CN205909554U - 智能化能源分配微网 - Google Patents

智能化能源分配微网 Download PDF

Info

Publication number
CN205909554U
CN205909554U CN201620799416.9U CN201620799416U CN205909554U CN 205909554 U CN205909554 U CN 205909554U CN 201620799416 U CN201620799416 U CN 201620799416U CN 205909554 U CN205909554 U CN 205909554U
Authority
CN
China
Prior art keywords
energy
gas
generator
input
integrated management
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201620799416.9U
Other languages
English (en)
Inventor
刘琪
李均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zero Carbon Future Chongqing Energy Development Co ltd
Original Assignee
Chongqing Jing Tian Energy Investment (group) Ltd By Share Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Jing Tian Energy Investment (group) Ltd By Share Ltd filed Critical Chongqing Jing Tian Energy Investment (group) Ltd By Share Ltd
Priority to CN201620799416.9U priority Critical patent/CN205909554U/zh
Application granted granted Critical
Publication of CN205909554U publication Critical patent/CN205909554U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

本实用新型公开一种智能化能源分配微网,包括终端集成管理控制器、热油储能模块和高压气蓄能模块,其中终端集成管理控制器的能源输入端组连接有地热供应装置、燃气发电机、光伏发电机或风力发电机;热油储能模块由太阳能光热供能,热油储能模块和高压气蓄能模块与终端集成管理控制器相连,燃气发电机、光伏发电机和风力发电机为终端集成管理控制器供电。采用本方案,用户可选择适宜的方式组网,将地热、燃气发电机、光伏发电机和风力发电机多余能量“储存”在高压气或高温热油中,多能互补,并能适时将能量输出;在采用高压气蓄能时,通过引入射流泵可以实现中低压气体的循环回收利用,且可以重复循环利用,效率更高。

