CN205544291U - Cluster - parallel combination compensator that restraines HVDC commutation failure - Google Patents

Cluster - parallel combination compensator that restraines HVDC commutation failure Download PDF

Info

Publication number
CN205544291U
CN205544291U CN201620221910.7U CN201620221910U CN205544291U CN 205544291 U CN205544291 U CN 205544291U CN 201620221910 U CN201620221910 U CN 201620221910U CN 205544291 U CN205544291 U CN 205544291U
Authority
CN
China
Prior art keywords
power switch
series
control unit
switch pipe
bridge submodule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201620221910.7U
Other languages
Chinese (zh)
Inventor
王轩
李鹏
武丹
石浩
付永生
燕翚
王广柱
欧朱建
潘爱强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Shandong University
State Grid Shanghai Electric Power Co Ltd
Nanjing NARI Group Corp
China EPRI Science and Technology Co Ltd
Original Assignee
State Grid Corp of China SGCC
Shandong University
State Grid Shanghai Electric Power Co Ltd
Nanjing NARI Group Corp
China EPRI Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Shandong University, State Grid Shanghai Electric Power Co Ltd, Nanjing NARI Group Corp, China EPRI Science and Technology Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201620221910.7U priority Critical patent/CN205544291U/en
Application granted granted Critical
Publication of CN205544291U publication Critical patent/CN205544291U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

The utility model provides a cluster that restraines HVDC commutation failure the parallel combination compensator, this compensator setting the contravariant side ac bus of HVDC system with receive between the end electric wire netting, and go here and there the parallel combination compensator includes crosspoint, interconnect's out put voltage control unit and output current the control unit. The utility model provides a contravariant side ac bus of direct current transmission system had been realized effectively compensating by the compensator when broken down by the end electric wire netting voltage falls, improves circuit transmittability and suppresses commutation failure's emergence, has guaranteed the reliable of high -pressure direct current transmission system and stable operation.

Description

A kind of series-multiple connection combined compensation device suppressing HVDC commutation failure
Technical field
This utility model relates to power system high-voltage dc transmission electrical domain, is specifically related to a kind of suppression HVDC commutation failure Series-multiple connection combined compensation device.
Background technology
Line commutation D.C. high voltage transmission (Line-Commutated-Converter High Voltage based on IGCT Direct Current, LCC-HVDC) system has that transmission line capability is big, circuit cost networked capabilities low, asynchronous strong, Have great advantage at aspect tools such as long-distance and large-capacity power transmission and big area networkings and be widely used in China's power system.
Commutation failure is one of modal fault of LCC-HVDC system.The reason causing commutation failure fault has a lot, But when IGCT and triggering system thereof the most normally work, the main cause that commutation failure occurs is when receiving end electrical network occurs event The grid voltage sags caused during barrier or fluctuation.
Disclosed " the defence side of a kind of Communication Failure in HVDC Transmission Lines of the Chinese patent of Publication No. CN103337870A Method ", instructed to Control protection system, touching at Control protection system by its commutation failure system of defense output square wave Send out in the instruction of angle and deduct this square wave, trigger IGCT in advance.The method is a kind of commutation failure defence increasing and closing the angle of rupture Measure.
Disclosed " a kind of direct current transportation commutation based on electric current lambda limiting process of the Chinese patent of Publication No. CN103737907A Failure defence method ", using when there is AC network fault, suppressing to change by the method reducing DC current instruction Failure mutually.The method can avoid the power-factor angle triggering the increase DC current brought in advance, increasing DC transmission system Etc. adverse effect, make the commutation area needed for IGCT reduce, be conducive to defence DC transmission system generation commutation failure event Barrier.But, owing to LCC-HVDC dc bus is in series with the smoothing reactor of larger capacity, its electric current decrease speed Relatively slow, therefore the response speed of the method suppression commutation failure is relatively slow.
Said method mainly increases and closes the angle of rupture or reduce DC current, can as the auxiliary mean of defense of commutation failure, but Cannot fundamentally avoid the generation of commutation failure.
" the height containing STATCOM in " High-Voltage Technology " volume 40 the 8th phase 2440-2448 page publication in 2014 Pressure DC transmission system control method " one literary composition (author Zhao Chengyong etc.) propose containing SVC (STATCOM) HVDC system control method, when receiving end electrical network three-phase fault causes three-phase voltage to fall, the method can reduce The probability of happening of commutation failure, but it is suitable only for the operating mode that receiving end electric network fault is lighter, when grid voltage sags is more serious, Then required for compensation Voltage Drop, STATCOM capacity can be the biggest.
Utility model content
In view of this, a kind of series-multiple connection combined compensation device suppressing HVDC system commutation failure that this utility model provides, This compensator achieves the voltage of effective compensation DC transmission system inverter side ac bus when receiving end grid collapses Fall, improve line transmission ability and suppress the generation of commutation failure, it is ensured that HVDC transmission system reliable and steady Fixed operation.
The purpose of this utility model is achieved through the following technical solutions:
A kind of series-multiple connection combined compensation device suppressing HVDC commutation failure, described series-multiple connection combined compensation device is arranged on Between HVDC system inverter side ac bus and receiving end electrical network, and described series-multiple connection combined compensation device include crosspoint, Interconnective output voltage control unit and output current control unit;
Described output voltage control unit is connected between described inverter side ac bus and receiving end electrical network;
Described output current control unit is connected in parallel on described inverter side ac bus or on the bus of receiving end electrical network;
Described output voltage control unit and output current control unit are connected to described crosspoint.
Preferably, described crosspoint includes friendship-alternating current source converter and is connected to the control of described friendship-alternating current source converter Device, described output voltage control unit is a series side transformator, and described output current control unit is a side in parallel Transformator;
Described friendship-alternating current source converter is provided with three-phase input end and three-phase output end;
Described series side transformator is connected with the three-phase input end of described friendship-alternating current source converter;
Described side transformer in parallel is connected with the three-phase output end of described friendship-alternating current source converter.
Preferably, described friendship-alternating current source converter includes the side in parallel Modular multilevel converter connected with dc bus And series side Modular multilevel converter;
Described side Modular multilevel converter in parallel and series side Modular multilevel converter be three-phase bridge structure and All include brachium pontis and lower brachium pontis on three-phase;
Described upper brachium pontis and lower brachium pontis all include that half-bridge submodule string and reactor, described half-bridge submodule string include multiple depending on The half-bridge submodule of secondary series connection;
The reactor of described upper brachium pontis is connected on the end of the half-bridge submodule string of described upper brachium pontis, the reactance of described lower brachium pontis Device is connected on the head end of the half-bridge submodule string of described lower brachium pontis;
The reactor of described upper brachium pontis be connected with the reactor of described lower brachium pontis and each junction point to be respectively described modularity many The input of each phase of level converter AC;
The head end of the half-bridge submodule string of described upper brachium pontis is all connected with positive direct-current bus;
The end of the half-bridge submodule string of described lower brachium pontis is all connected with negative dc bus.
Preferably, described half-bridge submodule includes two power switch pipes and the capacitor of series connection, and described capacitor and two Individual described power switch pipe place branch circuit parallel connection;
It is provided with anti-paralleled diode in described power switch pipe;
The two ends of one of them described power switch pipe are respectively two outfans of described half-bridge submodule.
Preferably, described friendship-alternating current source converter is modular multilevel matrix converter, and described modular multilevel The internal structure of matrix converter is 3x3 matrix structure;
Being provided with nine power train in described modular multilevel matrix converter, described power train includes the reactance being sequentially connected in series Device and multiple H bridge submodule, and the two ends of described power train are respectively the first outfan and the second outfan;
First outfan of each described power train is all with the input of the described each phase of modular multilevel matrix converter even Connect, and the second outfan of each described power train is all with the outfan of the described each phase of modular multilevel matrix converter even Connect.
Preferably, described H bridge submodule includes capacitor and two power switch pipe branch roads, and two power switch Capacitor described in Guan Junyu is in parallel;Article one, described power switch pipe branch road is in series with the first power switch pipe and the second power Switching tube, another article of described power switch pipe branch road is in series with the 3rd power switch pipe and the 4th power switch pipe;
The emitter stage of described first power switch pipe is respectively connecting to the colelctor electrode of described second power switch pipe and described H First outfan of bridge submodule, and the positive pole of the colelctor electrode described capacitor of connection of described first power switch pipe;Described The emitter stage of the second power switch pipe connects the negative pole of described capacitor;
The emitter stage of described 3rd power switch pipe is respectively connecting to the colelctor electrode of described 4th power switch pipe and described H Second outfan of bridge submodule, and the positive pole of the colelctor electrode described capacitor of connection of described 3rd power switch pipe, described The emitter stage of the 4th power switch pipe connects the negative pole of described capacitor.
From above-mentioned technical scheme it can be seen that this utility model provides a kind of HVDC system commutation failure of suppressing Series-multiple connection combined compensation device, this compensator is arranged between HVDC system inverter side ac bus and receiving end electrical network, and Series-multiple connection combined compensation device includes crosspoint, interconnective output voltage control unit and output current control unit. The compensator that the utility model proposes achieves the effective compensation DC transmission system inverter side when receiving end grid collapses The Voltage Drop of ac bus, improves line transmission ability and suppresses the generation of commutation failure, it is ensured that D.C. high voltage transmission Reliable and the stable operation of system.
With immediate prior art ratio, the technical scheme that this utility model provides has a following excellent effect:
1, in technical scheme provided by the utility model, when receiving end grid collapses, by controlling series-multiple connection group Close the series side output voltage of compensator, energy effective compensation grid voltage sags, thus suppress the generation of commutation failure, with Time by series side absorb wattful power power side in parallel export electrical network.
2, technical scheme provided by the utility model, when receiving end electrical network is properly functioning, combines by controlling series-multiple connection The series side output voltage of compensator, energy effective compensation line impedance, it is achieved series connection no-power compensation function, improves circuit and passes Movement Capabilities, side the most in parallel can be used for exporting reactive current, it is achieved the free function of parallel reactive.
3, technical scheme provided by the utility model, when receiving end grid collapses, if individually using series connection to mend Repay device compensation network Voltage Drop, then require series compensator have absorb active power ability, the most existing dynamically Voltage restorer cannot meet this requirement, and uses the wattful power that part in series can absorb by series-multiple connection combined compensation device Rate side in parallel exports electrical network.
4, technical scheme provided by the utility model, existing independent employing parallel reactive generator STATCOM's Grid voltage sags compensation scheme, is by improving access point voltage to access point injection capacitive reactive power electric current, but the suitableeest Together in the operating mode that Voltage Drop is lighter;And employing series-multiple connection combined compensation device grid voltage sags of the present utility model compensates Scheme, can coordinate and optimize the compensation capacity of series connection and parallel connection part, have broader voltage than independent STATCOM Compensation range.
5, the technical scheme that this utility model provides, is widely used, has significant Social benefit and economic benefit.
Accompanying drawing explanation
Fig. 1 is a kind of main electrical scheme of the series-multiple connection combined compensation device of suppression HVDC system commutation failure of the present utility model Figure;
Fig. 2 is that the another kind of main of the series-multiple connection combined compensation device of suppression HVDC system commutation failure of the present utility model connects Line chart;
Fig. 3 is the A-A transducer topological diagram of Modular multilevel converter (MMC);
Fig. 4 is half-bridge submodule topology diagram;
Fig. 5 is A-A transducer topological diagram based on modular multilevel matrix converter (M3C) of the present utility model;
Fig. 6 is M3C power train structure chart of the present utility model;
Fig. 7 is H bridge submodule topology diagram of the present utility model;
Fig. 8 is the concrete application examples block diagram of the controller in this utility model.
Wherein, 1-HVDC system inverter side;2-ac bus;3-receiving end electrical network;4-controller;5-string-also combines benefit Repay device;501-output voltage control unit;502-exports current control unit;503-crosspoint;6-friendship-alternating current source becomes Parallel operation;7-series side transformator;8-parallel connection side transformer;9-half-bridge submodule;901-power switch pipe;10-parallel connection side Modular multilevel converter;C-capacitor;11-series side Modular multilevel converter;L-reactor;12-power Chain;13-H bridge submodule;14-voltage detection unit;15-fault distinguishing unit;16-coordinates control unit;17-internal ring Regulation and control unit;S1-the first power switch pipe;S2-the second power switch pipe;S3-the 3rd power switch pipe;S4-the 4th merit Rate switching tube.
Detailed description of the invention
Below in conjunction with the accompanying drawing in this utility model embodiment, the technical scheme in this utility model embodiment is carried out clearly Chu, it is fully described by, it is clear that described embodiment is only a part of embodiment of this utility model rather than all Embodiment.Based on embodiment of the present utility model, those of ordinary skill in the art are not making creative work premise Lower obtained every other embodiment, broadly falls into the scope of this utility model protection.
As it is shown in figure 1, this utility model provides a kind of series-multiple connection combined compensation device suppressing HVDC system commutation failure Main wiring diagram, series-multiple connection combined compensation device 5 is arranged on HVDC system inverter side 1 ac bus 2 and receiving end electrical network Between 3, and series-multiple connection combined compensation device 5 includes crosspoint 503, interconnective output voltage control unit 501 And output current control unit 502;
Output voltage control unit 501 is connected between inverter side 1 ac bus 2 and receiving end electrical network 3;
Output current control unit 502 is connected in parallel on inverter side 1 ac bus 2;
Output voltage control unit 501 and output current control unit 502 are connected to crosspoint 503;
Wherein, crosspoint 503 includes friendship-alternating current source converter 6 and connects the controller of best friend-alternating current source converter 6 4, output voltage control unit 501 is a series side transformator 7, and output current control unit 502 is a parallel connection Side transformer 8;
Friendship-alternating current source converter 6 is provided with three-phase input end and three-phase output end;
Series side transformator 7 is connected with the three-phase input end of friendship-alternating current source converter 6;
Side transformer 8 in parallel is connected with the three-phase output end of friendship-alternating current source converter 6;
The i.e. output current control unit 502 of string-combined compensation device 5 is connected on direct current transportation by series side transformator 7 Between system inverter side 1 ac bus 2 and receiving end electrical network 3, the output current control unit 502 of string-combined compensation device 5 leads to Crossing side transformer 8 in parallel to be connected in parallel on receiving end electrical network 3 bus, controller 4 controls string-the friendship-alternating current source of combined compensation device 5 Changer 6, produces at series transformer outfan respectively and compensates voltage and shunt transformer outfan generation compensation electric current.
As in figure 2 it is shown, this utility model provides a kind of series-multiple connection combined compensation device suppressing HVDC system commutation failure Another kind of main wiring diagram,
Wherein, output current control unit 502 is connected in parallel on the bus of receiving end electrical network 3;
I.e. to be connected on direct current by series side transformator 7 defeated for the output voltage control unit 501 of string-combined compensation device 5 Between electricity system inverter side 1 ac bus 2 and receiving end AC network 3, string-the output electric current control of combined compensation device 5 Unit 502 processed side transformer 8 in parallel is connected in parallel on the ac bus 2 of inverter side 1, controller 4 control string-and The friendship of combined compensation device 5-alternating current source converter 6, produces at series transformer outfan respectively and compensates voltage and parallel pressure change Device outfan produces and compensates electric current.
As it is shown on figure 3, this utility model provides the one of friendship-alternating current source converter 6 in a kind of series-multiple connection combined compensation device Main wiring diagram, friendship-alternating current source converter 6 include with dc bus connect side in parallel Modular multilevel converter 10 and Series side Modular multilevel converter 11;
Side in parallel Modular multilevel converter 10 and series side Modular multilevel converter 11 be three-phase bridge structure and All include brachium pontis and lower brachium pontis on three-phase;
Upper brachium pontis and lower brachium pontis all include that half-bridge submodule string and reactor L, half-bridge submodule string include multiple being sequentially connected in series Half-bridge submodule 9;
The reactor L of upper brachium pontis is connected on the end of the half-bridge submodule string of brachium pontis, the reactor L series connection of lower brachium pontis Head end at the half-bridge submodule string of lower brachium pontis;
The reactor L of upper brachium pontis is connected with the reactor L of lower brachium pontis and each junction point is respectively modular multilevel and becomes The input of each phase of parallel operation AC;
The head end of the half-bridge submodule string of upper brachium pontis is all connected with positive direct-current bus;
The end of the half-bridge submodule string of lower brachium pontis is all connected with negative dc bus;
I.e. friendship-alternating current source converter 6 includes the Modular multilevel converter (MMC) that two " back-to-back " connect, its Middle side in parallel Modular multilevel converter 10 and series side Modular multilevel converter 11 are by by positive direct-current bus Connect.Modular multilevel converter (MMC) is three-phase bridge structure, including brachium pontis on three-phase and lower brachium pontis, described Brachium pontis includes that N number of half-bridge submodule (HBSM), N number of half-bridge submodule HBSM series connection are connected with reactor L, on The reactor L of brachium pontis is connected with the reactor L of lower brachium pontis, and its junction point is as Modular multilevel converter (MMC) The input of AC one phase, first half-bridge submodule of upper brachium pontis is connected with positive direct-current bus, the N of lower brachium pontis Individual half-bridge submodule is connected with negative dc bus.
As shown in Figure 4, half-bridge submodule 9 includes two power switch pipes 901 and the capacitor C of series connection, and capacitor C and two power switch pipe 901 place branch circuit parallel connections;
It is equipped with anti-paralleled diode in each power switch pipe 901;
The two ends of one of them power switch pipe 901 are respectively two outfans of half-bridge submodule 9;
I.e. half-bridge submodule 9 includes 2 power switch pipes 901 with anti-paralleled diode and capacitor C, aobvious in its Fig. 4 The upper power switch pipe shown and lower power switch pipe are in parallel with electric capacity C after connecting, and the two ends of up or down power switch pipe are Two outfans of half-bridge submodule.
As it is shown in figure 5, this utility model provides another of friendship-alternating current source converter 6 in a kind of series-multiple connection combined compensation device Planting main wiring diagram, wherein, friendship-alternating current source converter 6 is modular multilevel matrix converter (M3C), and modularity The internal structure of multilevel matrix converter is 3x3 matrix structure;
Being provided with nine M3C power train 12 in modular multilevel matrix converter (M3C), power train 12 includes depending on The reactor L of secondary series connection and multiple H bridge submodule 13, and the two ends of power train 12 are respectively the first outfan and second Outfan;
As shown in Figure 6, the first outfan of each power train 12 all with modular multilevel matrix converter (M3C) The input of each phase connects, and the second outfan of each power train 12 all with modular multilevel matrix converter (M3C) outfan of each phase connects.
I.e. power train 12 is in series with N number of H bridge submodule (FBSM) 13 by reactor L, and one end of reactor L is power First outfan of chain 12, the other end of reactor L connects the first outfan of a H bridge submodule 13, H bridge Second outfan of module 13 connects the first outfan of the second submodule 13, and the second outfan of the second submodule 13 connects First outfan of the 3rd H bridge submodule 13, by that analogy, the second outfan of (N-1) H bridge submodule 13 is connected to First outfan of n-th H bridge submodule 13, the second outfan is power train 12 the second of n-th H bridge submodule 13 Outfan.
As it is shown in fig. 7, H bridge submodule 13 includes capacitor C and two power switch pipe branch roads, and two power are opened Close Guan Junyu capacitor C in parallel;Article one, power switch pipe branch road is in series with the first power switch tube S 1 and the second power Switching tube S2, another article of power switch pipe branch road is in series with the 3rd power switch tube S 3 and the 4th power switch tube S 4;
The emitter stage of the first power switch tube S 1 is respectively connecting to colelctor electrode and the H bridge submodule of the second power switch tube S 2 First outfan of block 13, and the positive pole of the colelctor electrode connection capacitor C of the first power switch tube S 1;Second power The emitter stage of switching tube S2 connects the negative pole of capacitor C;
The emitter stage of the 3rd power switch tube S 3 is respectively connecting to colelctor electrode and the H bridge submodule of the 4th power switch tube S 4 Second outfan of block 13, and the positive pole of the colelctor electrode connection capacitor C of the 3rd power switch tube S 3, the 4th power The emitter stage of switching tube S4 connects the negative pole of capacitor C;
I.e. H bridge submodule 13 includes 4 power switch pipes with anti-paralleled diode and capacitor C, wherein, the first merit The emitter stage of rate switching tube S1 and the second power switch tube S 2 colelctor electrode connect, and connect the first defeated of described H bridge submodule Going out end, the colelctor electrode of the first power switch tube S 1 connects the positive pole of capacitor C, and the emitter stage of the second power switch tube S 2 is even Connect the negative pole of capacitor C;
The emitter stage of the 3rd power switch tube S 3 and the 4th power switch tube S 4 colelctor electrode connect, and connect described H bridge submodule Second outfan of block, the colelctor electrode of the 3rd power switch tube S 3 connects the positive pole of capacitor C, the 4th power switch tube S 4 Emitter stage connect capacitor C negative pole.
As shown in Figure 8, it is provided that the concrete application examples of the controller 4 in a kind of this utility model, controller 4 includes mutually The voltage detection unit 14 of communication, fault distinguishing unit 15, coordination control unit 16 and internal ring regulation and control unit 17;
Voltage detection unit 14, for HVDC system inverter side 1 ac bus 2 voltage and receiving end electrical network 3 voltage Detect, obtain receiving end electrical network 3 voltage signal;
Fault distinguishing unit 15, is used for analyzing receiving end electrical network 3 voltage signal, and judges whether receiving end electrical network 3 occurs event Barrier;
Coordinate control unit 16, for according to the operation conditions of receiving end electrical network 3, defeated to series-multiple connection combined compensation device 5 Go out current control unit 501 and output current control unit 502 coordinates and optimal control, generate output voltage control The output voltage instruction of unit 501 and the output reactive component of current instruction of output current control unit 502;
Internal ring regulation and control unit 17, for according to output voltage instruction and output reactive component of current instruction, realizing defeated respectively Go out the output voltage control of voltage control unit 502, the output electric current of output current control unit 503 controls, submodule Capacitance voltage controls and the triggering of power switch pipe 901 controls;
I.e. voltage detection unit 14, for entering DC transmission system inverter side ac bus 2 voltage and receiving end electrical network 3 voltage Row detection;Fault distinguishing unit 15, for being analyzed the three-phase voltage signal Ug of voltage detection unit 14 output, sentences Whether other receiving end electrical network 3 breaks down;Coordinate control unit 16, for the operation conditions according to receiving end electrical network 3, to described Series-multiple connection combined compensation device 5 is connected and is exported current control unit 502 and coordinates and optimal control, defeated needed for generation Go out voltage control unit 501 output voltage instruction Δ U*Reactive component of current instruction is exported with output current control unit 502
Internal ring regulation and control unit 17, instructs Δ U for the output voltage according to output voltage control unit 501*With output electric current The output current-order idle component of control unit 502Distinctly realize described series-multiple connection combined compensation device 5 output voltage Control unit 501 output voltage control, output current control unit 502 export electric current control, submodule capacitor voltage controls And power switch pipe triggers and controls.
The process utilizing compensator of the present utility model to compensate HVDC system commutation failure includes:
Step 1. detects inverter side 1 ac bus 2 voltage and receiving end electrical network 3 voltage signal in HVDC system;
Step 2. analyzes inverter side 1 ac bus 2 voltage and receiving end electrical network 3 voltage signal, it is judged that receiving end electrical network 3 is No break down;
The most then enter step 3;
If it is not, then enter step 4;
Step 3. coordinates control unit 16 with compensation network Voltage Drop as target, according to receiving end electrical network 3 operation conditions and The output signal of fault distinguishing unit 15, is carried out output voltage control unit 501 and output current control unit 502 Coordinate and optimal control;Generate control instruction, enter step 5;
Step 4. coordinates control unit 16 with compensating reactive power as target, controls output voltage control unit 501 and output electricity Flow control unit 502 realizes connect reactive-load compensation and parallel reactive compensation respectively;Generate control instruction, enter step 5;
Step 5. internal ring regulation and control unit 17, according to control instruction, realizes the output voltage control of voltage control unit 501 respectively System, the output electric current of output current control unit 502 control, submodule capacitor voltage controls and power switch pipe triggers Control.
Wherein, step 3 includes:
3-1. coordination control unit 16 is with compensation network Voltage Drop as target, according to receiving end electric network fault situation, to output The voltage compensation quantity of voltage control unit 501 and output current control unit 502 coordinates and optimizes;
3-2. coordinates control unit 16, and to default ac bus voltage setting valve and measured value compares and computing, respectively Generate output voltage control unit 501 output voltage instruction signal and output current control unit 502 output electric current without Merit component instruction, enters step 5;
I.e. according to receiving end electrical network 3 operation conditions and the output signal of fault distinguishing unit 15, to described series-multiple connection combined compensation Device 5 is connected and is exported current control unit 502 and coordinates and optimal control, the output voltage control unit needed for generation 501 output voltage instruction Δ U*Reactive component of current instruction is exported with output current control unit 502
Wherein, when receiving end electrical network 3 breaks down, the output voltage control unit 501 of described series-multiple connection combined compensation device 5 With compensation network Voltage Drop as target, according to the fault state of receiving end electrical network 3, to series connection and output current control unit 502 voltage compensation quantities provided coordinate and optimize, and carry out default ac bus voltage setting valve and measured value Comparison and computing, generate output voltage control unit 501 output voltage instruction signal and and output current control unit respectively 502 output reactive component of current instructions;
When receiving end electrical network is properly functioning, the output voltage control unit 501 of described series-multiple connection combined compensation device is to compensate nothing Merit is target, and output voltage control unit 501 is for compensation network line impedance, it is achieved series connection reactive-load compensation, output electricity Flow control unit 502 is according to DC transmission system reactive requirement, it is achieved parallel reactive compensates, and generates output voltage control respectively Unit 501 output voltage instruction signal processed and and output current control unit 502 export the reactive component of current instruction.
Wherein, step 4 includes:
4-1. coordination control unit 16 is with compensating reactive power as target, and output voltage control unit 501 compensation network circuit hinders Anti-, it is achieved series connection reactive-load compensation, output current control unit 502 is according to HVDC System Reactive Power demand, it is achieved in parallel Reactive-load compensation;
4-2. output voltage control unit 501 and output current control unit 502 generates respectively output voltage instruction signal with The reactive component of current instructs, and enters step 5;
I.e. instruct Δ U according to the output voltage of output voltage control unit 501*With output current control unit 502 defeated Go out reactive component of current instructionDistinctly realize output voltage control unit 501 output voltage control, output electric current controls Unit 502 exports electric current control, submodule electric capacity C voltage controls and power switch pipe triggers and controls.
This utility model provide first utilize series-multiple connection combined compensation device suppression HVDC system commutation failure string-and The concrete application examples of joint group conjunction compensation method:
The output current control unit 502 of described series-multiple connection combined compensation device 5 is connected in parallel on receiving end by some transformers 8 On electrical network 3 bus, as it is shown in figure 1, and wherein said friendship-alternating current source converter 6 use " back-to-back " module shown in Fig. 3 Change multi-level converter (MMC) circuit.
This utility model provide second utilize series-multiple connection combined compensation device suppression HVDC system commutation failure string-and The concrete application examples of joint group conjunction compensation method:
The output current control unit 502 of described series-multiple connection combined compensation device 5 is connected in parallel on inversion by some transformers 8 On the ac bus 2 of side 1, as in figure 2 it is shown, and wherein said friendship-alternating current source converter 6 use " back-to-back " shown in Fig. 3 Modular multilevel converter (MMC) circuit.
This utility model provide the 3rd utilize series-multiple connection combined compensation device suppression HVDC system commutation failure string-and The concrete application examples of joint group conjunction compensation method:
The output current control unit 502 of described series-multiple connection combined compensation device 5 is connected in parallel on receiving end by some transformers 8 On electrical network 3 bus, as it is shown in figure 1, and wherein said friendship-alternating current source converter 6 use the modularity shown in Fig. 4 how electric Flat matrix converter M3C circuit.
This utility model provide the 4th utilize series-multiple connection combined compensation device suppression HVDC system commutation failure string-and The concrete application examples of joint group conjunction compensation method:
The output current control unit 502 of described series-multiple connection combined compensation device 5 is connected in parallel on inversion by some transformers 8 On the ac bus 2 of side 1, as in figure 2 it is shown, and wherein said friendship-alternating current source converter 6 use the modularity shown in Fig. 3 Multilevel matrix converter M3C circuit.
Above example is only in order to illustrate that the technical solution of the utility model is not intended to limit, although with reference to above-described embodiment Being described in detail this utility model, those of ordinary skill in the field still can be to tool of the present utility model Body embodiment is modified or equivalent, and these without departing from this utility model spirit and scope any amendment or Person's equivalent, it is all within the claims of the present utility model that application is awaited the reply.

Claims (6)

1. the series-multiple connection combined compensation device suppressing HVDC commutation failure, it is characterised in that described series-multiple connection group Close compensator to be arranged between HVDC system inverter side ac bus and receiving end electrical network, and described series-multiple connection combined compensation Device includes crosspoint, interconnective output voltage control unit and output current control unit;
Described output voltage control unit is connected between described inverter side ac bus and receiving end electrical network;
Described output current control unit is connected in parallel on described inverter side ac bus or on the bus of receiving end electrical network;
Described output voltage control unit and output current control unit are connected to described crosspoint.
2. series-multiple connection combined compensation device as claimed in claim 1, it is characterised in that described crosspoint includes handing over- Alternating current source converter and be connected to the controller of described friendship-alternating current source converter, described output voltage control unit is one Series side transformator, described output current control unit is a side transformer in parallel;
Described friendship-alternating current source converter is provided with three-phase input end and three-phase output end;
Described series side transformator is connected with the three-phase input end of described friendship-alternating current source converter;
Described side transformer in parallel is connected with the three-phase output end of described friendship-alternating current source converter.
3. series-multiple connection combined compensation device as claimed in claim 2, it is characterised in that described friendship-alternating current source converter Including the side in parallel Modular multilevel converter connected with dc bus and series side Modular multilevel converter;
Described side Modular multilevel converter in parallel and series side Modular multilevel converter be three-phase bridge structure and All include brachium pontis and lower brachium pontis on three-phase;
Described upper brachium pontis and lower brachium pontis all include that half-bridge submodule string and reactor, described half-bridge submodule string include multiple depending on The half-bridge submodule of secondary series connection;
The reactor of described upper brachium pontis is connected on the end of the half-bridge submodule string of described upper brachium pontis, the reactance of described lower brachium pontis Device is connected on the head end of the half-bridge submodule string of described lower brachium pontis;
The reactor of described upper brachium pontis be connected with the reactor of described lower brachium pontis and each junction point to be respectively described modularity many The input of each phase of level converter AC;
The head end of the half-bridge submodule string of described upper brachium pontis is all connected with positive direct-current bus;
The end of the half-bridge submodule string of described lower brachium pontis is all connected with negative dc bus.
4. series-multiple connection combined compensation device as claimed in claim 3, it is characterised in that described half-bridge submodule includes string Two power switch pipes of connection and capacitor, and described capacitor and two described power switch pipe place branch circuit parallel connections;
It is provided with anti-paralleled diode in described power switch pipe;
The two ends of one of them described power switch pipe are respectively two outfans of described half-bridge submodule.
5. series-multiple connection combined compensation device as claimed in claim 2, it is characterised in that described friendship-alternating current source converter For modular multilevel matrix converter, and the internal structure of described modular multilevel matrix converter is 3x3 matrix knot Structure;
Being provided with nine power train in described modular multilevel matrix converter, described power train includes the reactance being sequentially connected in series Device and multiple H bridge submodule, and the two ends of described power train are respectively the first outfan and the second outfan;
First outfan of each described power train is all with the input of the described each phase of modular multilevel matrix converter even Connect, and the second outfan of each described power train is all with the outfan of the described each phase of modular multilevel matrix converter even Connect.
6. series-multiple connection combined compensation device as claimed in claim 5, it is characterised in that described H bridge submodule includes electricity Container and two power switch pipe branch roads, and two power switch pipes are all in parallel with described capacitor;Article one, described power The first power switch pipe and the second power switch pipe it is in series with, on another described power switch pipe branch road on switching tube branch road It is in series with the 3rd power switch pipe and the 4th power switch pipe;
The emitter stage of described first power switch pipe is respectively connecting to the colelctor electrode of described second power switch pipe and described H First outfan of bridge submodule, and the positive pole of the colelctor electrode described capacitor of connection of described first power switch pipe;Described The emitter stage of the second power switch pipe connects the negative pole of described capacitor;
The emitter stage of described 3rd power switch pipe is respectively connecting to the colelctor electrode of described 4th power switch pipe and described H Second outfan of bridge submodule, and the positive pole of the colelctor electrode described capacitor of connection of described 3rd power switch pipe, described The emitter stage of the 4th power switch pipe connects the negative pole of described capacitor.
CN201620221910.7U 2016-03-22 2016-03-22 Cluster - parallel combination compensator that restraines HVDC commutation failure Expired - Fee Related CN205544291U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620221910.7U CN205544291U (en) 2016-03-22 2016-03-22 Cluster - parallel combination compensator that restraines HVDC commutation failure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620221910.7U CN205544291U (en) 2016-03-22 2016-03-22 Cluster - parallel combination compensator that restraines HVDC commutation failure

Publications (1)

Publication Number Publication Date
CN205544291U true CN205544291U (en) 2016-08-31

Family

ID=56783758

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620221910.7U Expired - Fee Related CN205544291U (en) 2016-03-22 2016-03-22 Cluster - parallel combination compensator that restraines HVDC commutation failure

Country Status (1)

Country Link
CN (1) CN205544291U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826924A (en) * 2016-03-22 2016-08-03 中电普瑞科技有限公司 Series-parallel combined compensator and method of restraining high voltage direct current (HVDC) commutation failure
CN110635502A (en) * 2019-10-15 2019-12-31 云南电网有限责任公司电力科学研究院 Method for inhibiting commutation failure of LCC-HVDC system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826924A (en) * 2016-03-22 2016-08-03 中电普瑞科技有限公司 Series-parallel combined compensator and method of restraining high voltage direct current (HVDC) commutation failure
CN110635502A (en) * 2019-10-15 2019-12-31 云南电网有限责任公司电力科学研究院 Method for inhibiting commutation failure of LCC-HVDC system
CN110635502B (en) * 2019-10-15 2023-07-07 云南电网有限责任公司电力科学研究院 Method for inhibiting commutation failure of LCC-HVDC system

Similar Documents

Publication Publication Date Title
CN105826924A (en) Series-parallel combined compensator and method of restraining high voltage direct current (HVDC) commutation failure
CN105162155B (en) A kind of series hybrid bipolar direct current transmission system with DC Line Fault ride-through capability
CN105762824B (en) A kind of Hybrid HVDC system control method and device
CN201789411U (en) High-capacity H bridge power unit based on fully controlled type converter IEGT (Injection Enhanced Gate Transistor)
CN105406499B (en) A kind of intelligent Hybrid HVDC system and fault handling method
CN107069679A (en) A kind of symmetrical bipolar MMC DC sides monopolar grounding fault is passed through and restoration methods
CN105470958B (en) Tractive power supply system is directly handed in a kind of friendship of modular multilevel structure
CN102832630B (en) Integrated governance device for electric energy quality
CN105514957B (en) One kind mixing back-to-back DC power transmission system and trend reversion control method
CN102983584B (en) A kind of THE UPFC for unbalanced system
CN101877530A (en) Fully-controlled converter injection enhanced gate transistor (IEGT)-based high-capacity H bridge power unit
CN102832631B (en) Integrated governance method for electric energy quality
CN102214924A (en) Feedforward decoupling control method based on three-phase two-arm tri-level active power quality compensator
CN107546698A (en) A kind of DC de-icing device based on MMC topological structures
CN108964492A (en) A kind of low spoilage module Multilevel Inverters topology having dc-side short-circuit fault isolating power
CN205544291U (en) Cluster - parallel combination compensator that restraines HVDC commutation failure
CN205544298U (en) Shunt compensation system that restraines direct current transmission commutation failure of system
CN106786589A (en) A kind of bridge arm shunt active power filter of tri- level of 690V three
CN104767191B (en) A kind of inverter earthed system
CN102025162A (en) Three-level-half-bridge-based high speed railway power regulator
CN206673592U (en) A kind of comprehensive compensation type alternating current steady voltage plug
CN201048291Y (en) Parallel high voltage dynamic reactive compensator
CN108400701A (en) A kind of flexible direct current power transmission system
CN205544326U (en) Combined unified power flow controller
CN105552927A (en) Parallel compensation system and method for preventing commutation failure of DC power transmission system

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160831

CF01 Termination of patent right due to non-payment of annual fee