CN205430111U - Aerogenerator's control module group - Google Patents

Aerogenerator's control module group Download PDF

Info

Publication number
CN205430111U
CN205430111U CN201520991886.0U CN201520991886U CN205430111U CN 205430111 U CN205430111 U CN 205430111U CN 201520991886 U CN201520991886 U CN 201520991886U CN 205430111 U CN205430111 U CN 205430111U
Authority
CN
China
Prior art keywords
wind
reactor
driven generator
control module
aerogenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201520991886.0U
Other languages
Chinese (zh)
Inventor
徐华
何曙光
黄文政
李智铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN HUAJIE ELECTRICAL TECHNOLOGY Co Ltd
Original Assignee
SHENZHEN HUAJIE ELECTRICAL TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN HUAJIE ELECTRICAL TECHNOLOGY Co Ltd filed Critical SHENZHEN HUAJIE ELECTRICAL TECHNOLOGY Co Ltd
Priority to CN201520991886.0U priority Critical patent/CN205430111U/en
Application granted granted Critical
Publication of CN205430111U publication Critical patent/CN205430111U/en
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The utility model relates to an aerogenerator's control module group belongs to the motor control technology field, is applied to wind power generation, makes the wind power generation function enough in wind -force size automatically regulated output voltage. The problem that the generated energy heightened when ubiquitous met the strong wind in the aerogenerator electric power generation process, too high output voltage damages controlling means and consumer easily. Though scientific and technical personnel have taked the counter -measure, these traditional counter -measures are perfect inadequately, all are power consumption or the way of keeping away the ability. The utility model discloses having developed an unique aerogenerator's control module group, having gone into the scheme of reactor promptly at the aerogenerator stator winding cluster, the reactor is external. This kind of reactor can change the size of induction reactance very conveniently, can adopt an electronic circuit to realize automatically regulated. Although wind -force changes on a large scale, aerogenerator still can export more stable voltage. The utility model discloses the scheme uses coordinately with current traditional way, can receive better effect.

Description

A kind of control module of wind-driven generator
Technical field
This utility model is the control module of a kind of wind-driven generator, belongs to motor control technology field, is applied to wind-power electricity generation, enables wind-driven generator to be automatically adjusted output voltage according to wind-force size.
Background technology
Wind-driven generator essence is polyphase alternator, generally there is the problem that when running into strong wind, generated energy increases during present wind turbine power generation, and the output voltage that now wind-driven generator is too high is easily damaged control device and electrical equipment.Although scientific and technical personnel take counter-measure, such as, regulate the angle of the blade windward side of wind-driven generator, reduce wind area etc..But these tradition counter-measures are the most perfect, are all power consumption or the way keeping away energy, must seek the more preferable control mode of wind-driven generator for this.
Summary of the invention
This utility model, for problem above, develops the control mode of the wind-driven generator of a kind of uniqueness, i.e. seals in the scheme of reactor at aerogenerator stator winding, and reactor is external mode.This reactor can change the size of induction reactance easily, and an electronic circuit can be used to realize being automatically adjusted.Although wind-force is in wide variation, wind-driven generator remains to export more stable voltage.This utility model scheme with existing tradition power consumption or keep away can way be used in combination, more preferable effect can be received.
Accompanying drawing explanation
Fig. 1 is the schematic diagram of conventional wind power generator.
Fig. 2 is the schematic diagram of the wind-driven generator after sealing in reactor.
Fig. 3 is the schematic diagram of regulation reactor induction reactance.
The implication that each sequence number in figure represents is:
(1) PWM controller.
Detailed description of the invention
Fig. 1 is the schematic diagram of conventional wind power generator, and Fig. 2 is the schematic diagram of the wind-driven generator after sealing in reactor.Invention place explained below.
Fig. 1 is the schematic diagram of conventional wind power generator, wind-driven generator essence is polyphase alternator, illustrate as a example by three-phase: wind-driven generator GA is embedded with three groups of line bags i.e. triple line bag, 120 ° of electric angles of mutual deviation, often group line bag represents a phase, the end of triple line bag is mutually connected to each other, and becomes " neutral point O ", and the top " U " of three groups of line bags, " V ", " W " are the outfan of three-phase voltage.
Fig. 2 is the schematic diagram of the wind-driven generator after sealing in reactor.Here changing the connected mode of wind-driven generator GA triple line bag end, they are not joined directly together, and being mutually connected to each other after a reactor but the end of every phase line bag is each connected becomes " neutral point O " again;The top " U " of triple line bag, " V ", " W " are still as the outfan (in Fig. 2, the top " U " of triple line bag, " V ", " W " omit and do not draw) of three-phase voltage.The top of the end linked reactor L1 of diagram U phase line bag, the top of the end linked reactor L2 of V phase line bag, the top of the end linked reactor L3 of W phase line bag, the end of reactor L1, L2, L3 is mutually connected to each other " neutral point O " becoming wind-driven generator.Reactor L1, L2, L3 are the most independent, and they, all with the secondary of similar transformator, are wound on same iron core with secondary and become current transformer.The secondary of reactor L1, L2, L3 is respectively L ' 1, L ' 2, L ' 3, reactor L1 and secondary L ' 1, reactor L2 and secondary L ' 2, reactor L3 and secondary L ' 3 each one current transformer of composition, reactor L1, L2, L3 may be regarded as the former limit of current transformer, and the electrical quantity of these three current transformer is identical.Three secondary L ' 1, L ' 2 and L ' 3 are together in series, i.e. the end of secondary L ' 1 connects the top of secondary L ' 2 again, and the end of secondary L ' 2 connects the top of secondary L ' 3, then the terminal M 2 of the top M1 and secondary L ' 3 of secondary L ' 1 is individually drawn.Arranging referred to as to connect secondary after secondary L ' 1, secondary L ' 2 and secondary L ' 3 so series connection, M1 and M2 becomes two end points of series connection secondary.
So, when two end points M1 and the M2 short circuit of secondary of connecting, the induction reactance of reactor L1, L2, L3 approximates zero, and when two end points M1 and M2 of secondary of connecting disconnect, the induction reactance of reactor L1, L2, L3 is equal to XL=2 π fL, wherein L is the inductance of reactor L1, L2, L3, and f is the rotational frequency of wind-driven generator, and it is relevant with the size of wind-force, and wind-force the most then frequency f is the highest.If use PWM (pulse width) modulator approach, allow series connection secondary two end points M1 and M2 time and short circuit, time and disconnect, then induction reactance X of reactor L1, L2, L3LJust can change between 0~2 π fL, the induction reactance realizing regulating reactor L1, L2, L3 with this.
Fig. 3 is the schematic diagram of regulation reactor induction reactance, during wind turbine power generation, reactor L1, L2, L3 flow through electric current, its secondary L ' 1, L ' 2 and L ' 3 will generate alternating voltage, and the alternating voltage between two end points M1 and M2 of series connection secondary is the superposition of induced potential on three secondary L ' 1, L ' 2 and L ' 3.The alternating voltage of this superposition is after rectifier bridge VC1 is rectified into unidirectional current, and its positive pole connects the drain electrode of N-channel field effect transistor V1, and its negative pole connects the source electrode of field effect transistor V1, and the grid of field effect transistor V1 connects the output of PWM controller (1).PWM controller (1) is directly proportional to wind-force size by wind-driven generator output voltage control, wind-driven generator output voltage;The size of apparent wind power accordingly one signal of telecommunication of output, regulate the output pulse width dutycycle of PWM controller (1) and drive field effect transistor V1:
1), when wind-force is the biggest, the output pulse width dutycycle of regulation PWM controller (1) is 0%, i.e. PWM controller (1) output low level, field effect transistor V1 is made to turn off, that is two end points M1 and M2 making series connection secondary become off-state, and series connection secondary no current flows through.Now the induction reactance of reactor L1, L2, L3 is maximum, its induction reactance value XL=2 π fL, the voltage that wind-driven generator sends produces pressure drop on reactor L1, L2, L3, reduces the output voltage of wind-driven generator;Moreover, when wind-force is the biggest, wind-driven generator sends frequency f of voltage and also can raise, further increase the induction reactance value of reactor L1, L2, L3, the pressure drop that the voltage that so wind-driven generator sends produces at reactor L1, L2, L3 increases the most further, it is possible to reduce the output voltage of wind-driven generator more.
2), when wind-force is small, the output pulse width dutycycle of regulation PWM controller (1) is 100%, i.e. PWM controller (1) output high level, field effect transistor V1 is made to turn on, that is two end points M1 and M2 making series connection secondary become short circuit state, and so series connection secondary flows through larger current.Now induction reactance value X of reactor L1, L2, L3L=0, the pressure drop that the voltage that wind-driven generator sends produces at reactor L1, L2, L3 is zero, all as output voltage.
3) when wind-force change between small and wind-force is very big, the output pulse width dutycycle of regulation PWM controller (1) change between 100%~0%, the average current that series connection secondary flows through accordingly from big to zero change;When wind-force is less, dutycycle should be higher, and when wind-force is bigger, dutycycle should be relatively low, is automatically adjusted the induction reactance value of reactor L1, L2, L3 with this, and the output voltage maintaining wind-driven generator is more stable.
Because current transformer does not allow secondary to open a way, between two end points M1 and M2 of secondary of connecting in Fig. 3, it is connected to a resistance R0.
In sum, the feature of the control mode of the wind-driven generator of this utility model exploitation is: the end at the triple line bag of wind-driven generator respectively seals in reactor L1, L2, a L3, and the end of these three reactor is connected together as the neutral point of wind-driven generator;Reactor L1, L2, L3 are respectively with secondary L ' 1, L ' 2, L ' 3, three secondary L ' 1, L ' 2, L ' 3 are together in series, regulation flows through the size of series connection secondary DC current to change the induction reactance size of reactor L1, L2, L3, so that wind-driven generator is not with the change more stable voltage of output of wind-force size;A PWM controller (1) is used to realize being automatically adjusted to the induction reactance size of reactor L1, L2, L3.This utility model scheme and existing traditional power consumption or keep away can way be used in combination, more preferable effect can be received.
1), reactor L1 and secondary L ' 1, reactor L2 and secondary L ' 2, reactor L3 and secondary L ' 3 each form a current transformer, and reactor L1, L2, L3 may be regarded as the former limit of current transformer, and the electrical quantity of these three current transformer is identical;Three secondary L ' 1, L ' 2, the concrete series systems of L ' 3 are: the end of secondary L ' 1 connects the top of secondary L ' 2, the end of secondary L ' 2 connects the top of secondary L ' 3, the terminal M 2 of the top M1 and secondary L ' 3 of secondary L ' 1 is individually drawn, M1 and M2 becomes two end points of series connection secondary.
2), alternating voltage between two end points M1 and M2 of series connection secondary is after rectifier bridge VC1 is rectified into unidirectional current, its positive pole connects the drain electrode of N-channel field effect transistor V1, and its negative pole connects the source electrode of field effect transistor V1, and the grid of field effect transistor V1 connects the output of PWM controller (1);It is connected to resistance R0 between two end points M1 and M2 of series connection secondary.
3), PWM controller is provided with detector in (1), can the size of perception wind-force one signal of telecommunication of output accordingly, the output pulse width dutycycle of regulation PWM controller (1) regulates the size of DC current flowing through series connection secondary;When wind-force is the biggest, the output pulse width dutycycle of regulation PWM controller (1) is 0%;When wind-force is small, the output pulse width dutycycle of regulation PWM controller (1) is 100%;When wind-force change between small and wind-force is very big, the output pulse width dutycycle of regulation PWM controller (1) changes between 100%~0%, and when wind-force is less, dutycycle should be higher, and when wind-force is bigger, dutycycle should be relatively low.
The above, it it is only preferable enforcement example of the present utility model, not utility model is made any pro forma restriction, any those skilled in the art are changed possibly also with the technology contents of the disclosure above or are modified to the Equivalent embodiments of equivalent variations, but it is every without departing from technical solutions of the utility model content, any simple modification, equivalent variations and the modification made above example according to technical spirit of the present utility model, all still falls within the range of technical solutions of the utility model.

Claims (4)

1. the control module of a wind-driven generator, it is applied to wind-power electricity generation, it is characterized in that: described control module is made up of three reactors L1, L2, L3, end at the triple line bag of wind-driven generator respectively seals in reactor L1, L2, a L3, and the end of these three reactor is connected together as the neutral point of wind-driven generator;Reactor L1, L2, L3 respectively with secondary L ' 1, L ' 2, L ' 3, are together in series three secondary L ' 1, L ' 2, L ' 3, and regulation flows through the size of series connection secondary DC current to change the induction reactance size of reactor L1, L2, L3;A PWM controller (1) is used to realize being automatically adjusted to the induction reactance size of reactor L1, L2, L3.
2. the control module of wind-driven generator as claimed in claim 1, it is characterized in that: reactor L1 and secondary L ' 1, reactor L2 and secondary L ' 2, reactor L3 and secondary L ' 3 each one current transformer of composition, reactor L1, L2, L3 may be regarded as the former limit of current transformer, and the electrical quantity of these three current transformer is identical;Three secondary L ' 1, L ' 2, the concrete series systems of L ' 3 are: the end of secondary L ' 1 connects the top of secondary L ' 2, the end of secondary L ' 2 connects the top of secondary L ' 3, the terminal M 2 of the top M1 and secondary L ' 3 of secondary L ' 1 is individually drawn, M1 and M2 becomes two end points of series connection secondary.
3. the control module of wind-driven generator as claimed in claim 1, it is characterized in that: the alternating voltage between two end points M1 and M2 of series connection secondary is rectified into unidirectional current through rectifier bridge VC1, its positive pole connects the drain electrode of N-channel field effect transistor V1, its negative pole connects the source electrode of field effect transistor V1, and the grid of field effect transistor V1 connects the output of PWM controller (1);Resistance R0 is connected between two end points M1 and M2 of series connection secondary.
4. the control module of wind-driven generator as claimed in claim 1, it is characterized in that: PWM controller is provided with sensor in (1), can the size of perception wind-force one signal of telecommunication of output accordingly, the output pulse width dutycycle of regulation PWM controller (1) regulates the size of DC current flowing through series connection secondary.
CN201520991886.0U 2015-12-04 2015-12-04 Aerogenerator's control module group Withdrawn - After Issue CN205430111U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520991886.0U CN205430111U (en) 2015-12-04 2015-12-04 Aerogenerator's control module group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520991886.0U CN205430111U (en) 2015-12-04 2015-12-04 Aerogenerator's control module group

Publications (1)

Publication Number Publication Date
CN205430111U true CN205430111U (en) 2016-08-03

Family

ID=56535863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520991886.0U Withdrawn - After Issue CN205430111U (en) 2015-12-04 2015-12-04 Aerogenerator's control module group

Country Status (1)

Country Link
CN (1) CN205430111U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105375841A (en) * 2015-12-04 2016-03-02 深圳市华杰电气技术有限公司 Control module of aerogenerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105375841A (en) * 2015-12-04 2016-03-02 深圳市华杰电气技术有限公司 Control module of aerogenerator
CN105375841B (en) * 2015-12-04 2018-07-24 深圳市华杰电气技术有限公司 A kind of control module of wind-driven generator

Similar Documents

Publication Publication Date Title
Mahela et al. Comprehensive overview of low voltage ride through methods of grid integrated wind generator
Gao et al. Solid-state-transformer-interfaced permanent magnet wind turbine distributed generation system with power management functions
Stiebler Wind energy systems for electric power generation
CN106160606B (en) Wind generator system and its control method
CN101951073B (en) Small and medium size wind driven generator
CN201742107U (en) Power quality regulating device based on stored energy of super capacitor
CN104539206B (en) Marine large-scale straight drive switching magnetic-resistance wind-driven generator power converter system
CN106487101A (en) A kind of current transformer energy taking device based on load control and method
CN107230983A (en) A kind of electric power spring application system and its control method based on Power Control
CN104660129A (en) Switch reluctance wind driven generator control system and method
CN108923450B (en) Control and operation method of current source type high-voltage direct-current transmission system
CN106026122A (en) Integrated asynchronous excitation phase modifier and reactive compensation and active balance method thereof
Okedu et al. Comparative study of the effects of machine parameters on DFIG and PMSG variable speed wind turbines during grid fault
CN104467583B (en) Permanent DC bus-bar voltage permanent magnet generator unit based on prime mover speed governing
CN204190636U (en) PWM rectifier circuit topological structure
CN108539872A (en) A kind of electricity getting system based on power line load electric current
CN105958528A (en) Method and device for wind generating set zero-transition dynamic grid connection
CN105514972B (en) The PSCAD modelings of grid-connected converter and emulation mode during unbalanced grid faults
CN107046297A (en) DC series permanent magnetism wind power plant topological structure and its control method
CN106356889A (en) Permanent magnet wind power generator set
CN103094976A (en) Device of overhead line captive test (CT) taking energy power supply
CN104539023B (en) Wind power generation and power supply system based on grid power complementation
CN206442162U (en) Charger control system
CN205430111U (en) Aerogenerator's control module group
Vajpayee et al. Crowbar protection of grid connected double fed induction generator with variable speed wind turbine

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20160803

Effective date of abandoning: 20180724

AV01 Patent right actively abandoned