CN205139230U - 光纤电流传感器 - Google Patents

光纤电流传感器 Download PDF

Info

Publication number
CN205139230U
CN205139230U CN201520975777.XU CN201520975777U CN205139230U CN 205139230 U CN205139230 U CN 205139230U CN 201520975777 U CN201520975777 U CN 201520975777U CN 205139230 U CN205139230 U CN 205139230U
Authority
CN
China
Prior art keywords
fiber optic
polarization
signal processing
current sensor
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201520975777.XU
Other languages
English (en)
Inventor
李松涛
靳伟佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201520975777.XU priority Critical patent/CN205139230U/zh
Application granted granted Critical
Publication of CN205139230U publication Critical patent/CN205139230U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种光纤电流传感器,包括激光器,起偏器,光纤分束器,光纤线圈,保偏光纤,被测导线,沃拉斯顿棱镜,光探测器,以及信号处理器,其中激光器发出的激光光束经由起偏器后起偏传输到光纤分束器,光纤分束器的两个输出端分别通过保偏光纤连接到一个光纤线圈的输入端,每个光纤线圈的输出端分别通过保偏光纤连接到一个沃拉斯顿棱镜的输入端,每个沃拉斯顿棱镜的输出端分别设置两个光探测器,这两个光探测器均连接一个第一信号处理单元,这两个第一信号处理单元共同连接一个第二信号处理单元,其中两个光纤线圈中的一个的光纤表面涂覆有电磁屏蔽层。

Description

光纤电流传感器
技术领域
本实用新型涉及光纤电流传感器,尤其涉及一种测量准确的光纤电流传感器,属于电流测量领域。
背景技术
现代工业的高速发展,对电网的输送和检测提出了更高的要求,传统的高压大电流的测量手段将面临严峻的考验.随着光纤技术和材料科学的发展而发展起来的光纤电流传感系统,因具有很好的绝缘性和抗干扰能力,较高的测量精度,容易小型化,没有潜在的爆炸危险等一系列优越性,而受到人们的广泛重视.光纤电流传感器的主要原理是利用磁光晶体的法拉弟效应.根据of=VBI,通过对法拉弟旋转角OF的测量,可得到电流所产生的磁场强度,从而可以计算出电流大小.由于光纤具有抗电磁干扰能力强、绝缘性能好、信号衰减小的优点,因而在法拉弟电流传感器研究中,一般均采用光纤作为传输介质,其中的一种工作方式为双探测器法,其工作原理图1所示。
起偏器的透光轴方向与沃拉斯顿棱镜的两个正交偏振方向成45度角,法拉第旋转角为θ,
I1=(Io/2)(1+sin2θ)
I2=(Io/2)(1-sin2θ)
P=(I1-I2)/(I1+I2)
简化后变为P=sin2θ,当θ远远小于1时,即变为P=2θ。
所以,通过检测I1和I2的大小即可计算出P值,再通过转化即可得到θ值,从而最终得到被测电流的大小,这种方法原理、装置都比较简单,同时测量方法也可以避免光强起伏对结果的影响。但是,这种方法面临着另外一个问题,就是精确度不高,稳定性较差,经过我们的分析,产生这些问题的原因主要在于外界的干扰较强。例如在野外进行测量时,由于测量环境的变化,例如刮风,会导致输电线和光纤圈的晃动,这些晃动,以及其他可能的震动等都可能导致光纤中线偏振光偏振态的变化,也即会发生偏振面的旋转,但是这样导致的偏振面的旋转并不是由于输电线内电流强度变化造成的,而是由于扰动造成的,但是在测量结果上却体现在了电流上,由此导致测量结果出现误差。
本实用新型就是针对上述问题提出来的,以解决现有技术中光纤电流传感器测量精度低,稳定性差的问题。
实用新型内容
本实用新型提供了一种全新的电流传感器,该传感器可精确的测量出导线内传输的电流量,能够完全克服现有技术中的缺陷,完全不受环境因素的影响。
根据本实用新型的一实施例,提供了一种光纤电流传感器,包括激光器,起偏器,光纤分束器,光纤线圈,保偏光纤,被测导线,沃拉斯顿棱镜,光探测器,以及信号处理器,其特征在于:其中激光器发出的激光光束经由起偏器2后起偏或直接发出线偏振激光束传输到光纤分束器,光纤分束器为50∶50分束比,光纤分束器的两个输出端分别通过保偏光纤连接到一个光纤线圈的输入端,每个光纤线圈的输出端分别通过保偏光纤连接到一个沃拉斯顿棱镜的输入端,每个沃拉斯顿棱镜的输出端分别设置两个光探测器,这两个光探测器均连接一个第一信号处理单元,这两个第一信号处理单元共同连接一个第二信号处理单元,其中两个光纤线圈中的一个的光纤表面涂覆有电磁屏蔽层,其中所述两个第一信号处理单元分别计算所接收到信号的光偏振面旋转角度,而第二信号处理单元用于将接收到的两个偏振面旋转角度进行相减运算,从而得出最终的偏振面旋转角度,并依据该最终计算出的偏振面旋转角度来计算被测导线的电流强度。
根据本实用新型的一实施例,所述光纤分束器的数量为一个。
根据本实用新型的一实施例,所述屏蔽层为金属涂覆层,厚度为几个微米。
根据本实用新型的一实施例,所述保偏光纤的长度为10cm以下。
根据本实用新型的一实施例,提供了一种利用光纤电流传感器进行电流测量的方法,其特征在于包括以下步骤:激光器发出激光束经由起偏器后变为线偏振光或者由激光器直接发出线偏振激光束,然后经由光纤分束器之后变为两束完全相同的线偏振激光束,这两束线偏振激光束分别经过保偏光纤进入到一个缠绕到被测导线上、圈数相同的光纤线圈上,这两个光纤线圈出射的光束经由沃拉斯顿棱镜进行分光然后光探测器进行光强检测,从而得到两个检测结果,然后对这两个检测结果进行比对即可得出上述两个光束每个经过光纤线圈之后偏振面的旋转角度,其中一个光纤线圈中的光纤上包覆有电磁屏蔽层,使得被测导线中的电磁场不能对该光纤线圈内的线偏振光产生影响,能够产生影响的只是环境的因素,将得到的两个偏振面旋转角度进行相减运算以将由环境因素造成的偏振面旋转角度减去,最终偏振面旋转角度的变化仅是由电流引起的改变,最后,根据最终计算出的偏振面旋转角度即可计算出被测导线内的电流值。
根据本实用新型的一实施例,所述光纤分束器的数量为一个。
根据本实用新型的一实施例,所述屏蔽层为金属覆层,厚度为几个微米。
根据本实用新型的一实施例,所述保偏光纤的长度为10cm以下。
根据本实用新型的一实施例,所述屏蔽层的厚度为2微米。
附图说明
附图1是现有技术中电流传感器的示意图;
附图2是本实用新型中光纤电流传感器的示意图。
在上述的附图中,1表示激光器,2表示起偏器,3表示光纤分束器,4表示光纤线圈,5表示保偏光纤,6表示被测导线,7表述沃拉斯顿棱镜,P1和P2分别表示光探测器,8和9都表示信号处理器。
具体实施方式
下面将在结合附图2的基础上详细描述本实用新型的实施例,在该实施例中,本实用新型的电流传感器包括激光器1,起偏器2,光纤分束器3,光纤线圈4,保偏光纤5,被测导线6,沃拉斯顿棱镜7,光探测器,以及信号处理器。其中激光器1发出的激光光束经由起偏器2后起偏传输到光纤分束器3,光纤分束器3为50∶50分束比,光纤分束器3的两个输出端分别通过保偏光纤5连接到一个光纤线圈4的输入端,两个光纤线圈以位置错开、其余方式相同的方式缠绕在被测导线上,每个光纤线圈的输出端分别通过保偏光纤连接到一个沃拉斯顿棱镜的输入端,每个沃拉斯顿棱镜的输出端分别设置两个光探测器P1和P2,这两个光探测器均连接一个信号处理单元8,两个信号处理单元8共同连接一个第二信号处理单元9,其中两个光纤线圈中的一个的光纤表面涂覆有电磁屏蔽层,其中所述两个信号处理单元8分别计算所接收到信号的光偏振面旋转角度,而第二信号处理单元9用于将接收到的两个偏振面旋转角度进行相减运算,从而得出最终的偏振面旋转角度,并依据该最终计算出的偏振面旋转角度来计算被测导线的电流强度。
下面来说明使用本实用新型的电流检测传感器进行电流检测的方法,根据本实用新型的电流传感器,激光器发出激光束经由起偏器后变为线偏振光,然后经由光纤分束器之后变为两束完全相同的线偏振激光束,这两束线偏振激光束分别经过保偏光纤进入到一个缠绕到被测导线上、圈数相同的光纤线圈上,这两个光纤线圈出射的光束经由沃拉斯顿棱镜进行分光然后光探测器进行光强检测,从而得到两个检测结果,然后对这两个检测结果进行比对即可得出上述两个光束每个经过光纤线圈之后偏振面的旋转角度。由于其中一个光纤线圈中的光纤上包覆有电磁屏蔽层,例如金属层,使得被测导线中的电磁场不能对该光纤线圈内的线偏振光产生影响,能够产生影响的只是环境的因素,这样,将得到的两个偏振面旋转角度进行相减运算即可将由环境因素造成的偏振面旋转角度减去,也即最终偏振面旋转角度的变化仅是由电流引起的改变,最后,根据最终计算出的偏振面旋转角度即可计算出被测导线内的电流值。
其中,为了使得测量结果尽可能准确,所使用的其中每两个器件之间所使用的保偏光纤的长度要尽可能短,例如可设置在10cm以下,更短的可设置为5cm以下。
综上所述,通过本实用新型的方法即可简单的消除环境因素的影响,从而得到准确的测量结果。
其中的电磁屏蔽层可为简单涂覆的一层金属层,例如铝层或铜层,值要能实现电磁屏蔽作用即可。屏蔽层的厚度可设置为几个微米,例如2微米。
光纤线圈的匝数可设置为多一点,以进一步提高测量精度,例如可设置为30圈。
信号处理器可为现有技术中任意的能够进行数据处理的装置,例如PC机,单片机等等。
其中的激光器也可以是直接输出线偏振光的激光器。
需要说明的是,上面的说明均是以特定的实施方式进行的,但是这并不能解释为对本实用新型的限制,对于本领域技术人员来说,在上述公开的基础上进行的各种公知的变形及改进均处于本实用新型的保护范围内。

Claims (4)

1.一种光纤电流传感器,包括激光器,起偏器,光纤分束器,光纤线圈,保偏光纤,被测导线,沃拉斯顿棱镜,光探测器,以及信号处理器,其特征在于:其中激光器发出的激光光束经由起偏器2后起偏或直接发出线偏振激光束传输到光纤分束器,光纤分束器为50∶50分束比,光纤分束器的两个输出端分别通过保偏光纤连接到一个光纤线圈的输入端,两个光纤线圈以位置错开、其余方式相同的方式缠绕在被测导线上,每个光纤线圈的输出端分别通过保偏光纤连接到一个沃拉斯顿棱镜的输入端,每个沃拉斯顿棱镜的输出端分别设置两个光探测器,这两个光探测器均连接一个第一信号处理单元,这两个第一信号处理单元共同连接一个第二信号处理单元,其中两个光纤线圈中的一个的光纤表面涂覆有电磁屏蔽层,其中所述两个第一信号处理单元分别计算所接收到信号的光偏振面旋转角度,而第二信号处理单元用于将接收到的两个偏振面旋转角度进行相减运算,从而得出最终的偏振面旋转角度,并依据该最终计算出的偏振面旋转角度来计算被测导线的电流强度。
2.根据权利要求1所述的电流传感器,其特征在于:所述光纤分束器的数量为一个。
3.根据权利要求1所述的电流传感器,其特征在于:所述屏蔽层为金属涂覆层,厚度为几个微米。
4.根据权利要求1所述的电流传感器,其特征在于:所述保偏光纤的长度为10cm以下。
CN201520975777.XU 2015-11-28 2015-11-28 光纤电流传感器 Expired - Fee Related CN205139230U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520975777.XU CN205139230U (zh) 2015-11-28 2015-11-28 光纤电流传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520975777.XU CN205139230U (zh) 2015-11-28 2015-11-28 光纤电流传感器

Publications (1)

Publication Number Publication Date
CN205139230U true CN205139230U (zh) 2016-04-06

Family

ID=55625010

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520975777.XU Expired - Fee Related CN205139230U (zh) 2015-11-28 2015-11-28 光纤电流传感器

Country Status (1)

Country Link
CN (1) CN205139230U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105334374A (zh) * 2015-11-28 2016-02-17 华北电力大学(保定) 光纤电流传感器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105334374A (zh) * 2015-11-28 2016-02-17 华北电力大学(保定) 光纤电流传感器
CN105334374B (zh) * 2015-11-28 2018-01-16 华北电力大学(保定) 光纤电流传感器

Similar Documents

Publication Publication Date Title
CN100340860C (zh) 光纤电流互感器的闭环检测装置
CN207396588U (zh) 一种全光纤电子式电流互感器
CN103869224A (zh) 一种基于光纤电流传感器的容性设备局部放电检测方法
CN106526277A (zh) 一种用于低压光学电流传感器的新型光路传感单元
CN103134997A (zh) 一种基于光学原理的雷电探测装置
CN109991511B (zh) 一种架空线路雷击监测装置及监测方法
CN101344452A (zh) 利用压电陶瓷实现偏振敏感光时域反射技术的方法及装置
CN103235167A (zh) 一种柔性光学电流互感器
CN103616651B (zh) 一种光纤电流传感器现场校验装置及其使用方法
CN207675818U (zh) 一种带测量光路的全光纤电子式电流互感器
CN105334374A (zh) 光纤电流传感器
CN205139230U (zh) 光纤电流传感器
CN202330519U (zh) 一种采用干涉闭环检测的磁光玻璃光学电流互感器
CN206497197U (zh) 光纤敏感环性能检测系统
CN106093732B (zh) 用于高压电气设备局部放电检测的光纤方向传感器
CN103105541B (zh) 一种用于检测电磁干扰辐射性能的近场探头及其使用方法
CN203606428U (zh) 一种光纤电流传感器
CN203786180U (zh) 一种改进型全光纤电流互感器
CN200993675Y (zh) 基于光纤复合架空地线的实时雷击定位系统
CN205427017U (zh) 干涉式精确电流传感器
CN110045169A (zh) 一种磁光材料多级级联的光学电流传感器及测量系统
CN106706992B (zh) 采用偏振检测法的闭环反馈式全光纤电路互感器
CN206556842U (zh) LiNbO3相位调制器性能检测系统
CN102608380B (zh) 自感应光电混合式电流互感器
CN1987526A (zh) 实时雷击定位系统及定位方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160406

Termination date: 20181128