CN205002876U - 一种高分辨率水声信号实时频谱分析系统 - Google Patents

一种高分辨率水声信号实时频谱分析系统 Download PDF

Info

Publication number
CN205002876U
CN205002876U CN201520694485.9U CN201520694485U CN205002876U CN 205002876 U CN205002876 U CN 205002876U CN 201520694485 U CN201520694485 U CN 201520694485U CN 205002876 U CN205002876 U CN 205002876U
Authority
CN
China
Prior art keywords
chip
signal
pin
unit
underwater sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201520694485.9U
Other languages
English (en)
Inventor
高超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Ocean Technology Center
Original Assignee
National Ocean Technology Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Ocean Technology Center filed Critical National Ocean Technology Center
Priority to CN201520694485.9U priority Critical patent/CN205002876U/zh
Application granted granted Critical
Publication of CN205002876U publication Critical patent/CN205002876U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本实用新型公开了一种高分辨率水声信号实时频谱分析系统,涉及水声观测监测设备,其特征在于:包括:用于将水听器输出的模拟信号转换成数字信号的信号采集单元;信号采集单元由模/数转换芯片、基准电压芯片、单运放芯片组成;基准电压芯片产生基准电压,通过由单运放芯片构成的射随电路后连接至模/数转换芯片的基准电压引脚,模/数转换芯片的信号输入引脚与信号调理单元的输出引脚连接,模/数转换芯片的时钟、数据输出、准备接收引脚与信号处理单元连接;用于接收所述数字信号,并进行高分辨率的实时频谱分析的信号处理单元;用于发送信号处理单元结果以及接收工作模式指令的收发单元;以及用于提供上述各单元所需电压的电源转换单元。

Description

一种高分辨率水声信号实时频谱分析系统
技术领域
本实用新型涉及水声观测监测设备,更具体地说,涉及一种可高度集成于水声观测监测设备中的高分辨率水声信号实时频谱分析系统。
背景技术
声波是海洋中唯一能够远距离传输信息的载体,水声设备是获取水下信息最有效的手段,水声观测监测设备是常用的水声设备。目前的水声观测监测设备主要有声学浮标、声学潜标、漂流浮标等。在使用水声观测监测设备进行声学调查任务时,往往当接收上位机向水声设备发送指令时,需要水声设备能够提供实时的声学信息,为调查任务提供分析依据,但目前绝大部分的水声观测监测设备无法实现此功能。
目前大部分水声设备通常为北斗通信、数据自容式存储设备,现有水声探测浮标系统如图1所示,水听器阵3与自容式控制、采集系统6和铅鱼4连接,通过浮标浮体5提供浮力浮在海面2上,可通过北斗一体机1与地面接收系统通信。现有水声探测浮标系统可通过北斗卫星向上位机报告位置、电池电量等信息,而将采集到的声学信号存储到设备内部的存储介质中,只有当设备打捞回收后才能对数据进行分析处理,这种通信方式对接收上位机位置没有太多限制,但是北斗通信模块每分钟发送的信息最大数据量为78字节,这个数据量远远小于水声信号采集的数据量,若发送采集到的一分钟的声音信号可能需要几十甚至上百分钟才可传输完成,再由上位机分析处理才能得到声学信息,这种方式无法实现实时分析。
也有部分设备采用无线通信技术,将采集到的水声数据实时的传输到接收上位机,但这种方式接收上位机必须在水声设备几公里到几十公里范围内才有效,实际应用中不容易实现,并且由于这种通信方式需要大量的电量消耗,需要增加水声设备的电池储备,增加了水声设备的尺寸和重量。
总之,目前的水声观测监测设备存在一定的缺陷,无法灵活的向上位机发送实时的声学信息。
实用新型内容
本实用新型要解决的技术问题是:提供一种独立的可高度集成于绝大部分水声观测监测设备的高分辨率水声信号实时频谱分析系统。即在不需要大幅度改变现有水声观测监测设备的前提下,设计一种可与绝大部分水声观测监测设备电路板高度集成的高分辨率水声信号实时频谱分析系统。
本实用新型为解决公知技术中存在的技术问题所采取的技术方案是:
一种高分辨率水声信号实时频谱分析系统,包括:
用于将水听器输出的模拟信号转换成数字信号的信号采集单元;所述信号采集单元由模/数转换芯片、基准电压芯片、单运放芯片组成;其中,所述基准电压芯片产生基准电压,通过由单运放芯片构成的射随电路后连接至模/数转换芯片的基准电压引脚,模/数转换芯片的信号输入引脚与信号调理单元的输出引脚连接,模/数转换芯片的时钟、数据输出、准备接收引脚与信号处理单元连接;
用于接收所述数字信号,并进行高分辨率的实时频谱分析的信号处理单元;所述信号处理单元由现场可编程门阵列芯片、串行FLASH配置芯片和有源时钟组成;所述串行FLASH配置芯片连接到现场可编程门阵列芯片的配置引脚,所述有源时钟连接到现场可编程门阵列芯片的时钟引脚;
用于发送所述信号处理单元结果以及接收工作模式指令的收发单元;
以及用于提供上述各单元所需电压的电源转换单元。
进一步:所述的收发单元包括RS-232芯片,将RS-232芯片的RX引脚和TX引脚分别和现场可编程门阵列芯片的设定为RX和TX的引脚连接,通过对现场可编程门阵列芯片的编程实现接收外部的工作模式指令,以及向外发送所述信号处理单元的计算结果。
更进一步:所述电源转换单元由+12V转+5VDCDC芯片、+12V转+3.3VDCDC芯片、+3.3V转+1.2V线性稳压芯片、三极管和接线端子组成;电源转换单元的接线端子连接外部电压为+10V~+15V的电池和三极管的C极,三极管的E极连接上述两个DCDC转换芯片,三极管的B极连接外部电路的可编程引脚,通过可编程引脚的高低电平控制三极管的导通和截止,当三极管导通时,所述电源转换单元为水听器、基准电压芯片和单运放芯片提供+5V电压;为模/数转换芯片、串行FLASH配置芯片、现场可编程门阵列芯片外围引脚提供+3.3V电压,为现场可编程门阵列芯片提供+1.2V内核电压;当三极管截止时,所述电源转换单元没有电压输出,所述高分辨率水声信号实时频谱分析系统停止工作。
本实用新型具有的优点和积极效果是:
本实用新型可与绝大部分水声观测监测设备电路板高度集成,所述水声观测监测设备电路板仅需提供一个可编程引脚、一个电源接线端和一个RS-232串口分别与本实用新型电源转换单元中三极管的B极、E极和收发单元的RS-232串口连接,即可实现高分辨率水声信号实时频谱分析功能。
本实用新型可完善水声观测监测设备的功能,当接收上位机需要知道某时刻实时的水声信号频谱情况时,通过北斗卫星向水声观测监测设备发送指令,水声观测监测设备电路板通过串口将指令传输给本实用新型所述的高分辨率水声信号实时频谱系统,并通过串口接收本实用新型所述高分辨率水声信号实时频谱系统的计算结果,所述水声观测监测设备再通过北斗模块向接收上位机发送计算结果。所述计算结果包括31个频点信息,每个频点信息占用2个字节,共62个字节,符合北斗通信模块每分钟发送的信息最大数据量为78字节的标准,实现该测量点所需时刻的实时频谱分析。
本实用新型将所述单元能够集成在一块小尺寸的电路板中,实现了低功耗、小尺寸、易集成、高分辨率等特点。
附图说明:
图1为传统水声探测浮标系统图;
图2为本实用新型优选实施例的系统结构图;
图3为本实用新型优选实施例的工作状态框图;
图中标记说明:
1、北斗一体机2、海面
3、水听器阵4、铅鱼
5、浮标浮体6、自容式控制、采集系统
具体实施方式
为能进一步了解本实用新型的实用新型内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下:
请参阅图2至图3,一种高分辨率水声信号实时频谱分析系统,包括:
用于将水听器输出的模拟信号转换成数字信号的信号采集单元;所述信号采集单元由模/数转换芯片、基准电压芯片、单运放芯片组成;其中,所述基准电压芯片产生基准电压,通过由单运放芯片构成的射随电路后连接至模/数转换芯片的基准电压引脚,模/数转换芯片的信号输入引脚与信号调理单元的输出引脚连接,模/数转换芯片的时钟、数据输出、准备接收引脚与信号处理单元连接;
用于接收所述数字信号,并进行高分辨率的实时频谱分析的信号处理单元;所述信号处理单元由现场可编程门阵列芯片、串行FLASH配置芯片和有源时钟组成;所述串行FLASH配置芯片连接到现场可编程门阵列芯片的配置引脚,所述有源时钟连接到现场可编程门阵列芯片的时钟引脚;所述有源时钟连接到现场可编程门阵列芯片的时钟引脚;所述高分辨率水声信号实时频谱分析系统的控制过程和信号处理过程都通过对现场可编程门阵列芯片的编程实现,编程采用硬件描述语言VerilogHDL,编写好的程序烧录到串行FLASH配置芯片中存储;高分辨率水声信号实时频谱分析系统每次上电,程序都会通过串行FLASH配置芯片下载到现场可编程门阵列芯片中,实现高分辨率水声信号实时频谱分析系统的控制过程和信号处理过程;所述的控制过程由收发单元从外部接收的工作模式指令,并设定整个水声信号实时频谱分析系统工作模式的过程,和控制信号采集单元进行模/数转换,并接收其数据输出的过程两部分组成;
用于发送所述信号处理单元结果以及接收工作模式指令的收发单元;
以及用于提供上述各单元所需电压的电源转换单元。
进一步:所述的信号处理单元的信号处理过程由乒乓存储、缓存数据过程,高分辨率FFT计算过程,三分之一倍频程计算过程,累加平均过程五部分组成;所述的乒乓存储、缓存数据过程接收所述控制过程输出的采集数据,采用乒乓缓存的方式实现数据的无缝缓冲与处理;所述高分辨率FFT计算过程接收乒乓缓存的输出数据,并进行FFT计算,在所述信号采集单元的采样率为40kHz时,实现FFT的分辨率为1.2Hz;所述三分之一倍频程计算过程接收所述高分辨率FFT计算过程结果,并进行三分之一倍频程计算,所述三分之一倍频程计算采用浮点运算,计算频点覆盖整个10Hz~20kHz,得到31个频点值;所述的累加平均过程根据所述接收的工作模式指令确定累加时间,接收31个频点值并累加,当达到累加时间后平均并将浮点转化为定点,到计算结果。
更进一步:所述的收发单元包括RS-232芯片,将RS-232芯片的RX引脚和TX引脚分别和现场可编程门阵列芯片的设定为RX和TX的引脚连接,通过对现场可编程门阵列芯片的编程实现接收外部的工作模式指令,以及向外发送所述信号处理单元的计算结果。
更进一步:所述电源转换单元由+12V转+5VDCDC芯片、+12V转+3.3VDCDC芯片、+3.3V转+1.2V线性稳压芯片、三极管和接线端子组成;电源转换单元的接线端子连接外部电压为+10V~+15V的电池和三极管的C极,三极管的E极连接上述两个DCDC转换芯片,三极管的B极连接外部电路的可编程引脚,通过可编程引脚的高低电平控制三极管的导通和截止,当三极管导通时,所述电源转换单元为水听器、基准电压芯片和单运放芯片提供+5V电压;为模/数转换芯片、串行FLASH配置芯片、现场可编程门阵列芯片外围引脚提供+3.3V电压,为现场可编程门阵列芯片提供+1.2V内核电压;当三极管截止时,所述电源转换单元没有电压输出,所述高分辨率水声信号实时频谱分析系统停止工作
请参阅图2,一种高分辨率水声信号实时频谱分析系统,包括:信号采集单元、信号处理单元、收发单元和电源转换单元;其中,信号采集单用于将水听器输出的模拟信号转换成数字信号,信号处理单元用于根据接收指令设定测量时间、接收数字信号,并进行高分辨率的实施频谱分析,收发单元用于发送信号处理单元的计算结果以及接收工作模式指令,电源转换单元根据外部可编程引脚的高低电平控制三极管,导通或者截止电源接线端提供的电压,当导通时,电源转换单元提供上述各单元所需电压;当截止时,整个水声信号实时频谱分析系统停止工作。
上述优选实施例的具体工作过程为:当外部可编程引脚导通三极管时,系统上电启动,收发单元接收外部指令,确定测量时间,测量时间可根据指令设定为2分钟、3分钟、4分钟、5分钟四种模式,当没有接收到工作模式指令或者指令异常时,默认工作时间为2分钟。完成测量时间设定后开始模/数转换,模/数转换一直进行,直至达到测量时间停止。模/数转换的结果乒乓存储、缓存数据的方式,实现数据的无缝缓冲与处理。当存满做一次FFT所需的数据时,进行高分辨率FFT计算、三分之一倍频程计算等过程,得到31个覆盖10Hz~20kHz频率范围的三分之一倍频程频点。计算结果累加缓存分别累加存储这31个频点的计算结果。当达到测量时间时,平均并将浮点转化为定点,到最终计算结果。收发单元将最终计算结果通过RS-232串口发送给水声观测监测系统。
请参阅图3,在上述优选实施例中,高分辨率水声信号实时频谱分析系统因具有低功耗、小尺寸、易集成、高分辨率等特点,可集成于绝大多数水声观测监测设备,水声观测监测设备仅需提供一根电源线,一个可编程的引脚以及一个RS-232串口即可与本实用新型所述设备集成。
水声观测监测设备在正常工作时将水听器阵的水声信号数据采集存储到存储介质中,控制芯片的可编程引脚为低电平,三极管截止,本实用新型所述系统不工作。当接收上位机需要知道某时刻实时的水声信号频谱情况时,通过北斗卫星向水声观测监测设备发送指令,水声观测监测设备的北斗通信模块接收这些指令并发送给控制芯片,控制芯片的可编程引脚变为高电平,导通本实用新型所述系统的三极管,同时,控制芯片的RS-232串口将从北斗模块接收到的指令发送给本实用新型所述系统。本实用新型所述系统在计算结束后通过RS-232串口将计算结果发送给水声观测监测设备的控制芯片,控制芯片通过北斗模块将计算结果发送给接收上位机,实现该测量点所需时刻的实时频谱分析。本实用新型所述的高分辨率水声信号实时频谱分析系统实现整个过程,不影响水声观测监测设备对水听器阵水声信号的自容式采集存储。
以上对本实用新型的实施例进行了详细说明,但所述内容仅为本实用新型的较佳实施例,不能被认为用于限定本实用新型的实施范围。凡依本实用新型申请范围所作的均等变化与改进等,均应仍归属于本实用新型的专利涵盖范围之内。

Claims (3)

1.一种高分辨率水声信号实时频谱分析系统,其特征在于:包括:
用于将水听器输出的模拟信号转换成数字信号的信号采集单元;所述信号采集单元由模/数转换芯片、基准电压芯片、单运放芯片组成;其中,所述基准电压芯片产生基准电压,通过由单运放芯片构成的射随电路后连接至模/数转换芯片的基准电压引脚,模/数转换芯片的信号输入引脚与信号调理单元的输出引脚连接,模/数转换芯片的时钟、数据输出、准备接收引脚与信号处理单元连接;
用于接收所述数字信号,并进行高分辨率的实时频谱分析的信号处理单元;所述信号处理单元由现场可编程门阵列芯片、串行FLASH配置芯片和有源时钟组成;所述串行FLASH配置芯片连接到现场可编程门阵列芯片的配置引脚,所述有源时钟连接到现场可编程门阵列芯片的时钟引脚;
用于发送所述信号处理单元结果以及接收工作模式指令的收发单元;
以及用于提供上述各单元所需电压的电源转换单元。
2.根据权利要求1所述的高分辨率水声信号实时频谱分析系统,其特征在于:所述的收发单元包括RS-232芯片,将RS-232芯片的RX引脚和TX引脚分别和现场可编程门阵列芯片的设定为RX和TX的引脚连接,通过对现场可编程门阵列芯片的编程实现接收外部的工作模式指令,以及向外发送所述信号处理单元的计算结果。
3.根据权利要求2所述的高分辨率水声信号实时频谱分析系统,其特征在于:所述电源转换单元由+12V转+5VDCDC芯片、+12V转+3.3VDCDC芯片、+3.3V转+1.2V线性稳压芯片、三极管和接线端子组成;电源转换单元的接线端子连接外部电压为+10V~+15V的电池和三极管的C极,三极管的E极连接上述两个DCDC转换芯片,三极管的B极连接外部电路的可编程引脚,通过可编程引脚的高低电平控制三极管的导通和截止,当三极管导通时,所述电源转换单元为水听器、基准电压芯片和单运放芯片提供+5V电压;为模/数转换芯片、串行FLASH配置芯片、现场可编程门阵列芯片外围引脚提供+3.3V电压,为现场可编程门阵列芯片提供+1.2V内核电压;当三极管截止时,所述电源转换单元没有电压输出,所述高分辨率水声信号实时频谱分析系统停止工作。
CN201520694485.9U 2015-09-08 2015-09-08 一种高分辨率水声信号实时频谱分析系统 Active CN205002876U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520694485.9U CN205002876U (zh) 2015-09-08 2015-09-08 一种高分辨率水声信号实时频谱分析系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520694485.9U CN205002876U (zh) 2015-09-08 2015-09-08 一种高分辨率水声信号实时频谱分析系统

Publications (1)

Publication Number Publication Date
CN205002876U true CN205002876U (zh) 2016-01-27

Family

ID=55159760

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520694485.9U Active CN205002876U (zh) 2015-09-08 2015-09-08 一种高分辨率水声信号实时频谱分析系统

Country Status (1)

Country Link
CN (1) CN205002876U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105181107A (zh) * 2015-09-08 2015-12-23 国家海洋技术中心 一种高分辨率水声信号实时频谱分析系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105181107A (zh) * 2015-09-08 2015-12-23 国家海洋技术中心 一种高分辨率水声信号实时频谱分析系统

Similar Documents

Publication Publication Date Title
CN108287018A (zh) 基于波浪滑翔器的海洋环境噪声测量装置
CN107449405B (zh) 一种新型潜标数据采集系统
CN106523928B (zh) 基于声波实时数据二级筛选的管道泄漏检测方法
CN103310613A (zh) 移动式自组网土壤环境信息远程监测装置
CN107356233B (zh) 一种适用于高纬度极寒海域声学水文测量的垂直阵系统
CN105704213A (zh) 一种用于环境监测的无线网络浮标系统
CN105043442A (zh) 自容式水声、水文数据同步采集装置、系统及方法
CN105590438B (zh) 一种基于远程控制和数据压缩的数据无线采集系统
CN203929800U (zh) Adcp流速遥测监控系统
CN111693130A (zh) 一种海洋环境噪声测量系统
CN205002876U (zh) 一种高分辨率水声信号实时频谱分析系统
CN108132292B (zh) 可远程数据传输的深海原位电化学测试装置及实现方法
CN108761039A (zh) 土壤墒情采集终端及系统
CN218866603U (zh) 灌区遥测终端机
CN104089734A (zh) 可变参数式深水网箱系缆力采集仪
CN105181107A (zh) 一种高分辨率水声信号实时频谱分析系统
CN203084093U (zh) 一种避雷器用监测器
CN213482659U (zh) 低功耗海洋背景声场存储节点系统
CN211013156U (zh) 无线式波浪采集实时监控系统和设备
CN205352461U (zh) 一种海水温深监测装置
CN209248302U (zh) 一种基于无线技术的强震记录采集装置
CN204731233U (zh) 一种土壤盐碱度定位监测装置
CN110106873B (zh) 一种挤密砂桩施工监控方法及其在线监控仪
CN103699044A (zh) 一种机内测试模块
CN206906585U (zh) 便携式蓝牙gps‑rtk定位仪

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant