CN204758824U - 一种海底冷泉水体回声反射探测系统 - Google Patents

一种海底冷泉水体回声反射探测系统 Download PDF

Info

Publication number
CN204758824U
CN204758824U CN201520382269.0U CN201520382269U CN204758824U CN 204758824 U CN204758824 U CN 204758824U CN 201520382269 U CN201520382269 U CN 201520382269U CN 204758824 U CN204758824 U CN 204758824U
Authority
CN
China
Prior art keywords
signal
electric signal
transducer array
transmitter
water body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201520382269.0U
Other languages
English (en)
Inventor
郭霖
石扬
申莹
贾永星
陈献军
苗清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Acoustics CAS
Original Assignee
Institute of Acoustics CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Acoustics CAS filed Critical Institute of Acoustics CAS
Priority to CN201520382269.0U priority Critical patent/CN204758824U/zh
Application granted granted Critical
Publication of CN204758824U publication Critical patent/CN204758824U/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本实用新型涉及一种海底冷泉水体回声反射探测系统,其包括:含有多个换能器组成的换能器基阵,电缆,收发合置开关,发射机,接收机,信号处理机,回声处理服务器和供电模块。所述的换能器基阵放置于水下,并且通过所述的电缆连接位于水上的所述的收发合置开关的一侧,在水上,所述的收发合置开关另一侧连接所述的发射机和所述的接收机,所述的发射机和所述的接收机分别连接所述的信号处理机,所述的信号处理机连接所述的回声处理服务器,所述的供电模块为整个系统提供电源。

Description

一种海底冷泉水体回声反射探测系统
技术领域
本实用新型涉及海洋技术领域,特别涉及一种海底冷泉水体回声反射探测系统。
背景技术
海底冷泉是指来自海底沉积地层的气体以喷涌或渗漏的方式逸出海底的一种海洋地质现象。海底冷泉的发育和分布一般与天然气水合物的分解或与海床下天然气及石油沿地质薄弱带的上升密切相关,海底冷泉已成为指示现代海底发育或尚存天然气水合物最有效的标志之一。天然气水合物在自然界有广泛的分布,尤其是在广阔的海底,储量惊人。据了解,全球天然气水合物的储量是现有天然气和石油储量的两倍,具有广阔的开发前景。天然气水合物是一种分布广,储量大,能量密度高的新型高效优质能源,清洁无污染。因此,本实用新型针对海底浅层气逸出气泡的特点,实现快速确定冷泉富集海域,进而促进天然气水合物的勘探,经济效益显著。
目前,国内的海洋气泡检测技术多采用水下摄像机等常规深潜器探测的检测手段,具有应用范围小,作业效率低等问题;采用声纳探测方法,具有方便,快捷,作业效率高等特点。
目前,探测冷泉的专用设备还在研发阶段,现有的设备只能探测到一些特有的气泡,如Geopulse系列、Chirp系列的浅地层剖面仪,只能探测到中等、大的浅层气逸出气泡和部分偶尔出现的大气泡。另外,测深仪主要是测量深度,只能探测到较小的浅层气逸出气泡。此外,常规旁侧声纳探测主要是图像方面的功能,单道地震、多道地震主要用来测量地震,且单道地震不会探测到常见的浅层气逸出气泡,只能探测到偶尔出现的大气泡,探测范围较小;多道地震只能探测到大气泡,其远大于浅层气逸出气泡,易破碎。常规旁侧声纳探测到的气泡远小于常见的浅层气逸出气泡,不适于探测浅层气逸出气泡。
因此,国内自主研发的浅层气逸出气泡探测仪器已经迫在眉睫。
发明内容
本实用新型的目的在于,为解决现有方法探测冷泉速度慢和范围小的问题,本实用新型提供了一种海底冷泉水体回声反射探测系统。
本实用新型提供了一种海底冷泉水体回声反射探测系统,所述的海底冷泉水体回声反射探测系统包括:含有多个换能器组成的换能器基阵,电缆,收发合置开关,发射机,接收机,信号处理机,回声处理服务器和供电模块。所述的换能器基阵放置于水下,并且通过所述的电缆连接位于水上的所述的收发合置开关的一侧,在水上,所述的收发合置开关另一侧连接所述的发射机和所述的接收机,所述的发射机和所述的接收机分别连接所述的信号处理机,所述的信号处理机连接所述的回声处理服务器,所述的供电模块为整个系统提供电源。
所述的含有多个换能器的换能器基阵为水下系统,水上系统包括:所述的收发合置开关,所述的发射机,所述的接收机,所述的信号处理机,所述的回声处理服务器和所述的供电模块。
所述的换能器基阵,包括换能器元件,支撑框架,安装接口,衬板,匹配层和密封件。所述的衬板覆盖在所述的支撑框架上,所述的衬板上包含有呈等间距排列的孔,所述的换能器元件呈等间距放入所述的衬板的孔中,所述的匹配层置于所述的换能器元件的正上方,增加工作带宽,确保所述的换能器基阵发射宽带信号;所述的密封件紧密连接在所述的支撑框架的下方,形成水密封,且连接所述的电缆的端口。所述的安装接口为备用接口,起到固定的作用。所述的换能器基阵的工作范围为2-4000m。所述的换能器基阵将接收或发射的信号进行电信号与声信号之间的转换,即在发射时,将所述的发射机输出的宽带多频点电信号转换成声信号;在接收时,将接收到的宽带多频点声学回波信号转换成微弱的电信号发送给所述的接收机。
所述的电缆,采用水密电缆。
所述的发射机包括匹配网络和功率放大器,所述的匹配网络用来实现功率放大器与换能器基阵之间的阻抗匹配,进而提高电信号与声信号之间的转换效率,所述的功率放大器用来放大发射信号的功率。因此,所述的探测系统的工作频率范围选为10-20kHz。
所述的接收机包括前级放大器,滤波器,含增益控制的后级放大器和数据采集器,所述的前级放大器将电信号进行前级放大,所述的滤波器对前级放大后的电信号进行滤波,所述的后级放大器对滤波后的电信号进行后级放大,所述的数据采集器用来将经后级放大器放大的电信号转换成数字化的电信号。
所述的回声处理服务器上连接人机接口,显示设备和GPS设备,
所述的供电模块包括电源和电源控制单元,电源和电源控制单元连接。
本实用新型的优点在于:采用了多个换能器组合成换能器基阵的方式,简化了换能器的加工工艺;采用了船底,船舷或拖拽的方式,简单方便,有利的加快了探测海底冷泉的探测速度,同时也使得探测范围增大了,通过采用宽带多频点的声学探测技术,可探测出不同尺寸的逸出气泡。
附图说明
图1是海底冷泉水体回声反射探测系统的整体结构示意图
1、换能器基阵2、电缆
3、收发合置开关4、发射机
5、接收机6、信号处理机
7、回声处理服务器8、供电模块
图2是海底冷泉水体回声反射探测系统的水上和水下的系统框图
1、换能器基阵2、电缆
3、收发合置开关4、发射机
5、接收机6、信号处理机
7、回声处理服务器8、供电模块
9、显示设备10、GPS设备
11、人机接口81、电源
82、电源控制单元
图3是海底冷泉水体回声反射探测系统接收机和发射机的原理框图
41、匹配网络42、功率放大器
51、前级放大器52、滤波器
53、含增益控制的后级放大器54、数据采集器
图4是海底冷泉水体回声反射探测系统的换能器基阵结构示意图
12、换能器元件13、安装接口
14、衬板15、匹配层
16、密封件17、支撑框架
具体实施方式
现结合附图对本实用新型作进一步的描述。
如图1所示,所述的海底冷泉水体回声反射探测系统包括:含有多个换能器组成的换能器基阵1,电缆2,收发合置开关3,发射机4,接收机5,信号处理机6,回声处理服务器7和供电模块8。所述的换能器基阵1放置于水下,并且通过所述的电缆2连接在位于水上的所述的收发合置开关3的一侧,在水上,所述的收发合置开关3另一侧连接所述的发射机4和所述的接收机5,所述的发射机4和所述的接收机5分别连接所述的信号处理机6,所述的信号处理机6连接所述的回声处理服务器7,所述的供电模块8为整个系统提供电源。
如图2所示,所述的含有多个换能器的换能器基阵1为水下系统,水上系统包括:所述的收发合置开关3,所述的发射机4,所述的接收机5,所述的信号处理机6,所述的回声处理服务器7和所述的供电模块8。
如图4所示,所述的换能器基阵1,包括换能器元件12,支撑框架17,安装接口13,衬板14,匹配层15和密封件16。所述的衬板14覆盖在所述的支撑框架上,所述的衬板14上包含有呈等间距排列的孔,所述的换能器元件12呈等间距放入所述的衬板14的孔中,所述的匹配层15置于所述的换能器元件12的正上方,增加工作带宽,确保所述的换能器基阵1可以发射宽带信号;所述的密封件16紧密连接在所述的支撑框架17的下方,形成水密封,且连接所述的电缆2的端口。所述的安装接口为备用接口,起到固定的作用。所述的换能器基阵1的工作范围为2-4000m。所述的换能器基阵1将接收或发射的信号进行电信号与声信号之间的转换,即在发射时,将所述的发射机4输出宽带多频点的电信号转换成声信号;在接收时,将接收到宽带多频点的声学回波信号转换成微弱的电信号发送给所述的接收机5。
所述的电缆2,采用水密电缆。
如图3所示,所述的发射机4包括匹配网络41和功率放大器42,所述的匹配网络用来实现功率放大器与换能器基阵之间的阻抗匹配,进而提高电信号与声信号之间的转换效率,所述的功率放大器用来放大发射信号的功率。根据宽带多频点的声学探测技术,所述的换能器基阵会发出多个工作频率,而气泡的尺寸和深度又影响了气泡的共振频率,因此,当所述的系统的工作频率与气泡的共振频率相同时,气泡的声学目标最大、强度最强,气泡最容易被探测到,才会探测到多尺寸的气泡。由于高频声信号在海水中的吸收比较大,所述的工作频率范围选为10-20kHz。
如图3所示,所述的接收机5包括前级放大器51,滤波器52,含增益控制的后级放大器53和数据采集器54,所述的前级放大器51将电信号进行前级放大,所述的滤波器52对前级放大后的电信号进行滤波,所述的后级放大器53对滤波后的电信号进行后级放大,所述的数据采集器54用来将经后级放大器放大的电信号转换成数字化的电信号。
所述的回声处理服务器7上连接人机接口,显示设备和GPS设备,
所述的供电模块8包括电源和电源控制单元,电源和电源控制单元连接。
如图2所示,所述的供电模块8开始工作,所述的回声处理服务器7通过人机接口11接收人为和远程的探测操作或指令,进而所述的信号处理机生成宽带多频点的发射信号,该发射信号经所述的发射机4放大后传输给所述的收发合置开关3,该信号通过所述的电缆2到达所述的换能器基阵1,所述的换能器基阵1将该发射信号由电信号转换为声信号发射出去。随后,所述的换能器基阵1接收该声信号的声学回波信号,并将其转换成微弱的电信号,通过所述的电缆2和所述的收发合置开关3将电信号传输到所述的接收机5,所述的接收机5将微弱的电信号接收,该电信号在所述的接收机5中经过滤波和放大。随后,传输到所述的信号处理机6,所述的信号处理机6接收来自所述的接收机的电信号,并且对该电信号进行信号处理,控制系统工作过程及工作状态。所述的回声处理服务器7接收来自所述的信号处理机的电信号,根据声波强度的高低形成灰度像素并提取位置、形状、高度、强度等特征参数,结合水体回声反射图像处理技术处理特征参数,将该电信号转换为逸出气泡的图像,随后在所述的显示设备上,采用声纳图像显示技术,显示探测结果,再根据逸出气泡的特性来判别所述的电信号对应的声信号是否为冷泉,如果判断该声信号为冷泉信号,则通过GPS设备10来记录位置信息,通过显示设备9来显示图像并且保存图像。
最后所应说明的是,以上实施例仅用以说明本实用新型的技术方案而非限制。尽管参照实施例对本实用新型进行了详细说明,本领域的普通技术人员应当理解,对本实用新型的技术方案进行修改或者等同替换,都不脱离本实用新型技术方案的精神和范围,其均应涵盖在本实用新型的权利要求范围当中。

Claims (8)

1.一种海底冷泉水体回声反射探测系统,其特征在于,所述的海底冷泉水体回声反射探测系统包括:含有多个换能器组成的换能器基阵,电缆,收发合置开关,发射机,接收机,信号处理机,回声处理服务器和供电模块,所述的换能器基阵放置于水下,并且通过所述的电缆连接位于水上的所述的收发合置开关的一侧,在水上,所述的收发合置开关另一侧连接所述的发射机和所述的接收机,所述的发射机和所述的接收机分别连接所述的信号处理机,所述的信号处理机连接所述的回声处理服务器,所述的供电模块为整个系统提供电源。
2.根据权利要求1所述的海底冷泉水体回声反射探测系统,其特征在于,所述的含有多个换能器的换能器基阵为水下系统,水上系统包括:所述的收发合置开关,所述的发射机,所述的接收机,所述的信号处理机,所述的回声处理服务器和所述的供电模块。
3.根据权利要求1所述的海底冷泉水体回声反射探测系统,其特征在于,所述的换能器基阵,包括换能器元件,支撑框架,安装接口,衬板,匹配层和密封件,所述的衬板覆盖在所述的支撑框架上,所述的衬板上包含有呈等间距排列的孔,所述的换能器元件呈等间距放入所述的衬板的孔中,所述的匹配层置于所述的换能器元件的正上方,增加工作带宽,确保所述的换能器基阵发射宽带信号;所述的密封件紧密连接在所述的支撑框架的下方,形成水密封,且连接所述的电缆的端口,所述的安装接口为备用接口,起到固定的作用,所述的换能器基阵的工作范围为2-4000m,所述的换能器基阵将接收或发射的信号进行电信号与声信号之间的转换,即在发射时,将所述的发射机输出的宽带多频点电信号转换成声信号;在接收时,将接收到的宽带多频点声学回波信号转换成微弱的电信号发送给所述的接收机。
4.根据权利要求1所述的海底冷泉水体回声反射探测系统,其特征在于,所述的电缆,采用水密电缆。
5.根据权利要求1所述的海底冷泉水体回声反射探测系统,其特征在于,所述的发射机包括匹配网络和功率放大器,所述的匹配网络用来实现功率放大器与换能器基阵之间的阻抗匹配,进而提高电信号与声信号之间的转换效率,所述的功率放大器用来放大发射信号的功率,所述的探测系统的工作频率范围选为10-20kHz。
6.根据权利要求1所述的海底冷泉水体回声反射探测系统,其特征在于,所述的接收机包括前级放大器,滤波器,含增益控制的后级放大器和数据采集器,所述的前级放大器将电信号进行前级放大,所述的滤波器对前级放大后的电信号进行滤波,所述的后级放大器对滤波后的电信号进行后级放大,所述的数据采集器用来将经后级放大器放大的电信号转换成数字化的电信号。
7.根据权利要求1所述的海底冷泉水体回声反射探测系统,其特征在于,所述的回声处理服务器上连接人机接口,显示设备和GPS设备。
8.根据权利要求1所述的海底冷泉水体回声反射探测系统,其特征在于,所述的供电模块包括电源和电源控制单元,电源和电源控制单元连接。
CN201520382269.0U 2015-06-05 2015-06-05 一种海底冷泉水体回声反射探测系统 Withdrawn - After Issue CN204758824U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520382269.0U CN204758824U (zh) 2015-06-05 2015-06-05 一种海底冷泉水体回声反射探测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520382269.0U CN204758824U (zh) 2015-06-05 2015-06-05 一种海底冷泉水体回声反射探测系统

Publications (1)

Publication Number Publication Date
CN204758824U true CN204758824U (zh) 2015-11-11

Family

ID=54473519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520382269.0U Withdrawn - After Issue CN204758824U (zh) 2015-06-05 2015-06-05 一种海底冷泉水体回声反射探测系统

Country Status (1)

Country Link
CN (1) CN204758824U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106125078A (zh) * 2016-08-29 2016-11-16 苏州探海海洋科技有限责任公司 一种水下多维声学成像系统和方法
CN106291564A (zh) * 2015-06-05 2017-01-04 中国科学院声学研究所 一种海底冷泉水体回声反射探测系统和方法
CN111273295A (zh) * 2020-02-21 2020-06-12 北京联合声信海洋技术有限公司 一种水下测高仪

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291564A (zh) * 2015-06-05 2017-01-04 中国科学院声学研究所 一种海底冷泉水体回声反射探测系统和方法
CN106291564B (zh) * 2015-06-05 2019-06-04 中国科学院声学研究所 一种海底冷泉水体回声反射探测系统和方法
CN106125078A (zh) * 2016-08-29 2016-11-16 苏州探海海洋科技有限责任公司 一种水下多维声学成像系统和方法
CN106125078B (zh) * 2016-08-29 2018-11-06 中科探海(苏州)海洋科技有限责任公司 一种水下多维声学成像系统和方法
CN111273295A (zh) * 2020-02-21 2020-06-12 北京联合声信海洋技术有限公司 一种水下测高仪

Similar Documents

Publication Publication Date Title
CN106291564B (zh) 一种海底冷泉水体回声反射探测系统和方法
KR101281630B1 (ko) 수중 표적 탐지 장치 및 그 방법
CN102393196B (zh) 一种海洋内波声学探测方法
WO2003100451A3 (en) Gps-based underwater cable positioning system
CN100430694C (zh) 多波束宽覆盖海底地形地貌探测装置
CN111308474B (zh) 拖曳式深海海底浅层结构声学探测系统及方法
CN104237891A (zh) 一种多频测深的装置及方法
NO333409B1 (no) Anordning og fremgangsmate for akustisk posisjonering av en seismisk havbunnskabel
CN105953079A (zh) 一种油气管道清管球定位系统
CN204758824U (zh) 一种海底冷泉水体回声反射探测系统
RU137126U1 (ru) Гидроакустический комплекс надводного корабля
CN101644778B (zh) 手持式成像声纳及其成像方法
CN107702698A (zh) 一种深海逆式回声测量系统及测量方法
CN103941260A (zh) 一种水下声学视频成像装置
CN202904016U (zh) 渔船用多探头水下探测仪
CN108267744A (zh) 一种模块化嵌入式侧扫声纳系统
US20220378026A1 (en) Ropeless fishing system and method
CN208477107U (zh) 一种多频多波束测深系统
CN103983977A (zh) 一种五波束探鱼仪
CN109342569B (zh) 一种淤泥质海底航道边坡稳定性实时监测方法
CN207317800U (zh) 一种深海逆式回声测量系统
CN103557843B (zh) 一种紧凑型水下微地形测量仪
CN114455042B (zh) 一种基于水下滑翔机的智能水声探测系统
Akamatsu et al. Acoustically invisible feeding blue whales in Northern Icelandic waters
CN204028360U (zh) 一种水下声学视频成像装置

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned

Granted publication date: 20151111

Effective date of abandoning: 20190604

AV01 Patent right actively abandoned

Granted publication date: 20151111

Effective date of abandoning: 20190604