Description

智能化能源分配微网
技术领域
本实用新型涉及一种能量储能、释放系统,具体涉及一种智能化能源分配微网。
背景技术
能源问题是当今世界面临的突出问题,风、光、水、电、气所蕴含的能量均以被人们有效利用,广泛用于加热、制冷、发电等领域。然而当今世界电力负荷的不均衡日趋突出,电网的峰谷差也逐渐拉大,同时人们对电网供电质量的要求也越来越高,因此迫切需要经济、稳定、可靠、高效的电力储能系统与之相配套,以缓解系统负荷峰谷差过大的情况。电力储能系统也是提高风电、太阳能发电等可再生能源利用率的有效手段。此外,电力储能系统还是解决分布式能源系统容量小、负荷波动大等问题的关键技术。
实用新型内容
为解决以上技术问题,本实用新型提供一种智能化能源分配微网。
技术方案如下:
一种智能化能源分配微网,其关键在于:包括终端集成管理控制器、热油储能模块和高压气蓄能模块,其中终端集成管理控制器的能源输入端组连接有至少二种时段性能源供应装置;
所述热油储能模块由太阳能光热供能,所述热油储能模块的输出端连接所述终端集成管理控制器的热能回收端;
终端集成管理控制器的气能存储端与高压气蓄能模块的输入端连接,高压气蓄能模块的输出端连接终端集成管理控制器的气能回收端;
终端集成管理控制器的电能输出端向外输出电能,终端集成管理控制器的热能输出端向外输出热能和冷能;
所述时段性能源供应装置分为:
地热供应装置、燃气发电机、光伏发电机和风力发电机;
其中地热供应装置连接所述终端集成管理控制器的地热输入端;
所述燃气发电机的燃气接口接沼气或天然气,所述燃气发电机的电能经变压器变压器变压后输送给所述终端集成管理控制器,所述燃气发电机的高温余热通过管路引入所述高温热能管理系统;
所述光伏发电机的电能经光伏发电逆变器转变后输送给所述终端集成管理控制器;
所述风力发电机的电能经交直交转换器转换后输送给所述终端集成管理控制器。
以上技术方案提供了高压气蓄能和热油储能两种储能模式,用户可选择适宜的方式组网,将各种剩余能源“储存”在高压气和高温热油中,多能互补,并能适时将能量输出。
上述终端集成管理控制器包括溴化锂空调主机、热泵热水空调主机、地热热泵空调系统、高温热能管理系统和电源智能切换管理器;
所述溴化锂空调主机和热泵热水空调主机的输入端分别通过同一个所述高温热能管理系统与所述热油储能模块的输出端连接;
所述地热热泵空调系统的输入端接所述地热供应装置;
所述溴化锂空调主机、热泵热水空调主机和地热热泵空调系统连接在同一个空调冷热输配管理模块上;
所述电源智能切换管理器的输入端组分别与所述燃气发电机的输出端、光伏发电逆变器的输出端和交直交转换器的输出端电路连接,所述电源智能切换管理器的输出端连接有微电网分配管理器和空压机,所述微电网分配管理器的输出端向外输出电能,该微电网分配管理器还为所述溴化锂空调主机、热泵热水空调主机、地热热泵空调系统供电;
所述空压机的输出端与所述高压气蓄能模块气路连接,该高压气蓄能模块的电力输出端与所述电源智能切换管理器的输入端电路连接。
上述高压气蓄能模块包括n个高压罐、n-1个射流泵、n个气轮发电机、空气净化装置、增压泵及余压罐;
所述空压机上有n个输出端且与n个所述高压罐的输入端分别通过气路一一对应连接;
其中第一个所述高压罐的高压输出气路上安装有第一气轮发电机,所述第一气轮发电机的下游气路连接所述空气净化装置;
所述空气净化装置包括净化腔体、及安装在该净化腔体内的叶轮风机和过滤装置,所述第一气轮发电机的下游气路伸入净化腔体后,吹动所述叶轮风机,所述净化腔体外壁上设有吸气孔和排气孔;
其余n-1个所述高压罐高压输出端分别与n-1个所述射流泵的第一输入端通过气路一一对应连接,n-1个所述射流泵的高压输出气路上分别安装有一个气轮发电机,n-1个所述气轮发电机的下游气路汇聚到所述增压泵输入端上,所述增压泵输出端与所述余压罐输入端通过气路连接,所述余压罐输出端分别与n-1个所述射流泵的第二输入端通过气路一一对应连接;
所述第一高压罐低压输出端与第一射流泵第二输入端通过气路连接,依次地,第n-1高压罐低压输出端与第n-1射流泵第二输入端通过气路连接;
n个所述气轮发电机的电力输出端汇集后与所述电源智能切换管理器的输入端电路连接。
采用以上技术方案,高压罐内中低压气体通过射流泵可以被利于来驱动气轮发电机发电,同时气轮发电机未被利用的中低压气体通过增压泵收集到余压罐内,余压罐又与射流泵连接,实现了中低压气体的循环回收利用,且可以重复循环利用,所以在整个电能回收利用系统中,其中低压气体中能量基本都被回收再利用而没有浪费,故电能的回收再利用率高,而且第一气轮发电机未被利用的中低压气体通并用于驱动空气净化装置,能量也被充分利用,用于净化污染气体,达到净化环境的目的,也利于空气压缩机正常使用。
每一个所述气轮发电机输入端气路上均安装有一个流量调节器,每一个所述流量调节器用于调节相对应气轮发电机输入端气路上的气体流量。
所述增压泵与所述余压罐之间的气路上设置有单向阀。
每一个所述高压罐的输入端气路上均设置有一个控制开关。
所述过滤装置设置在所述叶轮风机的上方,所述吸气孔位于所述叶轮风机的下方,所述排气孔位于所述过滤装置的上方。
有益效果:本实用新型智能化能源分配微网提供了高压气蓄能和热油储能两种储能模式,用户可选择适宜的方式组网,将地热、燃气发电机、光伏发电机和风力发电机中多余能量“储存”在高压气或高温热油中,多能互补,并能适时将能量输出;在采用高压气蓄能时,通过引入射流泵可以实现中低压气体的循环回收利用,且可以重复循环利用,效率更高。
附图说明
图1为本实用新型的结构示意图;
图2为高压气蓄能模块m的原理框图;
图3为空气净化装置6的结构示意图。
具体实施方式
下面结合实施例和附图对本实用新型作进一步说明。
如图1所示,一种智能化能源分配微网,包括终端集成管理控制器11、热油储能模块a和高压气蓄能模块m,其中终端集成管理控制器11的能源输入端组连接有至少二种时段性能源供应装置1;
所述热油储能模块a由太阳能光热供能,所述热油储能模块a的输出端连接所述终端集成管理控制器11的热能回收端;
终端集成管理控制器11的气能存储端与高压气蓄能模块m的输入端连接,高压气蓄能模块m的输出端连接终端集成管理控制器11的气能回收端;
终端集成管理控制器11的电能输出端向外输出电能,终端集成管理控制器11的热能输出端向外输出热能和冷能,冷能是以冷水或冷空气的形式向外供冷;
所述时段性能源供应装置1分为:
地热供应装置101、燃气发电机102、光伏发电机103和风力发电机105;
其中地热供应装置101连接所述终端集成管理控制器11的地热输入端;
所述燃气发电机102的燃气接口接沼气或天然气,所述燃气发电机102的电能经变压器变压器t变压后输送给所述终端集成管理控制器11,所述燃气发电机102的高温余热通过管路引入所述高温热能管理系统p;
所述光伏发电机103的电能经光伏发电逆变器n转变后输送给所述终端集成管理控制器11;
所述风力发电机105的电能经交直交转换器转换后输送给所述终端集成管理控制器11。
所述终端集成管理控制器11包括溴化锂空调主机b、热泵热水空调主机c、地热热泵空调系统d、高温热能管理系统p和电源智能切换管理器k;
所述溴化锂空调主机b和热泵热水空调主机c的输入端分别通过同一个所述高温热能管理系统p与所述热油储能模块a的输出端连接,该高温热能管理系统p还获取所述燃气发电机102的高温余热;
所述地热热泵空调系统d的输入端接所述地热供应装置101;
所述溴化锂空调主机b、热泵热水空调主机c和地热热泵空调系统d连接在同一个空调冷热输配管理模块j上;
所述电源智能切换管理器k的输入端组分别与所述燃气发电机102的输出端、光伏发电逆变器n的输出端和交直交转换器的输出端电路连接,所述电源智能切换管理器k的输出端连接有微电网分配管理器r和空压机s,所述微电网分配管理器r的输出端向外输出电能,该微电网分配管理器r还为所述溴化锂空调主机b、热泵热水空调主机c、地热热泵空调系统d供电;
所述空压机s的输出端与所述高压气蓄能模块m气路连接,该高压气蓄能模块m的电力输出端与所述电源智能切换管理器k的输入端电路连接。
所述热油储能模块a、高温热能管理系统p、电源智能切换管理器k、空调冷热输配管理模块j、电源智能切换管理器k和微电网分配管理器r均为现有技术,例如:
所述热油储能模块a可以为储油罐,该储油罐内的储能油在加热时,油温上升储能;
所述高温热能管理系统p可以是热交换器,储油罐的高温热油接高温流体的进出口,低温流体分别接热交换器的高温流体的进出口,在热交换器内进行热交换,低温流体升温后进入溴化锂空调主机b和热泵热水空调主机c的输入端;
所述空调冷热输配管理模块j可以是PLC或继电器控制组合,为成熟的开关控制技术。
所述电源智能切换管理器k可以是具有多个输入端和多个输出端的选择开关,或拨档开关。
所述微电网分配管理器r可以是多孔插座。
结合图2和图3可以看出,所述高压气蓄能模块m包括n个高压罐G1、G2……Gn-1、Gn,n-1个射流泵S1……Sn-2、Sn-1,n个气轮发电机F1、F2……Fn-1、Fn,空气净化装置6、增压泵7及余压罐8,其中n为大于1的正整数。
所述空压机s工作时会将低压气体转化为高压气体,该气体具体可以是空气,所述空压机s上有n个输出端,该空压机s的每一个输出端均通过控制开关3与每一个所述高压罐G1、G2……Gn-1、Gn输入端气路连接并一一对应,该所述控制开关3用于控制相对应的每一个所述高压罐G1、G2……Gn-1、Gn输入端气路的开启或者关闭。
其中第一高压罐G1的高压输出气路上安装有第一气轮发电机F1,所述第一气轮发电机F1的下游气路连接所述空气净化装置6;其余n-1个所述高压罐G2……Gn-1、Gn的高压输出端分别与n-1个所述射流泵S1……Sn-2、Sn-1第一输入端通过气路一一对应连接,n-1个所述射流泵S1……Sn-2、Sn-1高压输出气路上分别安装有一个气轮发电机F2……Fn-1、Fn,该n-1个所述气轮发电机F2……Fn-1、Fn的下游气路汇聚到增压泵7输入端上,所述增压泵7输出端与所述余压罐8输入端通过气路连接,所述增压泵7与所述余压罐8之间的气路上设置有单向阀9,所述余压罐8输出端分别与n-1个所述射流泵S1……Sn-2、Sn-1第二输入端通过气路一一对应连接;第一高压罐G1低压输出端与第一射流泵S1第二输入端通过气路连接,依次地,第n-1高压罐Gn-1低压输出端与第n-1射流泵Sn-1第二输入端通过气路连接。
在上述实施例中,每一个所述气轮发电机F1、F2……Fn-1、Fn的输入端气路上均安装有一个流量调节器4,每一个所述流量调节器4用于调节相对应气轮发电机F1、F2……Fn-1、Fn输入端气路上的气体流量,在上述实施例中,所述流量调节器4可采用喷嘴流量调节器,喷嘴流量调节器可根据负荷大小输出喷嘴控制信号,自动控制打开、关闭喷嘴数量,从而调节发电输出量大小。
每一个所述控制开关3用于控制相对应的一个所述高压罐G1、G2……Gn-1、Gn输入端气路的开启或者关闭,在其控制过程中,可实现同时采用一个或者多个所述高压罐G1、G2……Gn-1、Gn来存储高压气体,也可以当其中一个所述高压罐G1、G2……Gn-1、Gn内气体储存满后,再开启另外一个或者多个高压罐G1、G2……Gn-1、Gn来储存多余高压气体,能合理分配或者控制高压气体的存储方式,可提高所述空压机s产生的高压气体的利用率。
在上述实施例中,所述气轮发电机F1、F2……Fn-1、Fn具体是属于现有技术结构,其包括有叶轮、传动轴、发电机等部分,其工作原理为:当高压气体可产生巨大动能驱动发电机叶轮转动,而叶轮会通过发电机传动轴带动发电机转动发电;n个所述气轮发电机F1、F2……Fn-1、Fn的电力输出端汇集后与所述电源智能切换管理器k的输入端电路连接。
在上述实施例中,所述空气净化装置6包括净化腔体60、及安装在该净化腔体60内的叶轮风机61和过滤装置62,所述第一气轮发电机F1的下游气路伸入净化腔体60后,吹动所述叶轮风机61,所述过滤装置62设置在所述叶轮风机61的上方,所述净化腔体60外壁上设有吸气孔63和排气孔64,所述吸气孔63位于所述叶轮风机61的下方,所述排气孔64位于所述过滤装置62的上方,该过滤装置62采用至少一层过滤材料通过叠加在一起。第一气轮发电机F1在发电过程中只能利用第一高压罐G1中输出气体的高压部分,经第一气轮发电机F1利用后的低压气体用于驱动叶轮风机61上动力叶轮转动,再通过传动组件将动能传动至风机上并驱动该风机转动工作,从而实现了所述空气净化装置6吸气和排气功能。
最后需要说明的是,上述描述仅仅为本实用新型的优选实施例,本领域的普通技术人员在本实用新型的启示下,在不违背本实用新型宗旨及权利要求的前提下,可以做出多种类似的表示,这样的变换均落入本实用新型的保护范围之内。

Claims (7)

1.一种智能化能源分配微网,其特征在于:包括终端集成管理控制器(11)、热油储能模块(a)和高压气蓄能模块(m),其中终端集成管理控制器(11)的能源输入端组连接有至少二种时段性能源供应装置(1);
所述热油储能模块(a)由太阳能光热供能,所述热油储能模块(a)的输出端连接所述终端集成管理控制器(11)的热能回收端;
终端集成管理控制器(11)的气能存储端与高压气蓄能模块(m)的输入端连接,高压气蓄能模块(m)的输出端连接终端集成管理控制器(11)的气能回收端;
终端集成管理控制器(11)的电能输出端向外输出电能,终端集成管理控制器(11)的热能输出端向外输出热能和冷能;
所述时段性能源供应装置(1)分为:
地热供应装置(101)、燃气发电机(102)、光伏发电机(103)和风力发电机(105);
其中地热供应装置(101)连接所述终端集成管理控制器(11)的地热输入端;
所述燃气发电机(102)的燃气接口接沼气或天然气,所述燃气发电机(102)的电能经变压器变压器(t)变压后输送给所述终端集成管理控制器(11);
所述光伏发电机(103)的电能经光伏发电逆变器(n)转变后输送给所述终端集成管理控制器(11);
所述风力发电机(105)的电能经交直交转换器转换后输送给所述终端集成管理控制器(11)。
2.根据权利要求1所述的智能化能源分配微网,其特征在于:所述终端集成管理控制器(11)包括溴化锂空调主机(b)、热泵热水空调主机(c)、地热热泵空调系统(d)、高温热能管理系统(p)和电源智能切换管理器(k);
所述溴化锂空调主机(b)和热泵热水空调主机(c)的输入端分别通过同一个所述高温热能管理系统(p)与所述热油储能模块(a)的输出端连接,该高温热能管理系统(p)还获取所述燃气发电机(102)的高温余热;
所述地热热泵空调系统(d)的输入端接所述地热供应装置(101);
所述溴化锂空调主机(b)、热泵热水空调主机(c)和地热热泵空调系统(d)连接在同一个空调冷热输配管理模块(j)上;
所述电源智能切换管理器(k)的输入端组分别与所述燃气发电机(102)的输出端、光伏发电逆变器(n)的输出端和交直交转换器的输出端电路连接,所述电源智能切换管理器(k)的输出端连接有微电网分配管理器(r)和空压机(s),所述微电网分配管理器(r)的输出端向外输出电能,该微电网分配管理器(r)还为所述溴化锂空调主机(b)、热泵热水空调主机(c)、地热热泵空调系统(d)供电;
所述空压机(s)的输出端与所述高压气蓄能模块(m)气路连接,该高压气蓄能模块(m)的电力输出端与所述电源智能切换管理器(k)的输入端电路连接。
3.根据权利要求2所述的智能化能源分配微网,其特征在于:所述高压气蓄能模块(m)包括n个高压罐(G1、G2……Gn-1、Gn)、n-1个射流泵(S1……Sn-2、Sn-1)、n个气轮发电机(F1、F2……Fn-1、Fn)、空气净化装置(6)、增压泵(7)及余压罐(8);
所述空压机(s)上有n个输出端且与n个所述高压罐(G1、G2……Gn-1、Gn)的输入端分别通过气路一一对应连接;
其中第一个所述高压罐(G1)的高压输出气路上安装有第一气轮发电机(F1),所述第一气轮发电机(F1)的下游气路连接所述空气净化装置(6);
所述空气净化装置(6)包括净化腔体(60)、及安装在该净化腔体(60)内的叶轮风机(61)和过滤装置(62),所述第一气轮发电机(F1)的下游气路伸入净化腔体(60)后,吹动所述叶轮风机(61),所述净化腔体(60)外壁上设有吸气孔(63)和排气孔(64);
其余n-1个所述高压罐(G2……Gn-1、Gn)高压输出端分别与n-1个所述射流泵(S1……Sn-2、Sn-1)的第一输入端通过气路一一对应连接,n-1个所述射流泵(S1……Sn-2、Sn-1)的高压输出气路上分别安装有一个气轮发电机(F2……Fn-1、Fn),n-1个所述气轮发电机(F2……Fn-1、Fn)的下游气路汇聚到所述增压泵(7)输入端上,所述增压泵(7)输出端与所述余压罐(8)输入端通过气路连接,所述余压罐(8)输出端分别与n-1个所述射流泵(S1……Sn-2、Sn-1)的第二输入端通过气路一一对应连接;
所述第一高压罐(G1)低压输出端与第一射流泵(S1)第二输入端通过气路连接,依次地,第n-1高压罐(Gn-1)低压输出端与第n-1射流泵(Sn-1)第二输入端通过气路连接;
n个所述气轮发电机(F1、F2……Fn-1、Fn)的电力输出端汇集后与所述电源智能切换管理器(k)的输入端电路连接。
4.根据权利要求3所述的智能化能源分配微网,其特征在于:每一个所述气轮发电机(F1、F2……Fn-1、Fn)输入端气路上均安装有一个流量调节器(4),每一个所述流量调节器(4)用于调节相对应气轮发电机(F1、F2……Fn-1、Fn)输入端气路上的气体流量。
5.根据权利要求4所述的智能化能源分配微网,其特征在于:所述增压泵(7)与所述余压罐(8)之间的气路上设置有单向阀(9)。
6.根据权利要求1所述的智能化能源分配微网,其特征在于:每一个所述高压罐(G1、G2……Gn-1、Gn)的输入端气路上均设置有一个控制开关(3)。
7.根据权利要求3或4或5所述的智能化能源分配微网,其特征在于:所述过滤装置(62)设置在所述叶轮风机(61)的上方,所述吸气孔(63)位于所述叶轮风机(61)的下方,所述排气孔(64)位于所述过滤装置(62)的上方。
CN201620799416.9U 2016-07-27 2016-07-27 智能化能源分配微网 Active CN205909554U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620799416.9U CN205909554U (zh) 2016-07-27 2016-07-27 智能化能源分配微网

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620799416.9U CN205909554U (zh) 2016-07-27 2016-07-27 智能化能源分配微网

Publications (1)

Publication Number Publication Date
CN205909554U true CN205909554U (zh) 2017-01-25

Family

ID=57802435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620799416.9U Active CN205909554U (zh) 2016-07-27 2016-07-27 智能化能源分配微网

Country Status (1)

Country Link
CN (1) CN205909554U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091450A (zh) * 2016-07-27 2016-11-09 重庆京天能源投资(集团)股份有限公司 智能化供能微网

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091450A (zh) * 2016-07-27 2016-11-09 重庆京天能源投资(集团)股份有限公司 智能化供能微网

Similar Documents

Publication Publication Date Title
CN106091450B (zh) 智能化供能微网
CN103352830B (zh) 一种采用非稳态压缩流程的压缩空气储能发电系统
CN109242350B (zh) 计及可平移负荷的冷热电联供系统容量优化配置方法
CN201288679Y (zh) 汽轮机、电动机双驱动装置
CN102563959B (zh) 集成能源匹配系统及其控制方法
CN201705575U (zh) 储能式风能发电系统
CN106907203A (zh) 风光互补的空气压缩储能与发电一体化系统
CN101025143A (zh) 连续稳定供电的风力发电系统
CN104682832B (zh) 一种野外营区能源供给系统
CN105804813A (zh) 一种用于提高压缩空气储能系统储能效率的方法
CN108425784A (zh) 一种抽水压缩空气储能系统及其运行方法
CN102654097B (zh) 工业循环水余压智能回收装置及其使用方法
CN205909554U (zh) 智能化能源分配微网
CN109268144A (zh) 一种集成压缩空气储能和复合制冷的冷热电联供系统
CN205909564U (zh) 多能互补能源集成系统
CN205909553U (zh) 智慧化供能终端机构
CN107612004A (zh) 自适应风力发电蓄能系统
CN201751572U (zh) 风能储备恒稳发电设备
CN201991715U (zh) 低温太阳能热力发电装置
CN106288510B (zh) 多能互补能源集成供应系统
CN201246193Y (zh) 利用太阳能及空气热能提取技术蓄热发电的装置
CN106894856A (zh) 一种集成太阳能的压缩空气储能系统
CN207004782U (zh) 环保电厂循环水节能装置
CN103388854B (zh) 一种综合利用能源的热水供应系统
CN106225271B (zh) 智慧化供能系统终端

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220620

Address after: 400000 No. 5, building 2, No. 5, Gangcheng East Ring Road, Tieshanping street, Jiangbei District, Chongqing

Patentee after: Zero carbon future (Chongqing) Energy Development Co.,Ltd.

Address before: 400026 Building 2, Liangjiang Industrial Park, No. 5, Gangcheng East Ring Road, Jiangbei District, Chongqing

Patentee before: CHONGQING JONTIA ENERGY INVESTMENT (GROUP) CO.,LTD.

TR01 Transfer of patent right
PP01 Preservation of patent right

Effective date of registration: 20230320

Granted publication date: 20170125

PP01 Preservation of patent right