出端相连接的驱动调节电路,以及输入端与驱动调节电路的输出端相连接的原边反馈式恒流电路组成;所述原边反馈式恒流电路的输出端与发热器(72)相连接;所述电感缓冲电路由三极管VT1,三极管VT2,三极管VT3,正极经电感L后与三极管VT1的基极相连接、负极顺次经电阻R1和电阻R4后与三极管VT2的基极相连接的极性电容C1,正极与电阻R1与电阻R4的连接点相连接、负极经电阻R10后与三极管VT3的发射极相连接的极性电容C3,一端与三极管VT1的基极相连接、另一端与极性电容C3的正极相连接的电阻R2,一端与三极管VT2的发射极相连接、另一端与三极管VT3的发射极相连接的电阻R6,N极与三极管VT3的基极相连接、P极经电阻R5后与三极管VT2的集电极相连接的二极管D2,以及P极顺次经电阻R13和电阻R3后与三极管VT1的发射极相连接、N极与三极管VT3的集电极共同形成电感缓冲电路的输出端的二极管D1组成;所述三极管VT1的集电极接地,其基极与极性电容C1的负极共同形成电感缓冲电路的输入端。
5.根据权利要求4所述的一种麦冬药材用具有温度调节功能的烘干节能系统,其特征在于,所述驱动调节电路由驱动芯片U,场效应管MOS,P极与驱动芯片U的FB管脚相连接、N极经电阻R11后与三极管VT3的集电极相连 接的二极管D3,一端与驱动芯片U的VDD管脚相连接、另一端与三极管VT3的集电极相连接的电阻R14,正极经电阻R19后与驱动芯片U的CS管脚相连接、负极经电阻R15后与三极管VT3的集电极相连接的极性电容C6,正极经电阻R21后与场效应管MOS的源极相连接、负极经电阻R20后与极性电容C6的负极相连接的极性电容C7,以及N极经电阻R18后与场效应管MOS的栅极相连接、P极与驱动芯片U的GD管脚相连接的稳压二极管D4组成;所述驱动芯片U的GND管脚接地,其INV管脚与二极管D1的N极相连接,同时其COMP管脚与场效应管MOS的漏极共同形成驱动调节电路的输出端;所述极性电容C7的负极接地。
6.根据权利要求5所述的一种麦冬药材用具有温度调节功能的烘干节能系统,其特征在于,所述原边反馈式恒流电路由变压器T,正极经电阻R7后与变压器T原边电感线圈的非同名端相连接、负极顺次经电阻R8和电阻R9后与驱动芯片U的COMP管脚相连接的极性电容C2,正极经电阻R12后与变压器T原边电感线圈的同名端相连接、负极与场效应管MOS的漏极相连接的极性电容C8,正极与变压器T副边电感线圈的同名端相连接、负极与变压器T副边电感线圈的非同名端相连接的极性电容C4,一端与极性电容C4的正极相连接、另一端与极性电容C4的负极相连接的电阻R17,正极与极性电容C4的正极相连接、负极与极性电容C4的负极相连接的极性电容C5,以及P极经电阻R16后与极性电容C4的正极相连接、N极与极性电容C5的正极相连接的二极管D5组成;所述变压器T副边电感线圈的同名端与非同名端共同形成原边反馈式恒流电路的输出端。
7.根据权利要求6所述的一种麦冬药材用具有温度调节功能的烘干节能系统,其特征在于,所述驱动芯片U为CL1100集成芯片。
8.根据权利要求7所述的一种麦冬药材用具有温度调节功能的烘干节能系统,其特征在于,所述加热装置(5)为热泵,且该热泵的机组(51)位于进风风道(2)的外侧,而其冷凝管(52)则设置在进风风道(2)的内部;所述冷凝管(52)在进风风道(2)的内部呈波浪形或螺旋形布置。
9.根据权利要求8所述的一种麦冬药材用具有温度调节功能的烘干节能系统,其特征在于,所述热泵为空气热泵、水源热泵或地源热泵。
10.根据权利要求9所述的一种麦冬药材用具有温度调节功能的烘干节能系统,其特征在于,所述网状烘干架(6)的网孔为直径为1~1.5cm的圆形孔。
CN201620368639.XU 2016-04-27 2016-04-27 一种麦冬药材用具有温度调节功能的烘干节能系统 Expired - Fee Related CN205939980U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620368639.XU CN205939980U (zh) 2016-04-27 2016-04-27 一种麦冬药材用具有温度调节功能的烘干节能系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620368639.XU CN205939980U (zh) 2016-04-27 2016-04-27 一种麦冬药材用具有温度调节功能的烘干节能系统

Publications (1)

Publication Number Publication Date
CN205939980U true CN205939980U (zh) 2017-02-08

Family

ID=57934760

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620368639.XU Expired - Fee Related CN205939980U (zh) 2016-04-27 2016-04-27 一种麦冬药材用具有温度调节功能的烘干节能系统

Country Status (1)

Country Link
CN (1) CN205939980U (zh)

Similar Documents

Publication Publication Date Title
CN205939980U (zh) 一种麦冬药材用具有温度调节功能的烘干节能系统
CN205718271U (zh) 一种田七药材用高精度烘干系统
CN105783445A (zh) 一种麦冬药材用高精度烘干节能系统
CN205940056U (zh) 一种麦冬药材用多电路处理式烘干节能系统
CN105806050A (zh) 一种贝母药材用烘干节能系统
CN205939953U (zh) 一种麦冬药材用高精度烘干节能系统
CN205940055U (zh) 一种麦冬药材用温度可控烘干节能系统
CN205718269U (zh) 一种麦冬药材用烘干节能系统
CN205747747U (zh) 一种田七药材用智能烘干系统
CN206235092U (zh) 一种贝母药材用多电路处理的温度补偿式烘干节能系统
CN206235133U (zh) 一种贝母药材用温度自恒式智能烘干系统
CN205718273U (zh) 一种田七药材用多电路温度控制烘干系统
CN205939935U (zh) 一种党参药材用循环式温差自动补偿烘干节能系统
CN205718272U (zh) 一种田七药材用导流式烘干系统
CN105890299A (zh) 一种麦冬药材用具有温度调节功能的烘干节能系统
CN205939982U (zh) 一种党参药材用移动温差补偿的烘干节能系统
CN205940058U (zh) 一种党参药材用高性能烘干节能系统
CN206235128U (zh) 一种贝母药材用封闭式烘干节能系统
CN206235099U (zh) 一种贝母药材用烘干节能系统
CN205940057U (zh) 一种党参药材用性能稳定的烘干节能系统
CN205718266U (zh) 一种川芳药材用智能烘干节能系统
CN105928336A (zh) 一种麦冬药材用烘干节能系统
CN205939981U (zh) 一种党参药材用烘干节能系统
CN206235127U (zh) 一种温度补偿式贝母药材用热泵烘干节能系统
CN105953536A (zh) 一种麦冬药材用温度可控烘干节能系统

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170208

Termination date: 20190427

CF01 Termination of patent right due to non-payment of annual fee