CN205649998U - 气体介质悬浮颗粒物净化系统 - Google Patents
气体介质悬浮颗粒物净化系统 Download PDFInfo
- Publication number
- CN205649998U CN205649998U CN201521123117.5U CN201521123117U CN205649998U CN 205649998 U CN205649998 U CN 205649998U CN 201521123117 U CN201521123117 U CN 201521123117U CN 205649998 U CN205649998 U CN 205649998U
- Authority
- CN
- China
- Prior art keywords
- electrode
- gas medium
- suspended particulate
- cleaning system
- particulate substance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Electrostatic Separation (AREA)
Abstract
描述了一种气体介质悬浮颗粒物净化系统,该系统包括荷电组件(0101)、强制通风组件(0102)、过滤组件(0103)以及气体能够通过的、一个容纳上述组件的管道(0104),其特征在于所述过滤组件(0103)包含至少两个电极,电极间存在电势差,以及电极之间有纤维材料。
Description
技术领域
本实用新型装置属于净化和过滤技术领域,涉及一种气体介质悬浮颗粒物净化系统。
背景技术
HEPA是市场上最常见的的净化处理方式(HEPA为英文高效空气过滤器HighEfficiency Particulate Air Filter的缩写)。HEPA采用纯机械式过滤的方式,因而区别于离子、电子类净化设备。一般的HEPA滤网由于技术工艺的原因,对花粉、细菌、灰尘等大的颗粒捕捉比较容易,但对于粒径小于2.5微米以下的颗粒,粒径越小,捕捉越困难。此类设备一般而言风阻较大,需要大功率的为提供空气动力的设备,因而会消耗更多的电力、制造较大的噪音。噪音、能耗方面正是HEPA过滤系统的主要不足之处。
此外,对于采用HEPA的系统或者设备,不能忽略其二次污染的问题。美国的劳伦斯伯克利国家实验室2014年的一个研究表明,使用一段时间后没有及时更换滤芯的家用空气净化器由于其内部储存了较多的污染物,可能不但失去净化的功能,反而会给室内环境带来污染。(Hugo,2014)由于更换成本较高、对二次污染普遍认识不足等因素,造成不少HEPA空气净化器的用户不能及时更换滤芯,而处于另一种污染的威胁当中。
另外一种常见过滤设备属于静电、电子、离子类净化的范畴。这类设备一般都基于工业领域电除尘装置的原理,通常都是利用“平行板式电场”捕捉荷电颗粒(如CN101130180 B,WO 2012016481 A1,CN101406798等),工业除尘的目的在于防止工业生产设备向大气的排放,而不会考虑对空气品质要求较高的例如室内生活空间、洁净室等地的需求(谭天祐等,1984)。除常见的平行平面板式系统以外,其他一些系统将平行的平面做了一些变换,如CN1980744B将基本的板式捕捉电场变换为多孔的方格形式,但是在密布的网格中布置不同电势差的集尘电极较为繁琐;如果采用所述开槽塑料板孔结构中增加隐藏电极的方法则又会增大制造成本以及降低捕捉面积;如果采用纯金属板孔结构的实施方式,则相比传统结构很难有实质的效率提升。CN101374605B则因为其电场捕捉颗粒的效果不能令人满意而采用板式捕捉电场后方再加一个滤芯的组合。增加一个过滤的层级理论上会提高净化器的净化效率。但是这样的静电加滤网的设置方式其实只是一种简单的组合。CN102164678B、CN1221358A以及其申请人在其他国家公布的专利如US6203600则将常见的平行平面通过卷绕变换为两条平行的螺线表面。这样虽可增大捕捉区域面积,但增加有限。
怀特比(Whitby,1978)根据大气污染颗粒物的表面积与粒度分布关系总结出了3种粒度分布的模态,即爱根核模(粒径小于0.1μm)、积聚模(粒径大于0.1μm小于2μm)和粗粒模(粒径大于2μm)。城市大气中颗粒物的分布大多属积聚模和粗粒模。其中积聚核膜颗粒不易去除,多数为二次颗粒物,多数硫酸盐颗粒属于此模态(胡敏等,2005)。
以上气体介质中悬浮颗粒对人体的毒害程度由以下几个因素构成:悬浮颗粒成分的毒性、悬浮颗粒的数量、悬浮颗粒的粒径(由于较小的颗粒可以直接从肺部进入人的血液,所以这部分颗粒的危害性尤其的大)、呼吸道的健康程度(人体清洁呼吸道的能力)、颗粒的特性(尤其是超细颗粒,有细菌、病毒、重金属等)。近年来我国频繁出现的严重大气污染,也就是程度较严重的灰霾,其中含有的就是对人体危害较大的超细颗粒物就是属于积聚模和粗粒模,因为这部分较小的颗粒,很大部分可通过呼吸道进入人体肺泡(吴兑,2012)如果面对这样较为严重的污染,现有系统或者装置显得不足。市场急需对大量较小的污染颗粒物也能有效去除的系统。
但是,目前国内对于不同的气体介质中悬浮物颗粒的组分、浓度及来源方面缺乏针对性的研究,尤其是对天然源和生物地球化学源等方面更是不足。(侯美伶等,2012)故而大多民用净化设备而对于PM2.5等较小或者超细的悬浮颗粒物净化效率不高。
驻极体纤维是一种可以较持久荷电的纤维。因其静电力作用,相对普通的滤网能提高对粉尘捕集率和气体过滤效率。驻极体作为净化吸附材料(例如CN102164677B)近年在民用净化的领域也得到一些应用。但驻极体纤维的电压通常只有几百至上千伏电压(杨荆泉等,2009)。由于电场强度低,而且无法调整电压值,捕捉效率存在瓶颈。这类材料使用后无法再生,也不易降解,其产品生命周期成本和环保成本都较高,不利于市场普及。
还有一些辅助技术如活性炭过滤装置,通常作为一种空气净化设备的辅助装置。活性炭装置在短时间内能吸附一定的细菌和尘土及有害气体,对无机物吸附能力一般。活性炭材料到饱和状态后,很难再生利用。(尹维东,2002)吸附达到一定程度后,因为没有杀菌效果,反而容易成为细菌的繁衍体,换下的滤芯也面临无害处理的困难。再如石墨烯基吸附材料(例如CN103407997A)和活性炭、驻极体纤维相似,也存在无法再生的问题,如果处理污染严重的空气介质,失效偏快。
除上述电除尘和HEPA过滤两种方式是目前市场上主要的净化设备原理之外,还有一些其他技术原理的设备也在市场上可以见到:例如臭氧、紫外线、光触媒、离子等技术。
现有专利文献有一些是主要利用臭氧来对空气进行消毒杀菌的装置(例如:CN103673124A ,CN201996881U,CN86106909等),而臭氧由于会刺激人体呼吸系统而产生不良的影响。为此,中国国家标准“GBT18883-2002 室内空气质量标准”中明确限制了室内臭氧浓度的上限值为50ppb,所以这类主动产生臭氧的设备一般都不能满足该标准所以不宜用于室内工作居住等环境。
其他净化方式比如紫外线、光触媒等催化裂解方式则很难在室内空间起到净化效果。美国能源环保部明确认定这两类方式对于室内空气净化无明显的效果。(EPA, 2008)此外,紫外线的泄漏还会对人体健康以及家用的塑料制品的寿命构成威胁。而催化裂解即使有合理的分解污染物的原理,其一般不能说明分解后的产物如何以及是否会对人体健康产生影响。故除需要验证其分解效能之外,也需要进一步研究其附产品对人体健康的影响。
现有装置还有产生离子如CN102946910B,CN105115054A,CN105042717A等将离子作为产出物输出。最重要的是:离子的进入本身并不能直接消除气体中的污染。再者,离子一般会伴随臭氧一起产生(例如CN85102037中加入了用来消除伴生臭氧的装置),释放到空气的负离子也有可能是荷负电的污染颗粒物(并非等同于新鲜空气中检测到的负离子),故不宜将产生离子的装置安装在有人类活动的区域。这种弊端使得该类净化装置的使用范围非常局限。另外将离子释放至室内空间的不利因素是,这些离子或者荷电的颗粒进入到空气后,附近的表面将是这些颗粒的捕捉体(例如:墙面),这些表面会因为积聚较多颗粒而变脏,不易于清理。
综上所述,如果有一种高效净化和过滤设备既能有效去除气体介质中较大的、相对容易去除颗粒物(粒径>2.5μm),又能有效去除空气中较小的悬浮颗粒物(粒径<2.5μm),这样的设备又几乎不产生臭氧或者离子等可能威胁人体健康的成分,同时又能以合理的成本制造,那么将会有极大的市场需求。
实用新型内容
本实用新型的一个目标是提供有一种高效净化和过滤系统,该系统既能有效去除气体介质中较大的、相对容易去除的污染颗粒物(粒径>2.5μm),又能有效去除常规净化设备难以去除的较小的悬浮颗粒物(粒径<2.5μm),并杀灭其中的细菌和病毒,而这样的系统又几乎不产生臭氧或者离子等可能威胁人体健康的成分。
根据本实用新型,提供了一种气体介质悬浮颗粒物净化系统,该系统包括荷电组件(0101)、强制通风组件(0102)、过滤组件(0103)以及气体能够通过的一个容纳上述组件的管道,其特征在于所述过滤组件(0103)至少包含两个电极,电极间存在电势差,所述电极之间有纤维材料。
纤维材料优选非紧密排列而成的结构,纤维之间有空间可供气流通过,在高压电极的作用下,纤维荷电且其间隔的空间内产生电场,含纤维过滤部件中纤维的填充比例为1-15%。纤维的直径的范围为100μm-0.01μm。其有益效果是提供了比传统板式集尘器大的多的比表面积,在有效捕捉较大颗粒污染物的同时,又能有效去除空气中较小的悬浮颗粒物(粒径<2.5μm)。
其纤维材料优选可降解酸性纤维。其有益效果是可以以合理的成本制造,并且可降解,对环境友好。酸性纤维材料可以有优良的抑制细菌滋生的功能。这样的结构的另外一个有益效果是,由于空气阻力低,可以大大降低设备功率以及噪音。
