CN204987537U - 一种新型溴化锂吸收式制冷机组 - Google Patents

一种新型溴化锂吸收式制冷机组 Download PDF

Info

Publication number
CN204987537U
CN204987537U CN201520669241.5U CN201520669241U CN204987537U CN 204987537 U CN204987537 U CN 204987537U CN 201520669241 U CN201520669241 U CN 201520669241U CN 204987537 U CN204987537 U CN 204987537U
Authority
CN
China
Prior art keywords
generator
hot water
control system
plc control
regulating valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201520669241.5U
Other languages
English (en)
Inventor
郑沐嘉
汤勇
李斌
李宇吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201520669241.5U priority Critical patent/CN204987537U/zh
Application granted granted Critical
Publication of CN204987537U publication Critical patent/CN204987537U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

本实用新型公开了一种新型溴化锂吸收式制冷机组,包括发生器、冷凝器、蒸发器、吸收器、太阳能集热器循环供热系统、溶液热交换器、PLC控制系统、连接PLC控制系统的触摸屏显示器,所述太阳能集热器循环供热系统包括通过管路依次连接形成热水循环回路的太阳能集热器、热水电控调节阀、热水泵、发生器进口温度变送器、流量变送器、发生器出口温度变送器,所述热水电控调节阀、发生器进口温度变送器、流量变送器、发生器出口温度变送器均与PLC控制系统电路连接。本实用新型有效地提高低温热源驱动下的溴化锂吸收式制冷机的制冷效率,降低制冷系统所需最低驱动热源温度。

Description

一种新型溴化锂吸收式制冷机组
技术领域
本实用新型涉及机械制造及控制技术领域,尤其涉及一种新型溴化锂吸收式制冷机组。
背景技术
溴化锂吸收式制冷机运行费用低,无运动部件,寿命长,无噪声,符合节能和环保的要求,有着广泛的应用前景。但是目前溴化锂吸收式制冷机由于技术能力发展水平限制,对于驱动热源的温度要求比较高,而目前的一般太阳能集热器只能提供低品质热源,无法达到其所需温度,效率相对较低,导致难以在市场上推广。机组控制系统的核心为能量调节系统,其主要目标是使外界所需要的热负荷同该溴化锂制冷机组的制冷量时刻匹配,体现在机组的冷媒水出口温度上,由于外界所需热负荷是存在波动的,所以对机组的制冷量要求也相应有所变化,能量调节系统需要根据驱动热源、溶液循环量的监测和调节,来经济稳定的满足系统的运行要求。
实用新型内容
有鉴于此,本实用新型的主要目的在于提供一种新型溴化锂吸收式制冷机组及其制冷量调节方法,用以有效地提高低温热源驱动下的溴化锂吸收式制冷机的制冷效率,降低制冷系统所需最低驱动热源温度,促进其市场推广化。
本实用新型提供的新型溴化锂吸收式制冷机组是通过如下技术方案实现的:
一种新型溴化锂吸收式制冷机组,包括设置在高压腔体内的发生器和冷凝器、设置在低压腔体内的蒸发器和吸收器、为发生器提供热水的太阳能集热器循环供热系统、溶液热交换器、PLC控制系统、连接PLC控制系统的触摸屏显示器,所述蒸发器用于与目标冷媒水换热,所述太阳能集热器循环供热系统包括通过管路依次连接形成热水循环回路的太阳能集热器、热水电控调节阀、热水泵、发生器进口温度变送器、流量变送器、发生器出口温度变送器,所述热水电控调节阀、发生器进口温度变送器、流量变送器、发生器出口温度变送器均与PLC控制系统电路连接;
所述溶液热交换器与吸收器之间通过管道设置有将溴化锂稀溶液经溶液热交换器泵送至发生器的溶液泵,所述溶液泵通过变频器与PLC控制系统电路连接;
所述蒸发器的目标冷媒水入口管道上设置有蒸发器进口温度变送器,所述蒸发器的目标冷媒水出口管道上设置有蒸发器出口温度变送器。
进一步地,还包括超声强化装置,所述超声强化装置的换能器直接安装于所在高压腔体底部,超声波强化装置用超声空化效应,强化发生器内溴化锂-水溶液的传质传热过程;
进一步地,所述超声强化装置产生频率为20kHz以上,工作功率为100w以上。
进一步地,所述换能器的数量≥1个,当数量超过1个时,相邻换能器之间的安装位置间隔相等且不小于100mm,具体可根据机组规模和高压腔体结构及其底部面积而适当调整,安装方式可以为高强度胶水,机械安装,磁性吸附。
进一步地,所述热水电控调节阀与PLC控制系统之间采用闭环控制系统,以提高对热水电控调节阀的调节精度。
本实用新型提供的新型溴化锂吸收式制冷机组的制冷量调节方法通过如下方案实现的:
一种如所述新型溴化锂吸收式制冷机组的制冷量调节方法,包括步骤:
1)PLC控制系统将蒸发器出口温度变送器实时获取的所述蒸发器的目标冷媒水出口的实际温度Tr与通过触摸屏显示器设定的设定温度Ts进行比较;
2)若1℃≤|Tr-Ts|<5℃时,PLC控制系统首先采用循环液变频调速模式,即调用PID算法调整变频器频率,使变频器作用于与其连接的溶液泵,通过溶液泵控制机组溴化锂稀溶液的循环流速,进而调节制冷量,直到|Tr-Ts|﹤1℃。
进一步地,若|Tr-Ts|≥5℃时,还包括步骤:
3)检查热水电控调节阀(6)和变频器的工作状态,判断机组工作状态和热水电控调节阀(6)静止时间,以保证不会调节过度和避免频繁操作热水电控调节阀;
4)若机组未处于全负荷工作状态且热水电控调节阀(6)静止已达3分钟,则同时启动调节热水供给量模式,即PLC控制系统产生信号,所述信号使得热水电控调节阀(6)开度增加或减少5%,通过对制冷量调节方法进行优化,即采用循环液变频调速技术与热水供给量调节模式智能结合的方式,综合调节目标冷媒水出口温度,提高调解效率和精度;
5)热水电控调节阀(6)开度到位后静止3分钟,接着PLC控制系统将蒸发器出口温度变送器(1)实时获取的所述蒸发器(13)的目标冷媒水出口的实际温度Tr与通过触摸屏显示器设定的设定温度Ts进行比较,若|Tr-Ts|﹤1℃时,则完成制冷量调节,否则,则返回步骤3)。
进一步地,当实际温度Tr高于设定温度Ts时,如果变频器频率跟热水电控调节阀开度已达上限,则机组维持当前工作状态;当实际温度Tr低于设定温度Ts时,如果变频器频率跟热水电控调节阀开度已达下限,则PLC控制系统启动黄色报警信号,同时机组停机,停止制冷进行稀释,起到保护系统以免发生结晶及其他故障的作用。
进一步地,所述PLC控制系统产生信号控制热水电控调节阀开度时,热水电控调节阀通过闭环控制系统及时将当前开度反馈回PLC控制系统,所述PLC根据反馈数据判断并确保热水电控调节阀到达目标开度时停止,形成闭环控制,以提高对热水电控调节阀的调节精度。
相比现有技术,本实用新型具如下有益效果:
本实用新型提出的新型溴化锂吸收式制冷机组及其制冷量调节方法,组成结构上,溴化锂机组在一般基础上,加装了超声波强化装置,利用超声空化效应,强化发生器内溴化锂-水溶液的传质传热过程;制冷量调节方法上,通过对制冷量调节方式进行优化,采用循环液变频调速技术与热水供给量调节模式智能结合,综合调节目标冷媒水出口温度。这种新型溴化锂吸收式制冷机组,有效地提高低温热源驱动下的溴化锂吸收式制冷机的制冷效率,降低制冷机组所需的最低驱动热源温度,更有效经济的实现制冷量调节目标,且不会破坏系统稳定运行特性。该调节方法适用于低温热水驱动的太阳能吸收式制冷系统,从而增强太阳能空调的制冷效果,促进其市场推广。
附图说明:
图1是本实用新型实施例的新型溴化锂制冷机组的结构示意图。
图2是本实用新型实施例的新型溴化锂制冷机组超声波强化装置的换能器安装侧视示意图。
图3是本实用新型实施例的新型溴化锂制冷机组超声波强化装置的换能器安装立体示意图。
图4是本实用新型实施例的新型溴化锂吸收式制冷机组制冷量调节方法总体方案图。
图5是本本实用新型实施例的新型溴化锂吸收式制冷机组制冷量调节方法的详细流程图。
附图标记包括:1-蒸发器出口温度变送器;2-蒸发器进口温度变送器;3-超声强化装置;4-发生器出口温度变送器;5-太阳能集热器;6-热水电控调节阀;7-热水泵;8-发生器进口温度变送器;9-流量变送器;10-发生器;11-高压腔体;12-冷凝器;13-蒸发器;14-吸收器;15-低压腔体;16-溶液泵;17-溶液热交换器;18-换能器。
具体实施方式
为了更好地理解本实用新型,下面结合附图和实施例对本实用新型的具体实施方法作进一步的说明,但本实用新型要求保护的范围不局限于此。
实施例一
如图1所示,本实施例在一台以85℃热水驱动的设计制冷量为10KW的小型太阳能溴化锂吸收式制冷机的一般结构基础上,加装了超声波强化装置,利用超声空化效应,强化发生器内溴化锂-水溶液的传质传热过程,具体如下:
一种新型溴化锂吸收式制冷机组,包括设置在高压腔体11内的发生器10和冷凝器12、设置在低压腔体15内的蒸发器13和吸收器14、为发生器10提供热水的太阳能集热器循环供热系统、溶液热交换器17、PLC控制系统、连接PLC控制系统的触摸屏显示器,所述蒸发器13用于与目标冷媒水换热,所述太阳能集热器循环供热系统包括通过管路依次连接形成热水循环回路的太阳能集热器5、热水电控调节阀6、热水泵7、发生器进口温度变送器8、流量变送器9、发生器出口温度变送器4,所述热水电控调节阀6、发生器进口温度变送器8、流量变送器9、发生器出口温度变送器4均与PLC控制系统电路连接,同时所述热水电控调节阀6与PLC控制系统之间采用闭环控制系统,以提高对热水电控调节阀的调节精度;
所述溶液热交换器17与吸收器13之间通过管道设置有将溴化锂稀溶液经溶液热交换器17泵送至发生器10的溶液泵16,所述溶液泵16通过变频器与PLC控制系统电路连接;
所述蒸发器13的目标冷媒水入口管道上设置有蒸发器进口温度变送器2,所述蒸发器13的目标冷媒水出口管道上设置有蒸发器出口温度变送器1。
具体来说,本实施例还包括超声强化装置3,所述超声强化装置3的换能器18直接安装于所在高压腔体11底部,超声波强化装置用超声空化效应,强化发生器内溴化锂-水溶液的传质传热过程;所示超声强化装置产生频率采用25kHz,工作功率采用500w,采用5个换能器18,直接安装于发生器10所在高压腔体底部,不同换能器18之间安装位置间隔为250mm,安装方式采用磁性吸附(见如2和图3)。该超声强化装置的工作方式为随机组启停,机组制冷期间持续运行。
本实施例提供的制冷机组利用太阳能集热器5将太阳能转化为热能进行水的加热,为机组的发生器10提供热水。当溴化锂制冷机工作时,工质吸收来自热水的热量,并产生制冷剂蒸汽,制冷剂蒸汽流动到冷凝器12中被冷却水吸收热量,凝结成液体,然后经过节流阀降压进入低压腔体15内被蒸发器13吸热蒸发,带走了外界冷媒水的热量,使其降温,降温后的外界冷媒水进入室内机中产生制冷效应。而蒸发产生的冷剂水蒸汽流动进入吸收器14,被溴化锂浓溶液吸收,溴化锂浓溶液吸收冷剂水蒸汽后变成溴化锂稀溶液,所述溴化锂稀溶液再经溶液泵16送入发生器10,如此利用水-溴化锂工质对的质量分数变化来完成溶液循环,制取冷量。其中,为了提高机组的热效率,设有溶液热交换器17用于在溴化锂稀溶液进入发生器10前预热。
本实施例提供的制冷机组利用超声波强化装置产生超声空化效应,强化发生器10内溴化锂-水溶液的传质传热过程;而PLC控制系统能够根据蒸发器出口温度变送器1获取的实际温度与设定温度的差值自动调节变频器和热水电控调节阀6的开度,采用循环液变频调速模式与热水供给量调节模式智能结合,综合调节目标冷媒水出口温度,达到组合制冷、智能制冷的目的(见图4)。这种新型溴化锂吸收式制冷机组,能有效地提高低温热源驱动下的溴化锂吸收式制冷机的制冷效率,降低制冷机组所需的最低驱动热源温度,促进其市场推广化。
实施例二
如图5所示,一种如所述新型溴化锂吸收式制冷机组的制冷量调节方法,包括步骤:
1)PLC控制系统将蒸发器出口温度变送器1实时获取的所述蒸发器13的目标冷媒水出口的实际温度Tr与通过触摸屏显示器设定的设定温度Ts进行比较,所述设定温度Ts为用户根据外界环境而设定的冷媒水出口目标温度,该数值一般要结合机组设计的热力参数以及机组运行时的建筑热负荷而确定,本实施例默认为10℃;
2)若1℃≤|Tr-Ts|<5℃时,PLC控制系统首先采用循环液变频调速模式,即调用PID算法调整变频器频率,即当5℃﹥Ts-Tr≥1℃时,变频器进行PID调节减少频率;当5℃﹥Tr-Ts≥1℃时,变频器进行PID调节增加频率;接着变频器作用于与其连接的溶液泵16,通过溶液泵16控制机组溴化锂稀溶液的循环流速,进而调节制冷量,直到|Tr-Ts|﹤1℃。
本实施例中,若|Tr-Ts|≥5℃时,还包括步骤:
3)检查热水电控调节阀6和变频器的工作状态,判断机组工作状态和热水电控调节阀6静止时间,以保证不会调节过度和避免频繁操作热水电控调节阀;
4)若机组未处于全负荷工作状态且热水电控调节阀6静止已达3分钟,则同时启动调节热水供给量模式,即PLC控制系统产生信号,所述信号使得热水电控调节阀6开度增加或减少5%,通过对制冷量调节方法进行优化,即采用循环液变频调速技术与热水供给量调节模式智能结合的方式,综合调节目标冷媒水出口温度,提高调解效率和精度;
5)热水电控调节阀6开度到位后静止3分钟,接着PLC控制系统将蒸发器出口温度变送器1实时获取的所述蒸发器13的目标冷媒水出口的实际温度Tr与通过触摸屏显示器设定的设定温度Ts进行比较,若|Tr-Ts|﹤1℃时,则完成制冷量调节,否则,则返回步骤3),继续通过调节热水电控调节阀6开度,直到|Tr-Ts|﹤1℃时,则完成制冷量调节。
本实施例中,当实际温度Tr高于设定温度Ts时,如果变频器频率跟热水电控调节阀6开度已达上限,则机组维持当前工作状态;当实际温度Tr低于设定温度Ts时,如果变频器频率跟热水电控调节阀6开度已达下限,则PLC控制系统启动黄色报警信号,同时机组停机,停止制冷进行稀释,起到保护系统以免发生结晶及其他故障的作用。
本实施例中,所述PLC控制系统产生信号控制热水电控调节阀6开度时,热水电控调节阀6通过闭环控制系统及时将当前开度反馈回PLC控制系统,所述PLC根据反馈数据判断并确保热水电控调节阀6到达目标开度时停止,形成闭环控制,以提高对热水电控调节阀的调节精度。
本实施例提供过的制冷量调节方法,综合采用循环液变频调速模式和调节热水供给量模式,优化了制冷机组的运行核心部分,改善了溴化锂溶液的循环过程,由于循环液变频调速模式是改变变频器的工作频率来实现制冷量调节的,当频率下降到一定程度时,会导致溶液泵扬程变得过小而导致循环无法进行,受到一定的限制,而使用热水供给量调节模式时,当机组制冷量下降到50%及以下时,经济性明显下降,综合考虑以上两者的优缺点,组合使用两种模式,可更有效经济的实现制冷量调节目标,且不会破坏系统稳定运行特性。该调节方法适用于低温热水驱动的太阳能吸收式制冷系统,从而增强太阳能空调的制冷效果。
最后应当说明的是,本实用新型的上述实施例仅仅是为清楚地说明本实用新型所作的举例,而并非是对本实用新型的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本实用新型的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型权利要求的保护范围之内。

Claims (5)

1.一种新型溴化锂吸收式制冷机组,包括设置在高压腔体(11)内的发生器(10)和冷凝器(12)、设置在低压腔体(15)内的蒸发器(13)和吸收器(14)、为发生器(10)提供热水的太阳能集热器循环供热系统、溶液热交换器(17)、PLC控制系统、连接PLC控制系统的触摸屏显示器,所述蒸发器(13)用于与目标冷媒水换热,其特征在于:
所述太阳能集热器循环供热系统包括通过管路依次连接形成热水循环回路的太阳能集热器(5)、热水电控调节阀(6)、热水泵(7)、发生器进口温度变送器(8)、流量变送器(9)、发生器出口温度变送器(4),所述热水电控调节阀(6)、发生器进口温度变送器(8)、流量变送器(9)、发生器出口温度变送器(4)均与PLC控制系统电路连接;
所述溶液热交换器(17)与吸收器(13)之间通过管道设置有将溴化锂稀溶液经溶液热交换器(17)泵送至发生器(10)的溶液泵(16),所述溶液泵(16)通过变频器与PLC控制系统电路连接;
所述蒸发器(13)的目标冷媒水入口管道上设置有蒸发器进口温度变送器(2),所述蒸发器(13)的目标冷媒水出口管道上设置有蒸发器出口温度变送器(1)。
2.根据权利要求1所述的新型溴化锂吸收式制冷机组,其特征在于:还包括超声强化装置(3),所述超声强化装置(3)的换能器(18)直接安装于所在高压腔体(11)底部。
3.根据权利要求2所述的新型溴化锂吸收式制冷机组,其特征在于:所述超声强化装置(3)产生频率为20kHz以上,工作功率为100w以上。
4.根据权利要求3所述的新型溴化锂吸收式制冷机组,其特征在于:所述换能器(18)的数量≥1个,当数量超过1个时,相邻换能器(18)之间的安装位置间隔相等且不小于100mm。
5.根据权利要求1所述的新型溴化锂吸收式制冷机组,其特征在于:所述热水电控调节阀(6)与PLC控制系统之间采用闭环控制系统。
CN201520669241.5U 2015-08-29 2015-08-29 一种新型溴化锂吸收式制冷机组 Expired - Fee Related CN204987537U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520669241.5U CN204987537U (zh) 2015-08-29 2015-08-29 一种新型溴化锂吸收式制冷机组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520669241.5U CN204987537U (zh) 2015-08-29 2015-08-29 一种新型溴化锂吸收式制冷机组

Publications (1)

Publication Number Publication Date
CN204987537U true CN204987537U (zh) 2016-01-20

Family

ID=55121901

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520669241.5U Expired - Fee Related CN204987537U (zh) 2015-08-29 2015-08-29 一种新型溴化锂吸收式制冷机组

Country Status (1)

Country Link
CN (1) CN204987537U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091398A (zh) * 2015-08-29 2015-11-25 华南理工大学 一种新型溴化锂吸收式制冷机组及其制冷量调节方法
CN106931677A (zh) * 2017-04-10 2017-07-07 松下制冷(大连)有限公司 溴化锂吸收式机组应用的循环泵全变频控制系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091398A (zh) * 2015-08-29 2015-11-25 华南理工大学 一种新型溴化锂吸收式制冷机组及其制冷量调节方法
CN105091398B (zh) * 2015-08-29 2017-10-20 华南理工大学 一种新型溴化锂吸收式制冷机组的制冷量调节方法
CN106931677A (zh) * 2017-04-10 2017-07-07 松下制冷(大连)有限公司 溴化锂吸收式机组应用的循环泵全变频控制系统
CN106931677B (zh) * 2017-04-10 2019-08-20 松下制冷(大连)有限公司 溴化锂吸收式机组应用的循环泵全变频控制系统

Similar Documents

Publication Publication Date Title
CN105091398A (zh) 一种新型溴化锂吸收式制冷机组及其制冷量调节方法
CN203375584U (zh) 冷热量储存式太阳能空调装置
CN102155772A (zh) 复叠式冰蓄冷空调系统和利用该系统对空调供冷的方法
CN1804511A (zh) 压缩-吸收复合式热泵供热系统
CN102628624A (zh) 复叠式溴化锂制冷和蓄冷系统
CN108332446B (zh) 一种低品位太阳能冷热电三联供系统及其运行方法
CN1811303A (zh) 单效热泵/双效(或多效)制冷吸收式机组和热电冷联供系统
CN201407781Y (zh) 应用双变频恒温控制技术的中央空调余热回收系统
CN103225861B (zh) 冷热量储存式太阳能空调装置
CN204987537U (zh) 一种新型溴化锂吸收式制冷机组
CN104482688A (zh) 一种太阳能吸收压缩复合式制冷系统及其方法
CN103438605B (zh) 吸收发生换热型吸收式制冷循环
CN203464410U (zh) 中央空调冷、热双温调控节能装置
CN204478354U (zh) 一种冰蓄冷空调控制系统
CN100453925C (zh) 三效吸收式冷冻装置
CN202675513U (zh) 一种热管热泵复合系统
CN202709539U (zh) 复叠式溴化锂制冷和蓄冷系统
CN104807244B (zh) 一种太阳能吸收式过冷压缩复合制冷系统及其制冷方法
CN213687059U (zh) 一种商场内区空调冷源系统
CN115264556A (zh) 一种双路输出的制冷采暖热水三联供空气源热泵系统
CN203939581U (zh) 采用复叠式溴化锂制冷机的燃气轮机进气冷却系统
CN103411346B (zh) 超高温吸收式溴化锂热泵
CN202092250U (zh) 复叠式冰蓄冷空调系统
CN203501533U (zh) 超高温吸收式溴化锂热泵
CN203478789U (zh) 一种制冷机组与蓄冰罐联合制冷系统

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120

Termination date: 20180829