CN205120108U - 一种基于摄像装置的精度补偿系统 - Google Patents
一种基于摄像装置的精度补偿系统 Download PDFInfo
- Publication number
- CN205120108U CN205120108U CN201520627614.2U CN201520627614U CN205120108U CN 205120108 U CN205120108 U CN 205120108U CN 201520627614 U CN201520627614 U CN 201520627614U CN 205120108 U CN205120108 U CN 205120108U
- Authority
- CN
- China
- Prior art keywords
- photographing module
- camera
- precision
- system based
- compensation system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
本实用新型公开了一种基于摄像装置的精度补偿系统,包括:摄像模块,该摄像模块包含摄像头和镜头;支架,用于固定安装所述摄像模块;标定元件,用于布置在所述摄像模块的视场内,为精度补偿处理提供参考图元;定位元件,用于辅佐所述标定元件定位或可拆卸安装在待精度补偿的自动化设备的工作台上;与所述摄像模块连接的计算机设备,用于根据输入的或精度补偿处理中的指令触发所述摄像模块采集标定元件的图像。本实用新型提供设备支持和配置方案实现了从摄像模块自身的参数补偿到自动化设备的目标的坐标和路径补偿的一系列完整的精度补偿方案。
Description
技术领域
本实用新型涉及一种基于摄像装置的精度补偿系统,适用于自动化设备的坐标和路径补偿。
背景技术
随着我国制造业的飞速发展,对生产设备的精度要求也越来越高。当前最有效的提高精度的方案是采用各种精度补偿技术。而在自动化设备领域,机器视觉系统的作用在于,通过识别在经过工件上的若干个特征点(也称为Mark点),计算出工件在工作台上的实际坐标相对原始坐标的旋转量和偏移量。自动化设备的数控系统获得所述旋转量和偏移量后,可以对原始坐标原点和运动路径(比如,加工刀路)进行修正,这样就能够产生更优的运动曲线和更准确的生产效果(比如,获得更优的加工轮廓)。
机器视觉系统一般由成像模块和软件识别模块组成。这两部分都会存在误差,前者的误差主要是由光学部件固有的径向畸变和切向畸变造成,不可避免,后者本质上就是由视觉处理函数库引起。成像模块造成的误差是最大的,而且减少该误差的代价尤其昂贵,比如可以采用更好的镜头(比如远心镜头)来减少径向畸变,或者,采用更高精密的摄像机,采用专门的仪器来检测镜头和摄像机的安装精度来减少切向畸变,这样会花费更多的时间来调整,成本也更高。当前的机器视觉函数库还无法计算出精确解,只能无穷接近解决目标,因此采用图像处理库来最小化由软件识别模块所带来的误差仍然存在技术难题。
实用新型内容
为了解决上述技术问题,本实用新型提供一种基于摄像装置的精度补偿系统,为实现从摄像模块自身的参数补偿到自动化设备的目标的坐标和路径补偿的一系列精度补偿过程提供设备支持和配置方案。
本实用新型的方案为,一种基于摄像装置的精度补偿系统,包括:摄像模块,该摄像模块包含摄像头和镜头;支架,用于固定安装所述摄像模块;标定元件,用于布置在所述摄像模块的视场内,为精度补偿处理提供参考图元;定位元件,用于辅佐所述标定元件定位或可拆卸安装在待精度补偿的自动化设备的工作台上;与所述摄像模块连接的计算机设备,用于根据输入的或精度补偿处理中的指令触发所述摄像模块采集标定元件的图像。
进一步,所述标定元件包括:栅格标定板,用于提供参考图元以标定所述摄像模块的畸变系数;和/或网格模板,用于提供参考图元以生成正则化网络插值。
优选地,所述网格模板由预设间距的多个圆形的点阵元件组成。
进一步,所述定位元件布置在所述自动化设备的工作台上,以带动所述标定元件运动。
进一步,所述计算机设备包括与所述摄像模块连接的图像采集卡,用于采集摄像头模块所拍摄的图像。
作为本实用新型的改进,所述基于摄像装置的精度补偿系统还包括至少一个光源。
进一步,其中一个光源被布置为发光平面与所述摄像模块的光轴垂直,使所述光源形成所述摄像模块的同轴光源。
本实用新型的有益效果为:显著减少了传统的视觉定位设备或自动化设备中人为定位所带来的误差;采用较低成本的方式,提供设备支持和配置方案实现了从摄像模块自身的参数补偿到自动化设备的目标的坐标和路径补偿的一系列完整的精度补偿方案。
附图说明
以下的本实用新型的说明书参照附图,其中:
图1所示为根据本实用新型的基于摄像装置的精度补偿系统的结构示意图;
图2所示为根据本实用新型的栅格标定板;
图3所示为求解本征旋转角时采用的主元分析法示意图;
图4a和4b所示为图像识别精度补偿时选取不同的惩罚系数的结果图;
图5所示为根据本实用新型的标准化网格模板;
图6所示为原始点集与目标点集之间的转换示意图。
具体实施方式
下面通过附图和实例对本实用新型作进一步的详细描述和解析。
图1所示为根据本实用新型的基于摄像装置的精度补偿系统的结构示意图。所述系统可以与自动化设备1配套使用,其中自动化设备1包括数控系统11,用于控制自动化设备1中各个运动部件的工作和运动定位,比如控制工作台2基于预设的坐标系运动给定的距离。根据本实用新型的系统包括:定位元件3、标定元件4、镜头5、光源6、摄像头7、支架8和计算机设备10。其中,定位元件3用于辅佐所述标定元件4定位或可拆卸安装在待精度补偿的自动化设备1的工作台2上,定位元件3例如可以是机械定位夹具、定位销等元件。标定元件4用于布置在由摄像头7和镜头5组成的摄像模块的视场内为精度补偿处理提供参考图元。例如标定元件4可以包括栅格标定板和/或网格模板,栅格标定板用于提供参考图元以标定所述摄像模块的畸变系数,网格模板用于提供参考图元以生成正则化网络插值。
计算机设备10用于根据输入的或精度补偿处理中的指令触发所述摄像模块采集标定元件的图像。计算机设备10可以运行程序来实施基于机器视觉的精度补偿方法,该方法包括以下步骤:A、布置摄像模块和精度补偿目标,固定所述摄像模块,并且使所述精度补偿目标可动地处于所述摄像模块的视场内;B、通过识别标定件中的特定元素,确定摄像模块的畸变系数和本征旋转角;C、通过摄像模块对多个处于预设位置的已知点进行识别,然后采用正则化网络插值算法和预设的惩罚系数,对所述多个已知点的识别值进行逼近和拟合,从而实现所述摄像模块的识别精度补偿;D、对摄像模块的畸变系数、本征旋转角和识别精度补偿后,获取多个精度补偿目标上的多个特征点的原始位置点集,通过摄像模块识别与所述多个特征点对应的实际位置点集;E、根据所述原始位置点集和所述实际位置点集,采用迭代算法计算旋转转换数据和偏移转换数据,然后将所述旋转转换数据和偏移转换数据分配到所述精度补偿目标从而实现精度补偿。
具体地,所述摄像模块包括摄像头7和镜头5。为了使摄像模块能够采集清晰的图像,需要为其可视区域提供充足的关照。优选地,可以在精度补偿目标的附近布置光源6装置,或者可以在镜头5前端布置同轴光源6。
下面,在一些实例中具体说明上述的步骤,并且明晰了工作台2、标定元件4、镜头5、摄像头7等为精度补偿过程提供设备支持及各自的工作过程。
在步骤B中,确定镜头5的径向畸变系数的方法是通过提取栅格标定板(如图2所示)的一组边缘,再通过Halcon图像处理库(由MVtec公司开发的一套标准的机器视觉算法包)的径向畸变自校正函数来计算获得径向畸变系数(K)。如果采用良好的镜头5而计算得到非常小的径向畸变系数(比如,K=-1.25027e-009),则可以忽略不计,即是不需要对镜头5进行径向畸变补偿。此外,镜头5的切向畸变是由于透镜安装缺陷使得透镜本身与感光元件(比如CCD)的成像平面不平行而产生。镜头5的切向畸变需要专业的仪器才能精确检测出来,但是可以通过单应矩阵(Homographymatrix)来判定,该单应矩阵可以通过上述的图像处理库和标定板的图像识别来计算。例如,如果计算得到的3×3单应矩阵如下:
矩阵的主对角线两侧的数的绝对值不对称,说明存在径向畸变(Y方向比X方向严重),并直接影响成像质量和最终的检测精度,需要进行校正。公知地,上述的两种畸变以及其他因素对图像品质和检测精度的影响可以通过数值分析法来校正。
同样在步骤B中,还需要确定摄像机(即摄像头)的本征旋转角。本质旋转角是在摄像机安装时形成的,例如是指摄像机中的感光元片的长边与自动化设备1的X轴所成的夹角。摄像机实际上采集到图像倾斜,所以在进行识别操作之前必须将图像摆正。具体地,求取本征旋转角的方法如下:等步距地使自动化设备1的工作台2沿X轴或者Y轴移动多个位置,通过模板匹配法在各个位置识别工作台2中的特定目标,并同时基于自动化设备1的坐标系记录工作台2的坐标。这样一来,可以在工作台2多次移动的过程中识别得到一组与摄像机的坐标关联的坐标数据集S。通常可以通过对该坐标点集S求平均值,再通过反正切的计算就能得到本征旋转角。但这种方法对噪声比较敏感。优选地,可以采用主元分析法(Principalcomponentanalysis,PCA)来求解本征旋转角。利用PCA方法求解本征旋转角的过程如下:将点集S中心化后组成一个样本数据矩阵A,其中,每一行代表一个位置点数据,每一列代表位置点的一个坐标分量,如果有n个2D(二维)数据点,则A就是一个n×2矩阵;通过矩阵A构造协方差矩阵M,M=A’*A,然后对矩阵M进行特征值分解MV=aV,其中矩阵V就是与特征a对应的特征向量,即代表主元的向量,有了该向量就能求得本征旋转角。图3所示为PCA方法的说明示意图,右边的箭头就是点集的主元向量,可以反映点集与坐标主轴的夹角,从而表示了本征旋转角。由于数据点的个数大于2,因此矩阵分解实际是一个求解超定方程组的最小二乘解的过程。最小二乘解比前述的代数均值解具有更好的稳定性。
由于存在畸变和其他因素,识别出来的数据和实际值之间存在偏差,但可以通过数值分析法来减少偏差。常用的插值补偿有两种:立方曲面插值和正则化网络。前者过已知点,对定义范围内的点有很好的预测能力,但定义外的点预测不佳,而正则化网络的插值补偿方法类似B样条曲线的插值,是一堆基函数的叠加,但基函数使用的是径向基函数(比较常用的是高斯函数)。正则化网络可以设定一个很小的惩罚系数λ来表示与已知点的距离,惩罚系数比如采用大于0并且小于等于0.3的合适值(0<λ≤0.3),如图4a所示的0.1和图4b所示的0.3的惩罚系数时的点拟合图。这样既保证精度要求,又有一定的泛化能力。其实,采用该范围惩罚系数是一种保守的做法,但是非常合适求解等尺度多输入的不适定问题(比如,函数逼近、系统模型估计等)。
在使用正则化网络插值方法的过程中,还需要建立2D插值网格,即是需要标定元件4,比如一块标准的网格作为参考。在一个实施例中,如图5所示,可以使用一块精度很高的固频栅格点阵来建立插值曲面。在两个网格点之间的距离误差优选为0.001mm,摄像机的空间分辨率优选为0.01/像素,使两者之间的数量级可以相差一个等级,因此可以用前者来对后者进行校验。然后,将节点阵列组成的网格板置于摄像机的视场内,采集一张栅格的图像。通过节点的圆周拟合求出各个圆点的实际空间坐标,并把数据中心化,通过PCA方法将数据进行摆正,再与栅格的标称位置求差,得到各个点的dx值和dy值。图5的网格可以提取得到99个节点,那么就形成一个99×99的格林矩阵,最后得到正则网络的99个基函数各自的系数。
为了实现对自动化设备1的坐标和路径的补偿,还需要计算旋转转换量R和偏移转换量t。只要将所述旋转转换量R和偏移转换量t分配到自动化设备1的数控系统11,从而对目标工件的位置和运动轨迹进行精度补偿。图6所示为在一实施例中原始点集与目标点集之间的转换示意图。图中点集Q代表要识别的特征点(Mark点)的原始位置,点集P代表点集Q经过旋转R和偏移T后的实际位置,即工件的摆放位置。由于识别出来数据存在误差,所以偏转角和偏移量的精确解是不存在的,但存在满足一定条件下最优的解。这里的条件实际上是一个指标函数。优选地,在本实施例中采用的优化方法为:最小化几何距离的平方,即实际点集Q与对应的已知点P集之间的距离之和来求解旋转转换量R和偏移转换量t,计算公式如下:
其中,pi和qi分别代表点集P和点集Q中各个点的坐标,wi为系数。对于上述旋转转换量R和偏移转换量t的最小化距离平方的非线性指标函数,可以采用列文伯格-马夸尔特(Levenberg-Marquardt)迭代法来求解。该算法是全局稳定收敛,但需要计算上述公式的一阶导数。在一个2D的具体的例中,识别出下列点集:
然后通过上述的算法计算得到旋转量R为0.686°(即是实际点集Q是通过已知点集P旋转旋转0.686°),平移量t为(54.624,54.837)(即是实际点集Q是通过已知点集P沿X轴平移54.624个单位,沿Y轴平移54.837个单位)。结合均值为0、方差为0.002的高斯干扰,还可以得到R:0.688;t:(54.626,54.839)。
以上所述,只是本实用新型的较佳实施例而已,本实用新型并不局限于上述实施方式,只要其以相同的手段达到本实用新型的技术效果,都应属于本实用新型的保护范围。在本实用新型的保护范围内其技术方案和/或实施方式可以有各种不同的修改和变化。
Claims (7)
1.一种基于摄像装置的精度补偿系统,其特征在于,所述精度补偿系统包括:
摄像模块,该摄像模块包含摄像头(7)和镜头(5);
支架(8),用于固定安装所述摄像模块;
标定元件(4),用于布置在所述摄像模块的视场内,为精度补偿处理提供参考图元;
定位元件(3),用于辅佐所述标定元件(4)定位或可拆卸安装在待精度补偿的自动化设备(1)的工作台(2)上;
与所述摄像模块连接的计算机设备(10),用于根据输入的或精度补偿处理中的指令触发所述摄像模块采集标定元件(4)的图像。
2.根据权利要求1所述的基于摄像装置的精度补偿系统,其特征在于,所述标定元件(4)包括:
栅格标定板,用于提供参考图元以标定所述摄像模块的畸变系数;和/或
网格模板,用于提供参考图元以生成正则化网络插值。
3.根据权利要求2所述的基于摄像装置的精度补偿系统,其特征在于,所述网格模板由预设间距的多个圆形的点阵元件组成。
4.根据权利要求1所述的基于摄像装置的精度补偿系统,其特征在于,所述定位元件(3)布置在所述自动化设备(1)的工作台(2)上,以带动所述标定元件(4)运动。
5.根据权利要求1所述的基于摄像装置的精度补偿系统,其特征在于,所述计算机设备(10)包括与所述摄像模块连接的图像采集卡(9),用于采集摄像头(7)模块所拍摄的图像。
6.根据权利要求1所述的基于摄像装置的精度补偿系统,其特征在于,还包括至少一个光源(6)。
7.根据权利要求6所述的基于摄像装置的精度补偿系统,其特征在于,其中一个光源(6)被布置为发光平面与所述摄像模块的光轴垂直,使所述光源(6)形成所述摄像模块的同轴光源。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520627614.2U CN205120108U (zh) | 2015-08-19 | 2015-08-19 | 一种基于摄像装置的精度补偿系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520627614.2U CN205120108U (zh) | 2015-08-19 | 2015-08-19 | 一种基于摄像装置的精度补偿系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN205120108U true CN205120108U (zh) | 2016-03-30 |
Family
ID=55575706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201520627614.2U Active CN205120108U (zh) | 2015-08-19 | 2015-08-19 | 一种基于摄像装置的精度补偿系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN205120108U (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106885519A (zh) * | 2017-03-21 | 2017-06-23 | 华北理工大学 | 飞秒激光微/纳加工视觉系统的图像标定板及其固定板 |
-
2015
- 2015-08-19 CN CN201520627614.2U patent/CN205120108U/zh active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106885519A (zh) * | 2017-03-21 | 2017-06-23 | 华北理工大学 | 飞秒激光微/纳加工视觉系统的图像标定板及其固定板 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109598762B (zh) | 一种高精度双目相机标定方法 | |
CN105205806A (zh) | 一种基于机器视觉的精度补偿方法 | |
CN109029299B (zh) | 舱段销孔对接转角的双相机测量装置及测量方法 | |
CN102376089B (zh) | 一种标靶校正方法及系统 | |
CN111369630A (zh) | 一种多线激光雷达与相机标定的方法 | |
CN105945909A (zh) | 三自由度并联机器人的误差校正方法及系统 | |
CN103615980B (zh) | 一种板件上圆孔参数的测量方法及系统 | |
CN105783711B (zh) | 三维扫描仪校正系统及其校正方法 | |
CN106846411A (zh) | 基于混合畸变模型的高精度摄像机标定装置 | |
CN113920205B (zh) | 一种非同轴相机的标定方法 | |
CN112767338A (zh) | 一种基于双目视觉的装配式桥梁预制构件吊装定位系统及其方法 | |
CN111707187B (zh) | 一种大型零件的测量方法及系统 | |
CN108716890A (zh) | 一种基于机器视觉的高精度尺寸检测方法 | |
CN113119129A (zh) | 一种基于标准球的单目测距定位方法 | |
CN114331924B (zh) | 大工件多相机视觉测量方法 | |
CN112381827A (zh) | 基于视觉图像的快速高精度缺陷检测方法 | |
CN113421310A (zh) | 基于光栅尺定位的运动位置误差补偿技术实现跨视野高精度测量的方法 | |
CN112365502A (zh) | 一种基于视觉图像缺陷检测的标对方法 | |
CN116642433A (zh) | 一种基于视觉跟踪的三维点云拼合方法及三维测量系统 | |
CN104156974A (zh) | 基于多重约束的摄像机畸变标定方法 | |
CN110595374A (zh) | 基于传递像机的大型结构件实时形变监测方法 | |
CN205120108U (zh) | 一种基于摄像装置的精度补偿系统 | |
EP3855397B1 (en) | Imaging system | |
CN110057555B (zh) | 线激光器平面度检测方法 | |
CN117664022A (zh) | 一种晶圆形貌测量方法、装置、可读存储介质及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 529000 No. 61 Yongsheng Road, Pengjiang District, Guangdong, Jiangmen Patentee after: Guangdong Kejie Technology Co.,Ltd. Address before: 529030 No. 61, Yongsheng Road, Pengjiang district, Jiangmen City, Guangdong Province Patentee before: Guangdong Kejie Machinery Automation Co.,Ltd. |