其纤维材料可选高分子聚合物纤维。其有益效果同样是高的比表面积和微小颗粒物去除效果,空气阻力低。
其纤维材料在另一个优选示例中系紧密排列而成的层状结构,层状结构之间有空间可供气流通过。这样的结构的有益效果同样是由于空气阻力低,可以大大降低设备功率以及噪音。
其中高压电极不经过绝缘处理,并且气体可以从电极穿过;其有益效果是可以避免绝缘材料对电场强度的降低作用。
另一个优选示例中其荷电组件的等离子发生极的尖端部位采用碳纤维组合的刷状尖端。
其过滤组件(0103)中与荷电组件(0101)靠近的一侧的电极(0202)极性与该荷电组件(0101)中等离子发生极(0602)的极性一致,而另外一个侧的电极(0201)接地。其有益效果是,经过净化后的气体介质在离开系统之前,所有的离子被中和而不被释放到空间中,既能避免离子可能对人体健康造成的威胁,又能避免残余荷电颗粒对环境造成的二次污染。
本实用新型的另一个目标是提供一种粒子荷电装置,为上述高效净化和过滤系统所必须的一部分。该荷电组件(0101)中的等离子发生极(0602)的电极极性与靠近本组件的过滤组件一侧的电极(0202)极性一致,而另外一侧(0201)接地,其中电极在裸露的部分表面有抗臭氧涂层。其有益效果可以避免传统类似电离装置产生的有害臭氧气体。
附图说明
图1为本实用新型净化和过滤系统的立体图。
图2为过滤组件,包含两组电极片,以及其中间的纤维过滤组件。
图3为壳体组件,包含外壳本体,骨架以及两侧的面板。
图4为过滤组件,包含固定和活动两个部分。
图5为强制通风组件,包含风机和固定板等。
图6为荷电组件。
图7以及图8为本实用新型的另外的系统优选布置方式。
图9为荷电组件的另外一种优选方式。
图10为按照弧形方式布置的过滤组件。
图11为按照球形布置的过滤组件。
图12为按照Z字形布置的过滤组件。
图13为按照S形布置的过滤组件。
图14为本实用新型的一种优选系统布置方式。
具体实施方式
(第一实施方式) 。
参照图1,本实用新型系统包括荷电组件(0101)、强制通风组件(0102)、过滤组件(0103)以及气体能够通过的一个容纳上述组件的兼具气流管道功能的外壳组件(0104),被污染气体介质受强制通风组件(0102)的驱动,按照图中所示箭头的方向,先从荷电组件(0101)通过,其中悬浮颗粒污染物经充分荷电后,再经过过滤组件(0103),在高压电场的作用下,受库仑力的吸引而被捕捉,留置在过滤组件(0103)内。经过净化后的气体介质通过过滤组件如图2所示的接地电极(0201),其残余电荷被中和后,经过处理的气体排出本系统。
在系统的布置上,过滤组件(0103)必须设置在气流的下游或者系统的出口处。实验表明,过滤组件(0103)中的高压部分,在高压8KV-14KV之间,其接通高压部分的任意一点必须距离系统其他导体部件2cm以上。
关于前置的荷电组件(0101)和强制通风组件(0102)的位置关系方面,可以将荷电组件(0101)布置于较强制通风组件(0102)位于气流的更上游;也可以采用荷电组件(0101)较强制通风组件(0102)位于气流的更下游的布置方式。本实用新型第一实施方式采用前者的方案。
所述系统包括一个外壳组件(0104)。如图3所示,外壳组件(0104)中利用一个骨架(0302)用来固定强制通风组件(0102)、荷电组件(0101)、和过滤组件(0103),以及可调电压式高压发生电源以及控制开关等;包括一个活动滤芯仓,以及两侧的面板(0303)(0304),和周围的外壳本体(0301)等。外壳本体(0301)应允许气体介质以压降较低的情况下通过。可采用任何现有已知的在通风、换气、空调、供暖装置上采用的格栅、孔板、网状等利于气流通过并提供一定支撑强度的形式。
主体外壳内侧与骨架部分应尽量利于流体经过,其对气体的阻尼应采用尽量小的设置,例如流线型。可采用例如发泡材料构成这样的内腔。实验表明,经过合理内部流体布置的系统可以将净化效率提高20-30%。
本实施方案采用金属外壳的方案。但外壳如果选用绝缘材料,可以选择的材料包括(但不限于) 热塑性塑料(如ABS)、聚对苯二甲酸丁二醇酯(PBT)、聚对苯二甲酸乙二醇酯(PET)、聚碳酸酯(PC)、聚苯乙烯(PS) 等。
如图4,过滤组件分为固定和活动两个部分。固定部分(0401)用于辅助装载和支撑滤芯一部分部件,活动部分(0402)由一个活动舱门和联动开关构成。用户可以方便的打开舱门更换滤芯。当用户打开舱门时,联动开关动作,将系统的主要电源切断。该舱门与同侧的面板组合在一起,关闭舱门时,面板也随之闭合。纤维过滤仓与骨架和外壳的结合注意保证气密性,需要净化的气体介质则都只能从过滤组件(0103)中穿过。
该过滤组件(0103)通过任何已知且合适的方法可拆卸地安装在外壳组件的安装组件上。
如图2所示,过滤组件包含有两个气体可以通过的电极(0201)(0202),电极包含电势差不同的至少两个电极,周围被固定在绝缘材料上。两个电极之间设有纤维过滤部件即滤芯(0203)。该部件含有细小纤维类材料或其具有多孔隙的构成体非紧密排列而成,其排列方式可以类似于常见的空调初效滤网的形式。所述纤维赋予其外部的电介体性质,在同样体积的情况下,可以提供比其他常见电集尘组件大的多的比表面积。在纤维之间包括有若干气流可以相对较自由地通过的规则或者不规则通道,保证所述通道的低风阻。电极接入可调电压式高压电源后,在规则或不规则通道内产生电场,同时纤维材料本身被电场极化。
大分子纤维在可调电压式高压电场中,沿着垂直于电极板的方向得到极化。例如经过实验验证,采用硝化纤维素制作的净化组件和采用生物质纤维都可以达到很好的净化效果。由于提供了一个比驻极体强度更高的、外加的稳定电场,这使得过滤纤维的材质的选用范围广泛,包括但不限于上述环境友好的、可抛弃降解的纤维。
这类纤维优选的排列方式为沿着气流方向纵向布置,或者形成一定角度的任意方向。滤芯成品可采用包括但不限于机械、热粘或者化学方法加固为形状相对固定的物体,例如具有厚度的方形或圆形物体。纤维材料占整个纤维滤芯(0203)的填充比例以1-15%为宜。针对不同的悬浮物颗粒,纤维的直径从100μm-0.01μm不等。纤维滤芯(0203)中应含有相当比例的、直径和超细颗粒相当的纤维成分。其中,不同的材料层的排列可以平行于电场、可以垂直于电场,也可以和电场方向成一定的夹角甚至随机布置。在本优选示例中,按上述纤维优选的填充比例和直径,纤维滤芯(0203)的成品规格在90-150g/m2之间。但是本实用新型并不局限于这样的规格。
本实用新型的有益效果还在于,可以避免了由于操作不当使得系统长期积累大量污染颗粒物而造成的二次污染问题。由于对高聚物或者纤维素的来源选择范围的增加,使得从成本和环境保护方面考虑,用户较为容易接受这样一种观念:净化系统应该采用有耗材、甚至是可抛弃的材料,这种耗材既环境友好,成本还在非常容易接受的范围之内。
再者,本实用新型可抛弃材料的间接优势在于,避免了传统净化设备中自清洁装置给系统增加的复杂性,也避免了自清洁系统例如吸尘器工作时,给环境带来的二次细微颗粒污染的问题。这是因为一般自清洁系统不太可能捕捉直径较小的颗粒。而这样的自清洁系统在一些较大型的净化装置中较为常见,并常以无耗材作为装置的突出特征。应当说明,本实用新型由于所述的有益效果而降低了采用附加的自清洁系统的必要性,但本实用新型并不排除本系统的实际应用中为了某种需要而增加自清洁系统的可能性。
早在1983年,美国的Lawrence Livermore National Laboratory(LLNL)实验室曾在美国能源部的资助下进行过令导体或者半导体纤维极化带电的尝试。他们发现给纤维荷电的确可以极大的提高捕捉颗粒的效果。但是因为电场容易拉弧而不能充分的提高电场电压,并且会造成净化的中断和效率的降低。(LLNL,1983)近年来又有一些科研人员(US5549735)尝试给电极全部或者部分进行绝缘处理以避免拉弧或者避免荷电颗粒被过早的中和,但这势必会同时将颗粒捕捉效率大大下降。虽然有学者认可该领域的价值而在继续进行研究,以解决理论和实际方面的距离。(Chiu-Sen,2001)但迄今为止,这样一个具有潜力的技术因为拉弧或者中和荷电颗粒导致效率下降等原因,并未真正得到实际的市场推广应用。
本实用新型则解决了上述文献中出现的问题,其有益效果是既避免了电场拉弧等不利现象以及在拉弧等非正常运行状态时可能产生对人体有害的臭氧,又避免了给电极绝缘处理带来的效率下降。在和上述LLNL使用相同的电压12kV的情况下,本装置实验可以稳定较长时间运行而不产生任何拉弧现象或者噪音。
为此,过滤组件(0103)中电极优选由导电体制作,采用网状或者多孔的导体电极,穿孔的形状是不仅限于方形、多边形、圆形的各种形状。由于易于拉弧放电、荷电颗粒在被捕获前提前中和放电等原因,近年来有一些净化装置采用绝缘处理电极的方法(例如US5549735将电极全部用绝缘材料覆盖),但是如此对电极的绝缘处理会导致空间电场场强的大幅度下降从而降低装置的效率。所以本实用新型不对电极进行绝缘处理,而是采用了优选的纤维材料和及其适当的布置形式,经实验证明,电极距离在1-5cm范围之内,电极之间不会产生拉弧放电等不良后果。
如图2中,在后端纤维结构两侧的电极板(0201)(0202)的布置上,本系统优选在靠近进气一侧电极(0202),采用与图6中等离子发生极(0602)相同的电势的接法。荷电颗粒与该极板有同极互斥的作用力,但比较微小,一般的强制通风装置都可以完全克服这样的作用力,而不影响污染气体介质的自由流通。荷电颗粒可以顺利通过这样的极板而与被极化的纤维(0203)相遇并且放电被捕获。这也是本系统无需采用常见的电极绝缘处理方法的另一个重要原因。
此外,本实用新型的过滤组件(0103)在除菌抗病毒方面具有双重有益效果。首先,选择某种具有抑菌特性的纤维成为可能;其次,本系统包含有高电压接入的两级组件。尤其是在过滤单元捕捉颗粒的区域中,高压电场可以在室温环境通过较长的停留时间将捕获的细菌、病毒杀灭。研究认为静电场和微电流刺激细菌,使细菌的蛋白质、核酸等变异,损伤细菌的细胞壁及细胞膜,破坏细菌的表面结构,使细胞膜内外的生物驻极态受到破坏,从而抑制细菌繁殖和杀灭细菌。(曾新安等,1998)例如US6497839 B1等专利就在高压灭菌方面曾有一些有益的探索,可以证实以上灭菌消毒的原理。本实用新型可供研究人员作为基础并继续进行对于空气介质灭菌消毒方面的探索。
本系统的另外一个特征在于,在空气介质经净化后,设有穿孔或者网状电极板(0201)(0202)并且接地,该网状组件不但空气阻力很低,而且在一方面,该部件作为另外的高压电极的参考电势点,大大增强了过滤空间中的电场强度;另一方面,基于荷电颗粒或者离子的释放可能带来的不利后果,该部件可以进一步保证本实用新型不会向系统以外的空间继续释放可能造成二次污染的离子,这也是本实用新型的另外一个有益效果。该接地导体部件也可以被视为有兼具将含残余带电离子的气体介质进行中和的一个独立功能。
强制通风组件(0102)采用迫使气流、给气流提供动力的方式,使得含污染物的气流通过所述过滤组件(0103),由此悬浮颗粒物在通道中被捕获、收集。本实用新型的一个有益效果是尤其对于较微小的颗粒而言的,具体的工作原理为纤维吸附细小的颗粒,并且促进细小颗粒物在纤维表面凝并成为较大的颗粒,进而更好的被捕捉。
如图5所示,风机(0502)或者是其他强制空气流动的组件可以采用任何合适的类型,并由直流或者交流供电。因为本系统的风阻相对很低,这使得采用一些低功耗、静音的风机成为可能。比如挪威Purifico EC350超静音轴流风机,该风机可在Purifico北京代表处购得。本实用新型的系统并不限于特定的风量,在一些出力较大的产品中,完全可以选用功率更大的风机;同理,针对一些较小的室内空间,也可以选用功率尺寸都较小的风机。采用外壳本体和其他部件应当以气密的形式结合以保证空气介质按照设计的要求有效通过特定的部件。在某些优选方案中,强制通风部分也可以采用包括但不限于离心式的系列风机,如下述第八实施方式。
风机(0502)等强制通风器件由一个开圆孔的板(0501)以焊接或者螺钉紧固等方式结合于骨架(0302)上,该固定风机组件的圆孔应该以不妨碍风机风叶转动为限并尽可能的小,举例说明,如果选用直径350mm的风机,则以开口直径350mm为宜。另外该钢板的共振的固有频率应尽量的避免风机常见运转状态的固有频率,以免产生共振噪音。
如图6,本系统荷电组件(0101)主要由等离子发生极(0602)和不限于圆环形或其他形状的闭合导体(0601)构成。等离子发生极(0602)和所述闭合导体(0601)都可以但不限于由以下材料构成:钨、不锈钢、铜等导体材质,并经过表面氧化铜喷涂处理,在其尖端部位也可以用碳纤维等阻抗稍高的材质。该部分对于空气介质中的悬浮颗粒在进入系统时进行充分的荷电、对于系统的净化能力十分重要。
等离子发生极(0602)是具有明显尖端的圆柱状或者纤维束导体其截面直径在0.5-5mm之间,闭合导体(0601)的截面直径也在0.5-5mm之间。等离子发生极(0602)连接于可调电压式高压发生电源的正极;闭合导体(0601)则接地。该环状电极也可以在轴向延长,并且在朝向该发生极前端方向的位置不超过发生极的最前端。环状电极采用任何已知的绝缘的方式固定在进风口一侧,并和进风口的外形吻合。
在适当的电压下,例如5000-14000V的直流高压电,等离子发生极(0602)产生等离子体。其中正离子和电子等量出现。其中所含的电子流入电势差较高的发生极,而正离子则流向电势差较低的方向,也就是闭合导体(0601)和机身其他电较低的部位。在环境气压接近大气压时,本系统产生的等离子体属于热等离子体(thermal plasma),在实际的热等离子体发生装置中,输出的等离子体呈喷射状运动,并形成一个类似于风幕的伞状离子风幕覆盖面。这样的离子风幕经实验验证可以十分的均匀和密闭,并且用手或者蜡烛火苗实测也可以感受到均匀的风感。进气侧所包含的悬浮颗粒物都必须首先通过等离子风幕受离子影响而充分荷电,这给整个系统的净化能力提供了保障。以上电源极中裸露的导体部分均可由含有二氧化锰或者氧化铜的触媒均匀覆盖,以较彻底的避免在等离子荷电区产生有害的臭氧(Yu Hei Liu 2005)这是本实用新型不同于市售常见类似设备电晕荷电方法的另外一个有益效果。
上述等离子发生极(0602)可以接入但不限于以下形式的电源:直流高压、直流脉冲、交流高压等,其电压大小也可以采用可调节式,也可以采用固定电压式。
虽然本实用新型不限于闭合导体(0601)接地的做法,但其优选接地的做法未见于现有的专利文献,该做法的有益效果之一,由于上述闭合导体(0601)一般接近机壳,这可以有效避免传统的电晕正负极相对的方法形成的电离空气荷电而造成人员有轻微触电不适的感觉,即便这样的轻微触电的感觉不会对人体健康或者生命造成威胁。另外该部位接地对于整个系统的安全稳定性也可以予以提高。经验证,本系统的外壳既可以采用工程塑料等绝缘材料,也可以采用金属等导体材料制备的外壳。本系统在不同环境下都有广泛应用的可能。
(第二实施方式) 。
本实用新型的系统中,过滤组件(0103)中填充的纤维材料还可以选用传统高聚物化合材料制成,这样的实施方式的好处是可以解决目前民用净化器更换滤芯成本高的问题,也可以避免成本高更换频率小的滤芯对环境带来的二次污染的问题。
这类传统的高聚物化合材料的有益之处在于其在市场上易于获取,价格低,并且可适当清洗再生后再利用。
(第三实施方式) 。
另外,过滤组件(0103)中充填的纤维材料不限于纤维素构成的材料或者纤维状的材料,还包括由纤维状材料所构成的具有多种可供气体通过物理形状的成品,如利用含有纤维材料的纸浆制成的纸制品、由纸制品加工成型的制品、或其他利用纤维采用织造或者非织造的形式生产的物品等,或者由上述两种或者多种材料构成的组合体。
其中一个优选的实施方式,利用类似瓦楞或者蜂窝纸板和电场的方向平行排列。在其中间布置有疏松的可降解植物纤维。在风阻较低的情况下,大量被电场极化的纤维将经过其附近的荷电悬浮颗粒物捕获。其有益效果在于不同形式的纤维材料可分别针对不同粒径的悬浮颗粒物而设置,在某些污染物种类的情况下更为实用。
在本优选示例中,纤维组件的规格在500-800g/m2之间。在此区间进行调整规格并进行一系列的实验表明,不同规格的组件最优的配合风速不同,去除悬浮颗粒物的效率并无重大的改变。当然本实用新型并不局限于这样的规格。
(第四实施方式) 。
如图7或图8,第四实施方式以第一实施方式为基础,但和第一实施方式最大的区别在于强制通风组件(0102)较荷电组件(0101)位于气流的最上游或者最下游。如果采用介电常数较低的强制通风组件(0102)的叶片,则可以采用本实施方式,其有益效果是有利于将系统的尺寸设计的更小。其他部分则与第一实施方式相同。
(第五实施方式) 。
本实施方式与第一实施方式中单一的荷电组件(0101)相比,如图9所示,采用了多个荷电组件设置而且是多个荷电组件采用非对称极性的布置。比如设置2个或者2个以上极性相反发生器,荷电极性不同的颗粒在经过过滤组件(0103)以前,一部分会相遇并发生凝并。细小的颗粒经过凝并效果以后,变为粒径较大的颗粒,会更容易被捕获。除此之外,本实施方式其它部分与第一实施方式相同。本系统的凝并装置与市场常见类似装置不同之处在于本系统的多个荷电组件的位于同一平面,并且外围相对的闭合导体(0601)采用接地的方式。
(第六实施方式)。
碳纤维荷电组件如图6,等离子发生极(0602)和闭合导体(0601)可以但不限于由以下材料构成:钨、不锈钢、铜等导体材质,在其尖端部位也可以用碳纤维等阻抗稍高的材质代替金属尖状物。除此之外,本实施方式其它部分与第一实施方式相同。
(第七实施方式) 。
电极板(0201)(0202)的网孔形状不限于第一实施方式中的网格形金属板,也可以采用其他形状如圆形多孔板、三角形多孔板、多边形多孔板或者其他图案的多孔金属板制作。此外,也可以由绝缘材料制作的板材例如但不限于树脂板加金属涂层制作。其特征在于表面可导电并具有一定强度的支撑功能,并且空气基本可以自由的流过。
为了进一步增加有效过滤面积,采用一定网、孔形状的电极板可由平面型变换为如图10的环带型、如图11的球形、如图12的Z字型、如图13的S型等形式。这样变换后的过滤组件(1003/1103/1203/1303)在一定体积的条件下可以将有效过滤面积成倍增加。
(第八实施方式)。
如图14本实施方式不同于第一实施方式和第四实施方式之处在于,空气介质流动的方向穿过本系统时,方向发生改变。优选采用离心式风机(1402)来达到这一目的。在采用轴流式风机的实施方式中,气体介质整体的流动方向在系统中几乎没有被改变。
在本实施方式中,与第一、第四实施方式同样包括荷电组件(1401)、强制通风组件(1402)、过滤组件(1403)以及气体能够通过的一个容纳上述组件的兼具气流管道功能的外壳组件(1404)。如图14中箭头所示,气流先通过荷电组件(1401)的一个假想的几何轴线方向进入,在其中污染悬浮物颗粒荷电。气流然后经过包括但不限于离心式的风机改为径向流动。
在本实施方式中,过滤组件(1403)须围绕离心式风机(1402)外侧环形布置。同时如图10所示,其内径较小的电极(1001)与荷电组件(1401)中的等离子发生极极性相同;其外径较大的位于外侧的电极(1002)则接地。两个电极之间布置的纤维材料(1003)也随之按照环形布置。这部分纤维材料在电极接电后在径向被极化,高效捕捉已荷电悬浮颗粒物。各组件与其结构支撑的部分需要保证气密性,以保证气流仅按本实用新型的意图流动。
本实施方式的有益效果是,可以节省空间,离心式风机改变气流方向的特点可以较轴流风机节约空间。
另外离心式风机(1402)的转子和过滤组件(1403)可以用户视线可见的方式一起旋转。这样的布置在家庭或者某些办公环境当中有可见的运动部件,这样的运动部件可以直观的给用户提示运转的状态,并给净化设备增加了趣味。
(其他实施方式) 。
本系统还可以针对较大的尘埃、悬浮物颗粒污染以外的污染成分设置辅助组件,例如初效滤网、活性炭滤网组件、化学吸附组件等。这样的辅助组件可以针对不同污染状况的空气介质进行定制化的应对,通常也不会影响本系统本身对颗粒物吸附的效率,设计合理的话,也不会引起本系统噪音的显著增加。
本文虽然没有进一步描述,为了满足国际标准如UL867的要求,高压供电装置应带有联动开关,在移除或者打开面板的情况下,联动开关动作,将本系统的主要电路切断,保护操作者的安全。另外外壳本体如果采用金属材料,则需要进行良好接地。
另外过滤部件也可以设置压力测量传感器,位用于如图2和图10-13中检测过滤组件的两侧,用于检测这些部件的使用状况,在压降超过某个数值的情形下,发出信号,提示用户更换过滤组件中的滤芯部分(0203/1003/1103/1203/1303)。
可以使用多个电极,例如刷子或多个单电极或线材。无论使用何种构型,电极或电极构型和定位应当在出口中提供足够的电压场,以如预期那样将纤维材料(0203)极化。
如上所述,本实用新型的电源形式可以选用直流高压、直流脉冲高压、交流高压的形式。后面两者可以帮助细微颗粒荷电不同,并且碰撞后产生凝并效果,提高净化的效率。
上述实施方式都属于本实用新型的一些示例性说明实施例。但应该理解的是,本实用新型的原理可以应用于其他现有所有可预见的空气介质的净化和过滤领域,其工作环境可能是居住环境的空气净化、移动车辆或航空器空间的净化、建筑的中央空调或者净化系统,甚至是更大空间如体育馆等室内、室外空间的净化。
本实用新型不受本文所述和所示的构造和相对尺寸的限制。在不同的构造和尺寸下,本实用新型的高压电源也不受本文所述的电压大小的限制。通常尺寸越大,适宜选用的电源电压就越高。
在不脱离本实用新型的精神和范围的前提下,本实用新型可以采取多种修改和更改。因此,本实用新型不应该限于上述示例性实施例,而是应该受以下权利要求书中提及的及其任何等同物的限制的控制。以下权利要求书中引用的图片仅为更好理解权利要求内容的一种帮助而不应成为一种限制。本实用新型也可以在存在本文未具体描述的任何元件的情况下适当加以实施。
参考文献
谭天祐等,工业通风除尘技术,中国建筑工业出版社,1984,p1
侯美伶等,灰霾期间气溶胶的污染特征,环境监测管理与技术,第24卷第2期,2012p6
吴兑,近十年中国灰霾天气研究综述,环境科学学报,第32卷第2期,2012 p258
杨荆泉等,驻极体过滤材料及其在空气净化领域的应用,环境与健康杂志第26 卷第8 期, 2009 p743
Lawrence Livermore National Laboratory (LLNL) Electric AirFiltration: Theory, Laboratory Studies, Hardware Development, and FieldEvaluations. 1983 P101, P103
Chiu-Sen Wang, Electrostatic forces in fibrous filters—a review,Powder Technology 118 2001 166–170
Hugo Destaillats, Mohamad Sleiman and William J. Fisk,Evaluation ofPollutant Emissions from Portable Air Cleaners Final Report: Contract No. 10-320,Lawrence Berkeley National Laboratory, December 2014
EPA, Guide to Air Cleaners in the Home, Office of Air and RadiationIndoor Environments Division, United States Environmental Protection Agency,2008, p5
Yu Hei Liu 2005 Comparison of Different Manganese Catalysts to RemoveOzone, CO and IPA in Air Streams中国台湾“交通大学”环境研究所
曾新安、高大维、李国基,高压电场灭菌效果研究,微生物学通报,1998年25(5)p270
尹维东、刘来红、乔惠贤、刘锦华,室内空气污染物的净化,环境污染治理技术与设备,第3卷第2期,2002
Whitby K T . The physical characteristics of sulfur aerosols [J] .Atmospheric Environment, 1978, 12: 135~ 159.
胡敏、赵云良、何凌燕、黄晓锋、唐孝炎、姚小红、陈泽强,北京冬、夏季颗粒物及其离子成分质量浓度谱分布,环境科学,第26卷第4期2005年7月。
Claims (10)
1.一种气体介质悬浮颗粒物净化系统,该系统包括荷电组件(0101) 、强制通风组件(0102) 、过滤组件(0103)以及气体能够通过的一个容纳上述组件的管道,其特征在于所述过滤组件(0103)至少包含两个电极,且电极之间有纤维材料。
2.根据权利要求1所述的气体介质悬浮颗粒物净化系统,其特征在于其纤维材料之间有空间可供气流通过,在高压电极的作用下,纤维荷电且其间隔的空间内产生电场。
3.根据权利要求2所述的气体介质悬浮颗粒物净化系统,其特征在于其纤维的直径的范围为 100μm-0.01μm。
4.根据权利要求2所述的气体介质悬浮颗粒物净化系统,其特征在于其纤维材料由可降解酸性纤维制成。
5.根据权利要求2所述的气体介质悬浮颗粒物净化系统,其特征在于其纤维材料由高分子聚合物纤维制成。
6.根据权利要求1所述的气体介质悬浮颗粒物净化系统,其特征在于其纤维材料的层状结构,层状结构之间有空间可供气流通过。
7.根据权利要求1所述的气体介质悬浮颗粒物净化系统,其特征在于高压电极不经过绝缘处理,并且气体可以从电极穿过。
8.根据权利要求1所述的气体介质悬浮颗粒物净化系统,其特征在于其荷电组件(0101)中等离子发生极(0602)的极性与过滤组件(0103)中靠近荷电组件(0202)的一侧的电极极性一致,而另外一个过滤组件中的电极(0201)接地。
9.根据权利要求1所述的气体介质悬浮颗粒物净化系统,其特征在于其荷电组件(0101)由带有尖端的等离子发生极(0602)和闭合导体(0601)组成,并且其中等离子发生极(0602)接高压电源,而其中闭合导体(0601)接地。
10.根据权利要求1所述的气体介质悬浮颗粒物净化系统,其特征在于其荷电组件(0101)中裸露的导体部分覆盖有抗臭氧涂层。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201521123117.5U CN205649998U (zh) | 2015-12-31 | 2015-12-31 | 气体介质悬浮颗粒物净化系统 |
PCT/CN2016/107367 WO2017114049A1 (zh) | 2015-12-31 | 2016-11-26 | 气体介质悬浮颗粒物净化系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201521123117.5U CN205649998U (zh) | 2015-12-31 | 2015-12-31 | 气体介质悬浮颗粒物净化系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN205649998U true CN205649998U (zh) | 2016-10-19 |
Family
ID=57356574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201521123117.5U Active CN205649998U (zh) | 2015-12-31 | 2015-12-31 | 气体介质悬浮颗粒物净化系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN205649998U (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017114049A1 (zh) * | 2015-12-31 | 2017-07-06 | 靳瑞廷 | 气体介质悬浮颗粒物净化系统 |
EP3482814A1 (en) * | 2017-11-09 | 2019-05-15 | Polypipe Limited | An active carbon filter for an air vent assembly |
CN110575715A (zh) * | 2019-10-09 | 2019-12-17 | 苏州敬天爱人环境科技有限公司 | 一种石墨烯节能型空气净化装置 |
-
2015
- 2015-12-31 CN CN201521123117.5U patent/CN205649998U/zh active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017114049A1 (zh) * | 2015-12-31 | 2017-07-06 | 靳瑞廷 | 气体介质悬浮颗粒物净化系统 |
EP3482814A1 (en) * | 2017-11-09 | 2019-05-15 | Polypipe Limited | An active carbon filter for an air vent assembly |
CN110575715A (zh) * | 2019-10-09 | 2019-12-17 | 苏州敬天爱人环境科技有限公司 | 一种石墨烯节能型空气净化装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105642056A (zh) | 气体介质悬浮颗粒物净化系统 | |
JP3224258U (ja) | 高速イオン風自己吸着式低温プラズマ空気清浄機 | |
CN104501313B (zh) | 一种无需更换滤网的空气净化器 | |
CN201361510Y (zh) | 三段组合式过滤器 | |
CN203494655U (zh) | 一种高效静电集尘装置 | |
CN201394408Y (zh) | 多段式静电过滤器 | |
WO2017114049A1 (zh) | 气体介质悬浮颗粒物净化系统 | |
CN103702690B (zh) | 利用电场再生的空气净化器 | |
CN201476182U (zh) | 一种分体式空调外置式空气净化装置 | |
CN104566650A (zh) | 适于在家居环境条件下除去空气中细颗粒物的空气净化装置 | |
CN104588209A (zh) | 一种在家居环境条件下对空气中细颗粒物的去除方法 | |
CN205649998U (zh) | 气体介质悬浮颗粒物净化系统 | |
CN101592381A (zh) | 卧式喷淋调湿的等离子体和吸附式室内空气净化器 | |
CN202792465U (zh) | 户式静电除尘净化新风机 | |
CN106440087B (zh) | 一种消除空气中超微悬浮物的净化装置 | |
CN205939426U (zh) | 一种室内空气净化装置 | |
CN201361511Y (zh) | 网式电子增强滤料空气净化器 | |
CN208115987U (zh) | 一种电离装置及空气净化装置 | |
CN103344009A (zh) | 一种模块化集成室内静电吸附空气净化装置 | |
CN208771018U (zh) | 一种杀菌驻极过滤器 | |
CN101592382A (zh) | 卧式等离子体和吸附式室内空气净化器 | |
CN208090827U (zh) | 一种室内除霾空气净化器 | |
CN203810562U (zh) | 多功能空气净化器 | |
CN206771585U (zh) | 一种低能耗恒温空气净化器装置 | |
CN212511668U (zh) | 一种吸附杀菌空气净化装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |