CN205081204U - 太赫兹频段屏蔽介质缝隙波导加载介质栅导波结构 - Google Patents
太赫兹频段屏蔽介质缝隙波导加载介质栅导波结构 Download PDFInfo
- Publication number
- CN205081204U CN205081204U CN201520807770.7U CN201520807770U CN205081204U CN 205081204 U CN205081204 U CN 205081204U CN 201520807770 U CN201520807770 U CN 201520807770U CN 205081204 U CN205081204 U CN 205081204U
- Authority
- CN
- China
- Prior art keywords
- dielectric
- terahertz
- guided wave
- waveguide
- wave structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Aerials With Secondary Devices (AREA)
Abstract
本实用新型提出的一种太赫兹频段屏蔽介质缝隙波导加载介质栅导波结构,旨在提供一种结构简单,易加工,能够实现超强能量聚集特性,能改善太赫兹成像质量和增强信号发射功率的导波结构。本实用新型通过下述方案予以实现:在矩形金属波导(1)内侧上下底平面上设有通过介质栅(5)对称支撑的介质板(2),矩形体介质层(3)通过介质栅(5)间隔的空气层(4)位于矩形金属波导(1)的中部腔体中,外部太赫兹射频信号通过矩形金属波导(1)内置介质板(2)、矩形体介质层(3),以及介质栅(5)之间所形成的空气层(4)实现射频信号传输。本实用新型能够将太赫兹信号的能量有效地耦合于内部空气层区域,获得更强的能量聚集特性。
Description
技术领域
本实用新型涉及一种能够广泛应用于太赫兹成像和信号发射的导波结构。
背景技术
频率0.1~10.0THz范围内的电磁波被称为太赫兹波。介于毫米波频段与红外线频段之间太赫兹频段电磁波频段属于远红外波段,具有波长短、方向性好、光子能量低、高穿透性等独特性质,太赫兹系统在半导体材料、高温超导材料的性质研究、断层成像技术、无标记的基因检查、细胞水平的成像、化学和生物的检查,以及宽带通信、微波定向等许多领域有广泛的应用。由于THz波所处的特殊位置,它有很多优越的特性和非常重要的学术研究和应用价值,使得世界各国都给予极大的关注,因此太赫兹技术逐渐成为国际研究的热点。它在物理、化学、天文学、生命科学和医学等基础研究领域,太赫兹的应用除了太赫兹信号源,还必须解决太赫兹信号的传输问题。传输线的研究对于太赫兹(THz)技术的发展非常重要,它可以有效地对太赫兹信号进行传输,降低信号的传输损耗。太赫兹波表现出一系列不同于其它电磁辐射的特殊性质:穿透能力强、光子能量低、可得到高分辨率的清晰图像、可进行时间分辨的光谱测量等。但有太赫兹辐射源在输出频率可调性及输出功率方面存在的局限性和太赫兹物体成像以及高功率发射需要在射频输出端具有很强的能量耦合的问题,由于水汽对THz波的强烈吸收,研究适用于不同应用需求的太赫兹波导成为急需,然而当前缺乏合适的导波材料和结构是制约太赫兹技术发展的重要原因。
对于太赫兹导波结构来说,最重要的特性就是:低色散、低损耗以及强能量聚集。当进行长距离电磁信号传输时,波导应具有低色散特性,但对于近距离传输时,低损耗以及强能量聚集特性就显得更为重要。许多研究成果表明,太赫兹能量在许多介质材料中会被大量的吸收,这就给太赫兹导波结构实现低损耗传输以及强能量聚集特性带来了一定的困难。
为了减小平板介质波导的损耗以及降低辐射场,由两介质板形成的介质单缝隙导波结构被提了出来。它可以很好的将电磁场限制在内部空气缝隙处,有效减小波导外部的辐射场。作为对介质单缝隙导波结构的改进,由三层介质板构成的介质双缝隙导波结构被提了出来。相比于介质单缝隙导波结构,介质双缝隙导波结构的场约束能力提高了近30%。尽管这两种介质缝隙导波结构都能够很好实现对场的约束,但均存在一个重要的结构缺陷,那就是作为开放型导波结构,在波导缝隙的外部存在一定的辐射场,对外部环境存在一定的电磁干扰。
在太赫兹频段,物体成像以及高功率发射通常需要在输出端具有很强的能量耦合特性,为了增强能量聚集特性,同时改善传输特性以及减小波导的辐射场,利用不同折射率介质板之间存在电磁波反射的特性,本实用新型对介质缝隙导波结构进行改进,提出了一种太赫兹频段新型屏蔽介质双缝隙波导加载介质栅导波结构。
实用新型内容
本实用新型目的是针对现有太赫兹辐射源在输出功率方面的局限性和当前太赫兹物体成像以及高功率发射需要在射频输出端具有很强的能量耦合的问题,提供一种结构简单,易于加工实现,耦合强度高,工作频带宽的太赫兹平面波导导波结构。
本实用新型的上述目的可以通过以下技术方案予以实现,一种太赫兹频段屏蔽介质缝隙波导加载介质栅导波结构,具有一个矩形金属波导和矩形体介质层,其特征在于:在矩形金属波导1内侧上下底平面上设有通过介质栅5)对称支撑的介质板2),矩形体介质层3)通过介质栅5间隔的空气层4位于矩形金属波导1)的中部腔体中,外部太赫兹射频信号通过矩形金属波导1)内置介质板2、矩形体介质层3,以及介质栅5之间所形成的空气层4实现射频信号传输。
本实用新型具有如下有益效果:
结构简单,易于加工。本实用新型在矩形金属波导1)内侧上下底平面上设有通过介质栅5)对称支撑的介质板2),矩形体介质层3)通过介质栅5)间隔的空气层4)位于矩形金属波导1)的中部腔体中,这种由标准矩形金属波导作为输入腔体框架,内部的介质层构成射频传输的空气腔。而介质层本身的结构形式特别适合与微带进行互连,这就解决了太赫兹信号的平面传输问题。相对于现有技术共面波导、平板波导、介质光纤等导波结构,标准矩形金属波导和介质层的结构形式就具有结构更为简单,而且更易于加工实现的优势,从而解决了现有太赫兹导波结构制造工艺要求高,实际应用较困难,难于加工等问题。
电磁能量耦合强度高。本实用新型外部太赫兹射频信号通过矩形金属波导1内置介质板2、矩形体介质层3,以及介质栅5之间所形成的空气层4实现射频信号传输,将太赫兹信号的能量有效地耦合于内部空气层区域,降低了太赫兹信号在外部空间中的辐射损耗,在输出部位具有超强能量聚集特性,实现高效耦合,可以与外部太赫兹平面电路或者天线结构实现高效耦合,提高太赫兹信号的发射与接收的效率。同时,可通过调节介质层的介电常数、厚度,以及不同介质层之间的距离,来方便地调谐耦合强度,这是现有的太赫兹导波结构很难实现的。同时在矩形金属波导内部,利用介质栅对多层具有不同介电常数的介质板进行加固,形成互连。而内部所形成的空气层对太赫兹射频信号进行射频传输,可以减小外部辐射场,实现超强能量聚集特性。具有良好的传输特性,能够使多个太赫兹平面电路之间实现有效、低损的射频信号传输,并实现超强能量聚集特性,从而提高太赫兹信号的发射与接收的效率。
本实用新型能够将太赫兹信号的能量有效地耦合于内部空气层区域,获得更强的能量聚集特性,降低太赫兹信号存在于外部空间的辐射损耗,可以与外部太赫兹平面电路或者天线结构实现高效耦合。
本实用新型具有良好的传输特性,并能实现超强能量聚集特性的太赫兹频段屏蔽介质缝隙波导导波结构,特别适用于0.1THz~0.5THz太赫兹频段的太赫兹成像,并能有效增强信号发射功率、耦合强度可调的太赫兹频段的导波结构。
附图说明
图1是本实用新型太赫兹频段屏蔽介质缝隙波导加载介质栅导波结构的透视主视图。
图2是图1的左视图。
图中:1矩形金属波导,2介质板,3矩形体介质层,4空气层,5介质栅。
具体实施方式
参阅图1-图2。在以下描述的实施例中,一种太赫兹频段屏蔽介质缝隙波导加载介质栅导波结构,具有一个矩形金属波导和矩形体介质层。在矩形金属波导1内侧上下底平面上设有通过介质栅5对称支撑的介质板2,矩形体介质层3通过介质栅5间隔的空气层4位于矩形金属波导1的中部腔体中,外部太赫兹射频信号通过矩形金属波导1内置介质板2、矩形体介质层3,以及介质栅5之间所形成的空气层4实现射频信号传输。
矩形体介质层3的相对介电常数大于介质板2的相对介电常数,这样可以有效地将电磁能量聚集在波导内部介质层2的表面,减小金属损耗。
介质栅5一方面起着进一步约束电磁能量的作用,另一方面可以在实际应用中,对矩形框金属波导内部的上下层介质板起着加固的作用。
该太赫兹频段新型屏蔽介质缝隙波导导波结构在波导外部周围存在很少的辐射场,将大部分电磁能量聚集在波导内部空气层区域,电磁能量被中间具有较大相对介电常数的介质层所束缚,降低了金属损耗,因此能够在输出部位实现更强的能量耦合,同时具有良好的传输特性。本实用新型能改善太赫兹成像质量和增强信号发射功率,同时实现太赫兹频段平面电路之间的有效互连。
新型屏蔽介质缝隙波导的传输主模与标准矩形框金属波导相同,即可以与矩形波导相连,也可以与鳍线或微带线互连。
通过调节介质层的介电常数、厚度,以及不同介质层之间的距离,来方便地调谐耦合强度和传输参数。
本实用新型具体实施可采用以下步骤:
首先根据太赫兹电路频段要求,确定频率通带,选择合适的介质基片材料,利用微波电路计算机辅助软件,建立图1的导波结构,设定所需的传输特性设计目标,通过软件的优化设计程序,从而确定各单元传输线参数。
Claims (3)
1.一种太赫兹频段屏蔽介质缝隙波导加载介质栅导波结构,具有一个矩形金属波导和矩形体介质层,其特征在于:在矩形金属波导(1)内侧上下底平面上设有通过介质栅(5)对称支撑的介质板(2),矩形体介质层(3)通过介质栅(5)间隔的空气层(4)位于矩形金属波导(1)的中部腔体中,外部太赫兹射频信号通过矩形金属波导(1)内置介质板(2)、矩形体介质层(3),以及介质栅(5)之间所形成的空气层(4)实现射频信号传输。
2.如权利要求1所述的太赫兹频段屏蔽介质缝隙波导加载介质栅导波结构,其特征在于:太赫兹频段屏蔽介质缝隙波导加载介质栅导波结构的传输主模与标准矩形波导相同。
3.如权利要求1所述的太赫兹频段屏蔽介质缝隙波导加载介质栅导波结构,其特征在于:矩形体介质层(3)的相对介电常数大于介质板(2)的相对介电常数。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520807770.7U CN205081204U (zh) | 2015-10-18 | 2015-10-18 | 太赫兹频段屏蔽介质缝隙波导加载介质栅导波结构 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520807770.7U CN205081204U (zh) | 2015-10-18 | 2015-10-18 | 太赫兹频段屏蔽介质缝隙波导加载介质栅导波结构 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN205081204U true CN205081204U (zh) | 2016-03-09 |
Family
ID=55433586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201520807770.7U Active CN205081204U (zh) | 2015-10-18 | 2015-10-18 | 太赫兹频段屏蔽介质缝隙波导加载介质栅导波结构 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN205081204U (zh) |
-
2015
- 2015-10-18 CN CN201520807770.7U patent/CN205081204U/zh active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1874053B (zh) | 加载扇形微带分支的小型化谐波抑制带通滤波器 | |
CN106207453B (zh) | 一种用于微带阵列天线的缺陷地去耦结构 | |
CN104993203B (zh) | 一种基于人工表面等离激元的陷波共面波导 | |
CN109521496B (zh) | 基于介质谐振天线的nmosfet太赫兹探测器和方法 | |
CN107394328A (zh) | 一种d波段波导‑平面电路过渡装置 | |
CN110380186B (zh) | 基于n×m dra阵列和n×m nmosfet阵列的太赫兹探测器 | |
CN104716407B (zh) | 微波模式转换器 | |
US20140118206A1 (en) | Antenna and filter structures | |
CN105428769A (zh) | 太赫兹频段平面互连导波结构 | |
CN102637958B (zh) | 一种复合左右手传输线型窄带大范围频率扫描天线 | |
CN108550511B (zh) | 一种双频双模回旋行波管输入耦合器 | |
CN205081205U (zh) | 太赫兹频段平面互连导波 | |
CN205335403U (zh) | 太赫兹频段屏蔽介质缝隙波导加载介质栅导波结构 | |
Wang et al. | Dual-band highly isolated eight-element MIMO antenna for 5G mobile phone | |
CN205081204U (zh) | 太赫兹频段屏蔽介质缝隙波导加载介质栅导波结构 | |
CN110380187B (zh) | 基于dra和n×m nmosfet阵列的太赫兹探测器和天线设计方法 | |
CN205376718U (zh) | 太赫兹频段新型空芯介质管加载介质栅导波结构 | |
CN109994350B (zh) | 一种h面插入型矩形波导到交错双栅的能量耦合装置 | |
CN103943950A (zh) | 一种融合槽线超宽带滤波单元的一体化超宽带天线 | |
CN103427141B (zh) | 采用微带探针天线阵列宽带空间功率合成结构的设计方法 | |
Kobrin et al. | A novel design of wideband diplexer for base station applications | |
CN110390127B (zh) | N×m基于dra的nmosfet太赫兹阵列探测器和天线设计方法 | |
CN205081201U (zh) | 锥形g线射频传输装置 | |
Zheng et al. | Design of a compact and high performance 263 GHz SB-TWT circuit | |
CN205081203U (zh) | 太赫兹频段圆柱介质管导波结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |