CN204719281U - There is the layer-stranding cable of gasket for packing - Google Patents

There is the layer-stranding cable of gasket for packing Download PDF

Info

Publication number
CN204719281U
CN204719281U CN201520250605.6U CN201520250605U CN204719281U CN 204719281 U CN204719281 U CN 204719281U CN 201520250605 U CN201520250605 U CN 201520250605U CN 204719281 U CN204719281 U CN 204719281U
Authority
CN
China
Prior art keywords
gasket
loose tube
packing
fixed bed
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201520250605.6U
Other languages
Chinese (zh)
Inventor
龚利芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Changsheng Computer Network Technology Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201520250605.6U priority Critical patent/CN204719281U/en
Application granted granted Critical
Publication of CN204719281U publication Critical patent/CN204719281U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

The utility model belongs to technical field of cables, especially the layer-stranding cable with gasket for packing is related to, it includes cable core, be positioned at first outside cable core, second protective seam, restrictive coating, it is characterized in that cable core is by the reinforcement being positioned at central authorities, around the Loose tube that reinforcement is stranded, gasket for packing, the fixed bed of all Loose tube and all gasket for packing integral coating being lived is formed, Loose tube is nontangential mutually, gasket for packing is nontangential mutually, adjacent Loose tube and gasket for packing are nontangential mutually, fixed bed extend into Loose tube, in the internal clearance that gasket for packing is formed, in every root Loose tube, all there is at least one light transmitting fiber, the quantity of Loose tube and the quantity sum of gasket for packing are not less than 3, fixed bed is liquid sealing relative to the Loose tube of inside and gasket for packing.The utility model have structure simple, be easy to make, more save cost, stable optical performance after the temperature scope that broadens becomes, the machinery and equipment of use is simple, less investment; The beneficial effects such as block-water effect is excellent, cable core length is known.

Description

There is the layer-stranding cable of gasket for packing
Technical field
The utility model belongs to technical field of cables, especially relates to the layer-stranding cable and method for making with gasket for packing.
Background technology
People's Republic of China's post and telecommunications industry standard: the basic structure and the requirement that define layer-stranding cable in YD/T 901-2009; its layer-stranding cable be by many Loose tube and presumable gasket for packing stranded around central reinforce member; then dress outside yarn class material at intertwist body and form cable core; cable core structure is stablized; then at cable core bag coated protective seam formation layer-stranding cable again, fill in cable core gap or do not fill the material that blocks water.Mainly there is following defect in this structure: higher for wrapping yarn class material requirement, enough intensity should be had, fracture is unlikely in machine wrapping, require that again having low temperature becomes contraction or expansion performance, if it is excessive that temperature becomes contraction, easily cause and stab Loose tube, cause fibercuts what is more, have a strong impact on communication; If warm variable expansion is excessive, wrapping can be made not tight, insecure, cause intertwist body coiling or scattering in using, Loose tube is out of shape and causes Optical Fiber Transmission performance to reduce.
On the other hand, reach effectively block water to make optical cable core, need all to fill the material that blocks water intertwist body is inside and outside, the filling of the material that blocks water needs the equipment of specialty, and not easily reaches desirable block-water effect.
Intertwist body, owing to using the wrapping of yarn class material, therefore, cannot learn the length of intertwist body by easy method.
For this reason, people expect have better method to solve the problems referred to above.
Utility model content
In order to solve the problem, one of the purpose of this utility model discloses a kind of layer-stranding cable with gasket for packing; Two of the purpose of this utility model discloses the method for making of this layer-stranding cable; They realize by the following technical solutions.
Layer-stranding cable in first embodiment of the present utility model, it includes cable core and extrusion molding and is coated on restrictive coating outside cable core, it is characterized in that described cable core by be positioned at central authorities reinforcement, form around the stranded many Loose tube of reinforcement, the fixed bed that all Loose tube integral coating are lived, the packed layer be positioned at outside fixed bed, any two adjacent Loose tube are mutually circumscribed, all have at least one light transmitting fiber in every root Loose tube; Fixed bed is liquid sealing relative to the Loose tube of inside, and the material of fixed bed is polypropylene or tygon or polybutylene terephthalate.
The layer-stranding cable of another kind of embodiment in first embodiment of the present utility model, it includes cable core and extrusion molding and is coated on restrictive coating outside cable core, it is characterized in that described cable core by be positioned at central authorities reinforcement, form around the stranded many Loose tube of reinforcement, the fixed bed that all Loose tube integral coating are lived, the packed layer be positioned at outside fixed bed, adjacent Loose tube can also be nontangential mutually between two, and the spacing maximum between adjacent Loose tube is 0.2mm; Fixed bed extend in the internal clearance of Loose tube formation, all has at least one light transmitting fiber in every root Loose tube; Fixed bed is liquid sealing relative to the Loose tube of inside, and the material of fixed bed is polypropylene or tygon or polybutylene terephthalate.
Layer-stranding cable described above, it is characterized in that the material of described packed layer is polypropylene or tygon, and the material of packed layer and the material of fixed bed is not identical.
Layer-stranding cable in second embodiment of the present utility model, it includes cable core and extrusion molding and is coated on restrictive coating outside cable core, it is characterized in that described cable core by be positioned at central authorities reinforcement, around the stranded many Loose tube of reinforcement, the fixed bed that all Loose tube integral coating are lived is formed, the Loose tube of arbitrary neighborhood is nontangential mutually between two, and the spacing maximum between adjacent Loose tube is 0.2mm, fixed bed extend in the internal clearance of Loose tube formation, all has at least one light transmitting fiber in every root Loose tube; Fixed bed is liquid sealing relative to the Loose tube of inside, and the material of fixed bed is polypropylene or tygon or polybutylene terephthalate.
Further, layer-stranding cable described in embodiment two, it includes cable core and extrusion molding and is coated on restrictive coating outside cable core, it is characterized in that described cable core by be positioned at central authorities reinforcement, around the stranded many Loose tube of reinforcement, the fixed bed that all Loose tube integral coating are lived is formed, adjacent Loose tube is mutually circumscribed, all has at least one light transmitting fiber in every root Loose tube; Fixed bed is liquid sealing relative to the Loose tube of inside, and the material of fixed bed is polypropylene or tygon or polybutylene terephthalate.
Layer-stranding cable in 3rd embodiment of the present utility model, it includes cable core and extrusion molding and is coated on restrictive coating outside cable core, it is characterized in that described cable core is by the reinforcement being positioned at central authorities, around at least one Loose tube that reinforcement is stranded, at least one gasket for packing, the fixed bed of all Loose tube and gasket for packing integral coating being lived is formed, when having many Loose tube, the Loose tube of arbitrary neighborhood is nontangential mutually, and the spacing maximum between adjacent Loose tube is 0.2mm, when having many gasket for packings, the gasket for packing of arbitrary neighborhood is nontangential mutually, and the spacing maximum between adjacent gasket for packing is 0.2mm, adjacent Loose tube and gasket for packing are nontangential mutually, and the spacing maximum between adjacent Loose tube and gasket for packing is 0.2mm, fixed bed extend into Loose tube, in the internal clearance that gasket for packing is formed, in every root Loose tube, all there is at least one light transmitting fiber, the quantity of Loose tube and the quantity sum of gasket for packing are not less than 3, fixed bed is liquid sealing relative to the Loose tube of inside and gasket for packing, and the material of fixed bed is polypropylene or tygon or polybutylene terephthalate.
Further, layer-stranding cable described in embodiment three, it includes cable core and extrusion molding and is coated on restrictive coating outside cable core, it is characterized in that described cable core is by the reinforcement being positioned at central authorities, around at least one Loose tube that reinforcement is stranded, at least one gasket for packing, the fixed bed of all Loose tube and gasket for packing integral coating being lived is formed, when having many Loose tube, the Loose tube of arbitrary neighborhood is tangent, when having many gasket for packings, the gasket for packing of arbitrary neighborhood is tangent, adjacent Loose tube and gasket for packing are tangent, in every root Loose tube, all there is at least one light transmitting fiber, the quantity of Loose tube and the quantity sum of gasket for packing are not less than 3, fixed bed is liquid sealing relative to the Loose tube of inside and gasket for packing, and the material of fixed bed is polypropylene or tygon or polybutylene terephthalate.
The layer-stranding cable with gasket for packing in 4th embodiment of the present utility model, it includes cable core, be positioned at the first protective seam outside cable core, be positioned at the second protective seam outside the first protective seam, and extrusion molding is coated on the restrictive coating outside the second protective seam, it is characterized in that described cable core is by the reinforcement being positioned at central authorities, around at least one Loose tube that reinforcement is stranded, at least one gasket for packing, the fixed bed of all Loose tube and all gasket for packing integral coating being lived is formed, when having many Loose tube, the Loose tube of arbitrary neighborhood is nontangential mutually, and the spacing maximum between adjacent Loose tube is 0.2mm, when having many gasket for packings, the gasket for packing of arbitrary neighborhood is nontangential mutually, and the spacing maximum between adjacent gasket for packing is 0.2mm, adjacent Loose tube and gasket for packing are nontangential mutually, and the spacing maximum between adjacent Loose tube and gasket for packing is 0.2mm, fixed bed extend into Loose tube, in the internal clearance that gasket for packing is formed, in every root Loose tube, all there is at least one light transmitting fiber, the quantity of Loose tube and the quantity sum of gasket for packing are not less than 3, fixed bed is liquid sealing relative to the Loose tube of inside and gasket for packing, and the material of fixed bed is polypropylene or tygon or polybutylene terephthalate, the material of the first protective seam is waterstop, and the material of the second protective seam is steel band or aluminium strip.
Further, the layer-stranding cable with gasket for packing described in embodiment four, it includes cable core, be positioned at the first protective seam outside cable core, be positioned at the second protective seam outside the first protective seam, and extrusion molding is coated on the restrictive coating outside the second protective seam, it is characterized in that described cable core is by the reinforcement being positioned at central authorities, around at least one Loose tube that reinforcement is stranded, at least one gasket for packing, the fixed bed of all Loose tube and all gasket for packing integral coating being lived is formed, when having many Loose tube, the Loose tube of arbitrary neighborhood is tangent, when having many gasket for packings, the gasket for packing of arbitrary neighborhood is tangent, adjacent Loose tube and gasket for packing are tangent, in every root Loose tube, all there is at least one light transmitting fiber, the quantity of Loose tube and the quantity sum of gasket for packing are not less than 3, fixed bed is liquid sealing relative to the Loose tube of inside and gasket for packing, and the material of fixed bed is polypropylene or tygon or polybutylene terephthalate, the material of the first protective seam is waterstop, and the material of the second protective seam is steel band or aluminium strip.
The method for making with the layer-stranding cable of gasket for packing described in the utility model, is characterized in that it includes following steps:
The first step: the step of colouring optical fibres: get G.652 type or G.653 type G.654 type or G.655 type G.656 type or G.657 type or A1a type or A1b type or A1c type or A1d type or OM1 type or OM2 type or the naked light transmitting fiber of OM3 type on optical fiber coloring machine, carry out UV solidification painted, make the thickness of dyed layer be 1 ~ 3 μm, color solidification degree >=85%; Repeated multiple times, form many light transmitting fibers, any two different fibre-optic dyed layers have different colors;
Second step: Loose tube forming step: get modified polypropene or polybutylene terephthalate melts in the spiral shell chamber of secondary coated extruding machine, and the color masterbatch adding the color masterbatch of 1% ~ 3% of modified polypropene general assembly (TW) or 1% ~ 3% of polybutylene terephthalate general assembly (TW) melts together and stirs; Be there is by the stretched inside of the extrusion head of secondary coated extruding machine the original Loose tube of cavity, the light transmitting fiber that the first step is formed is penetrated in the cavity of original Loose tube inside simultaneously, drawing original Loose tube makes the light transmitting fiber in cavity move the bosh of 20 ~ 40 DEG C with original Loose tube, form finished product Loose tube, fibre-optic length in finished product Loose tube is 1.002 ~ 1.008 times of finished product Loose tube length, the light transmitting fiber in finished product Loose tube at least one; Repeated multiple times, form many finished product Loose tube;
3rd step: cable core forming step: (1) get steel wire or fiberglass-reinforced plastic lever to be placed on the reinforcement discharge device of cable-former as reinforcement and pull-out through the first stranded mould the first medium pore, then through the second stranded mould the first center pit, after the first interstitial hole of the 3rd stranded mould, cross cable core hole again through extrusion head inside; (2) that second step is formed and around the finished product Loose tube on dish tool by rolling wheels and through the first stranded mould the first edge hole, again through the second stranded mould the first hole, edge, then through the 3rd stranded mould the first holes around, then emptyly cross crossing cable core hole and guaranteeing that finished product Loose tube is positioned at outside reinforcement of extrusion head inside; There are many Loose tube and Loose tube is positioned at adjacent position time make adjacent Loose tube tangent; (3) get the gasket for packing that polypropylene or polythene material make, through the first stranded mould the first edge hole, again through the second stranded mould the first hole, edge, then through the 3rd stranded mould the first holes around, then emptyly cross crossing cable core hole and guaranteeing that finished product gasket for packing is positioned at outside reinforcement of extrusion head inside; Have many gasket for packings and gasket for packing is positioned at adjacent position time make adjacent gasket for packing tangent, gasket for packing and adjacent Loose tube tangent; (4) reinforcement of extrusion head, gasket for packing and Loose tube was drawn, and make the first stranded mould, the second stranded mould, the 3rd stranded mould synchronous axial system with rotating mechanism, the polypropylene of melting or tygon or polybutylene terephthalate are injected the injecting hole of extrusion head, adopt air extractor to make the polypropylene of melting or tygon or polybutylene terephthalate be close to finished product Loose tube in the right-hand member exit crossing cable core hole and gasket for packing forms fixed bed outward; And then formation cable core; The quantity of Loose tube and the quantity sum of gasket for packing are not less than 3;
Wherein, dish tool can rotate relative to fixing Fang Guan mechanism, and rolling wheels are positioned at the top of Fang Guan mechanism; Releasing direction along Loose tube: the front that Fang Guan mechanism is positioned at the rear of the first stranded mould, the second stranded mould is positioned at the first stranded mould, the 3rd stranded mould are positioned at the front of the second stranded mould, extrusion head is positioned at the 3rd stranded mould front; First medium pore, the first edge hole run through the first stranded mould and the first medium pore is positioned at the central authorities of the first stranded mould, first edge hole has multiple and to be distributed in outside the first medium pore and the first edge hole does not communicate with the first medium pore, and the distance of the first medium pore central axis and the first edge hole central axis is the first spacing; First center pit, the first hole, edge run through the second stranded mould and the first center pit is positioned at the central authorities of the second stranded mould, first hole, edge has multiple and is distributed in outside the first center pit and the first hole, edge and does not communicate with the first center pit, and the distance of the first center pit central axis and the first hole, edge central axis is the second spacing; First interstitial hole, the first holes around run through the second stranded mould and the first interstitial hole is positioned at the central authorities of the second stranded mould, first holes around has multiple and to be distributed in outside the first interstitial hole and the first holes around does not communicate with the first interstitial hole, first hole, edge has multiple and is distributed in outside the first center pit and the first hole, edge and does not communicate with the first center pit, and the distance of the first interstitial hole central axis and the first holes around central axis is the 3rd spacing; First spacing > second spacing > the 3rd spacing; The injecting hole of extrusion head is connected with mistake cable core hole;
4th step: the step forming the first protective seam: get outside the longitudinal cable core being coated on the 3rd step formation of waterstop and form the first protective seam, the overlapping widths of waterstop lap-joint is 2 ~ 4mm;
5th step: the step forming the second protective seam: get outside steel band or longitudinal the first protective seam being coated on the 4th step formation of aluminium strip and form the second protective seam, when the first protective seam diameter is not more than 8.5mm, the overlapping widths of steel band or aluminium strip lap-joint is not less than 20% of the first protective seam diameter; When the first protective seam diameter is greater than 8.5mm, the overlapping widths of steel band or aluminium strip lap-joint is not less than 5mm;
6th step: restrictive coating forming step: low-smoke non-halogen flame-retardant tygon or linear low density polyethylene or Low Density Polyethylene or medium density polyethylene or high density polyethylene are coated on outside the second protective seam that the 5th step formed by sheath extruding machine extrusion molding; form restrictive coating, complete the making of layer-stranding cable.
There is the another kind of method for making of the layer-stranding cable of gasket for packing, it is characterized in that it includes following steps:
The first step: the step of colouring optical fibres: get G.652 type or G.653 type G.654 type or G.655 type G.656 type or G.657 type or A1a type or A1b type or A1c type or A1d type or OM1 type or OM2 type or the naked light transmitting fiber of OM3 type on optical fiber coloring machine, carry out UV solidification painted, make the thickness of dyed layer be 1 ~ 3 μm, color solidification degree >=85%; Repeated multiple times, form many light transmitting fibers, any two different fibre-optic dyed layers have different colors;
Second step: Loose tube forming step: get modified polypropene or polybutylene terephthalate melts in the spiral shell chamber of secondary coated extruding machine, and the color masterbatch adding the color masterbatch of 1% ~ 3% of modified polypropene general assembly (TW) or 1% ~ 3% of polybutylene terephthalate general assembly (TW) melts together and stirs; Be there is by the stretched inside of the extrusion head of secondary coated extruding machine the original Loose tube of cavity, the light transmitting fiber that the first step is formed is penetrated in the cavity of original Loose tube inside simultaneously, drawing original Loose tube makes the light transmitting fiber in cavity move the bosh of 20 ~ 40 DEG C with original Loose tube, form finished product Loose tube, fibre-optic length in finished product Loose tube is 1.002 ~ 1.008 times of finished product Loose tube length, the light transmitting fiber in finished product Loose tube at least one; Repeated multiple times, form many finished product Loose tube;
3rd step: cable core forming step: (1) get steel wire or fiberglass-reinforced plastic lever to be placed on the reinforcement discharge device of cable-former as reinforcement and pull-out through the first stranded mould the first medium pore, then through the second stranded mould the first center pit, after the first interstitial hole of the 3rd stranded mould, cross cable core hole again through extrusion head inside; (2) that second step is formed and around the finished product Loose tube on dish tool by rolling wheels and through the first stranded mould the first edge hole, again through the second stranded mould the first hole, edge, then through the 3rd stranded mould the first holes around, then emptyly cross crossing cable core hole and guaranteeing that finished product Loose tube is positioned at outside reinforcement of extrusion head inside; There are many Loose tube and Loose tube is positioned at adjacent position time, the gap between the Loose tube that adjacent Loose tube is tangent and not adjacent is not more than 0.2mm; (3) get the gasket for packing that polypropylene or polythene material make, through the first stranded mould the first edge hole, again through the second stranded mould the first hole, edge, then through the 3rd stranded mould the first holes around, then emptyly cross crossing cable core hole and guaranteeing that finished product gasket for packing is positioned at outside reinforcement of extrusion head inside; Have many gasket for packings and gasket for packing is positioned at adjacent position time, adjacent gasket for packing is not tangent, and the gap between adjacent gasket for packing is not more than 0.2mm, and the gap between gasket for packing and adjacent Loose tube is not more than 0.2mm; (4) reinforcement of extrusion head, gasket for packing and Loose tube was drawn, and make the first stranded mould, the second stranded mould, the 3rd stranded mould synchronous axial system with rotating mechanism, the polypropylene of melting or tygon or polybutylene terephthalate are injected the injecting hole of extrusion head, adopt air extractor to make the polypropylene of melting or tygon or polybutylene terephthalate be close to finished product Loose tube in the right-hand member exit crossing cable core hole and gasket for packing outer and enter the fixed bed forming integration in the internal clearance that Loose tube formed; And then formation cable core; The quantity of Loose tube and the quantity sum of gasket for packing are not less than 3;
Wherein, dish tool can rotate relative to fixing Fang Guan mechanism, and rolling wheels are positioned at the top of Fang Guan mechanism; Releasing direction along Loose tube: the front that Fang Guan mechanism is positioned at the rear of the first stranded mould, the second stranded mould is positioned at the first stranded mould, the 3rd stranded mould are positioned at the front of the second stranded mould, extrusion head is positioned at the 3rd stranded mould front; First medium pore, the first edge hole run through the first stranded mould and the first medium pore is positioned at the central authorities of the first stranded mould, first edge hole has multiple and to be distributed in outside the first medium pore and the first edge hole does not communicate with the first medium pore, and the distance of the first medium pore central axis and the first edge hole central axis is the first spacing; First center pit, the first hole, edge run through the second stranded mould and the first center pit is positioned at the central authorities of the second stranded mould, first hole, edge has multiple and is distributed in outside the first center pit and the first hole, edge and does not communicate with the first center pit, and the distance of the first center pit central axis and the first hole, edge central axis is the second spacing; First interstitial hole, the first holes around run through the second stranded mould and the first interstitial hole is positioned at the central authorities of the second stranded mould, first holes around has multiple and to be distributed in outside the first interstitial hole and the first holes around does not communicate with the first interstitial hole, first hole, edge has multiple and is distributed in outside the first center pit and the first hole, edge and does not communicate with the first center pit, and the distance of the first interstitial hole central axis and the first holes around central axis is the 3rd spacing; First spacing > second spacing > the 3rd spacing; The injecting hole of extrusion head is connected with mistake cable core hole;
4th step: the step forming the first protective seam: get outside the longitudinal cable core being coated on the 3rd step formation of waterstop and form the first protective seam, the overlapping widths of waterstop lap-joint is 2 ~ 4mm;
5th step: the step forming the second protective seam: get outside steel band or longitudinal the first protective seam being coated on the 4th step formation of aluminium strip and form the second protective seam, when the first protective seam diameter is not more than 8.5mm, the overlapping widths of steel band or aluminium strip lap-joint is not less than 20% of the first protective seam diameter; When the first protective seam diameter is greater than 8.5mm, the overlapping widths of steel band or aluminium strip lap-joint is not less than 5mm;
6th step: restrictive coating forming step: low-smoke non-halogen flame-retardant tygon or linear low density polyethylene or Low Density Polyethylene or medium density polyethylene or high density polyethylene are coated on outside the second protective seam that the 5th step formed by sheath extruding machine extrusion molding; form restrictive coating, complete the making of layer-stranding cable.
Layer-stranding cable in the utility model have structure simple, be easy to make, more save cost, stable optical performance after the temperature scope that broadens becomes, the machinery and equipment of use is simple, less investment; The beneficial effects such as block-water effect is excellent, cable core length is known.
Accompanying drawing explanation
Fig. 1 is the cross-sectional structure schematic diagram of the utility model embodiment 1.
Fig. 2 is the cross-sectional structure schematic diagram of the utility model embodiment 2.
Fig. 3 is the cross-sectional structure schematic diagram of the utility model embodiment 3.
Fig. 4 is the cross-sectional structure schematic diagram of the utility model embodiment 4.
Fig. 5 is the perspective view of the stranded part used in the utility model manufacture method.
Embodiment
Embodiment 1 to embodiment 4 is embodiments of layer-stranding cable in the utility model; Embodiment 5 is embodiments of method for making in the utility model.
embodiment 1
Ask for an interview Fig. 1, layer-stranding cable, it includes cable core and extrusion molding and is coated on restrictive coating 6 outside cable core, it is characterized in that described cable core by be positioned at central authorities reinforcement 3, form around stranded three Loose tube 2 of reinforcement, the fixed bed 4 that all Loose tube integral coating are lived, the packed layer 5 be positioned at outside fixed bed, any two adjacent Loose tube are mutually circumscribed, all have eight light transmitting fibers 1 in every root Loose tube; Fixed bed is liquid sealing relative to the Loose tube of inside, and the material of fixed bed is polypropylene or tygon or polybutylene terephthalate.
Layer-stranding cable described above, is characterized in that described Loose tube can be other many, and the light transmitting fiber in every root Loose tube at least has one.
Further, layer-stranding cable described above, it is characterized in that described adjacent Loose tube can also be nontangential mutually between two, and the spacing maximum between adjacent Loose tube is 0.2mm; Fixed bed extend in the internal clearance of Loose tube formation.
Layer-stranding cable described above, it is characterized in that the material of described packed layer is polypropylene or tygon, and the material of packed layer and the material of fixed bed is not identical.
Layer-stranding cable described above, it includes cable core and extrusion molding and is coated on restrictive coating outside cable core, it is characterized in that described cable core by be positioned at central authorities reinforcement, form around the stranded many Loose tube of reinforcement, the fixed bed that all Loose tube integral coating are lived, the packed layer be positioned at outside fixed bed, any two adjacent Loose tube are mutually circumscribed, all have at least one light transmitting fiber in every root Loose tube; Fixed bed is liquid sealing relative to the Loose tube of inside, and the material of fixed bed is polypropylene or tygon or polybutylene terephthalate.
embodiment 2
Ask for an interview Fig. 2, layer-stranding cable, it includes cable core and extrusion molding and is coated on restrictive coating 6 outside cable core, it is characterized in that described cable core by be positioned at central authorities reinforcement 3, around stranded seven Loose tube 2 of reinforcement, the fixed bed 4 that all Loose tube integral coating are lived is formed, the Loose tube of arbitrary neighborhood is nontangential mutually between two, and the spacing maximum between adjacent Loose tube is 0.2mm, fixed bed extend in the internal clearance of Loose tube formation, all has eight light transmitting fibers 1 in every root Loose tube; Fixed bed is liquid sealing relative to the Loose tube of inside, and the material of fixed bed is polypropylene or tygon or polybutylene terephthalate.
Layer-stranding cable described above, is characterized in that described Loose tube can be other many, and the light transmitting fiber in every root Loose tube at least has one.
Layer-stranding cable described above can also be adjacent Loose tube is mutually circumscribed, and fixed bed does not extend in the internal clearance of Loose tube formation.
embodiment 3
Ask for an interview Fig. 3, layer-stranding cable, substantially with embodiment 2, difference is that wherein two Loose tube are filled rope 7 and replaces; The material of gasket for packing is polypropylene or tygon.
Layer-stranding cable in this embodiment, it includes cable core and extrusion molding and is coated on restrictive coating outside cable core, it is characterized in that described cable core is by the reinforcement being positioned at central authorities, around at least one Loose tube that reinforcement is stranded, at least one gasket for packing, the fixed bed of all Loose tube and gasket for packing integral coating being lived is formed, when having many Loose tube, the Loose tube of arbitrary neighborhood is nontangential mutually, and the spacing maximum between adjacent Loose tube is 0.2mm, when having many gasket for packings, the gasket for packing of arbitrary neighborhood is nontangential mutually, and the spacing maximum between adjacent gasket for packing is 0.2mm, adjacent Loose tube and gasket for packing are nontangential mutually, and the spacing maximum between adjacent Loose tube and gasket for packing is 0.2mm, fixed bed extend into Loose tube, in the internal clearance that gasket for packing is formed, in every root Loose tube, all there is at least one light transmitting fiber, the quantity of Loose tube and the quantity sum of gasket for packing are not less than 3, fixed bed is liquid sealing relative to the Loose tube of inside and gasket for packing, and the material of fixed bed is polypropylene or tygon or polybutylene terephthalate.
Further, layer-stranding cable described in this embodiment, it includes cable core and extrusion molding and is coated on restrictive coating outside cable core, it is characterized in that described cable core is by the reinforcement being positioned at central authorities, around at least one Loose tube that reinforcement is stranded, at least one gasket for packing, the fixed bed of all Loose tube and gasket for packing integral coating being lived is formed, when having many Loose tube, the Loose tube of arbitrary neighborhood is tangent, when having many gasket for packings, the gasket for packing of arbitrary neighborhood is tangent, adjacent Loose tube and gasket for packing are tangent, in every root Loose tube, all there is at least one light transmitting fiber, the quantity of Loose tube and the quantity sum of gasket for packing are not less than 3, fixed bed is liquid sealing relative to the Loose tube of inside and gasket for packing, and the material of fixed bed is polypropylene or tygon or polybutylene terephthalate.
embodiment 4
Ask for an interview Fig. 4, there is the layer-stranding cable of gasket for packing, it includes cable core, be positioned at the first protective seam 8 outside cable core, be positioned at the second protective seam 9 outside the first protective seam, and extrusion molding is coated on the restrictive coating 6 outside the second protective seam, it is characterized in that described cable core is by the reinforcement 3 being positioned at central authorities, around five Loose tube 2 that reinforcement is stranded, two gasket for packings 7, the fixed bed 4 that all Loose tube and all gasket for packing integral coating are lived is formed, the Loose tube of arbitrary neighborhood is nontangential mutually between two, the Loose tube of arbitrary neighborhood and gasket for packing are nontangential mutually between two, the gasket for packing of arbitrary neighborhood is nontangential mutually between two, and the spacing maximum between adjacent Loose tube is 0.2mm, spacing maximum between adjacent gasket for packing is 0.2mm, spacing maximum between adjacent Loose tube and gasket for packing is 0.2mm, fixed bed extend in the internal clearance of Loose tube and gasket for packing formation, all there are in every root Loose tube eight light transmitting fibers 1, fixed bed is liquid sealing relative to the Loose tube of inside and gasket for packing, and the material of fixed bed is polypropylene or tygon or polybutylene terephthalate, the material of the first protective seam is waterstop, and the material of the second protective seam is steel band or aluminium strip.
Certainly, in this embodiment, can also be be be tangent between tangent, adjacent Loose tube and gasket for packing between tangent, adjacent gasket for packing between adjacent Loose tube.
The layer-stranding cable with gasket for packing described in this embodiment, it includes cable core, be positioned at the first protective seam outside cable core, be positioned at the second protective seam outside the first protective seam, and extrusion molding is coated on the restrictive coating outside the second protective seam, it is characterized in that described cable core is by the reinforcement being positioned at central authorities, around at least one Loose tube that reinforcement is stranded, at least one gasket for packing, the fixed bed of all Loose tube and all gasket for packing integral coating being lived is formed, when having many Loose tube, the Loose tube of arbitrary neighborhood is nontangential mutually, and the spacing maximum between adjacent Loose tube is 0.2mm, when having many gasket for packings, the gasket for packing of arbitrary neighborhood is nontangential mutually, and the spacing maximum between adjacent gasket for packing is 0.2mm, adjacent Loose tube and gasket for packing are nontangential mutually, and the spacing maximum between adjacent Loose tube and gasket for packing is 0.2mm, fixed bed extend into Loose tube, in the internal clearance that gasket for packing is formed, in every root Loose tube, all there is at least one light transmitting fiber, the quantity of Loose tube and the quantity sum of gasket for packing are not less than 3, fixed bed is liquid sealing relative to the Loose tube of inside and gasket for packing, and the material of fixed bed is polypropylene or tygon or polybutylene terephthalate, the material of the first protective seam is waterstop, and the material of the second protective seam is steel band or aluminium strip.
Further, the layer-stranding cable with gasket for packing described in this embodiment, it includes cable core, be positioned at the first protective seam outside cable core, be positioned at the second protective seam outside the first protective seam, and extrusion molding is coated on the restrictive coating outside the second protective seam, it is characterized in that described cable core is by the reinforcement being positioned at central authorities, around at least one Loose tube that reinforcement is stranded, at least one gasket for packing, the fixed bed of all Loose tube and all gasket for packing integral coating being lived is formed, when having many Loose tube, the Loose tube of arbitrary neighborhood is tangent, when having many gasket for packings, the gasket for packing of arbitrary neighborhood is tangent, adjacent Loose tube and gasket for packing are tangent, in every root Loose tube, all there is at least one light transmitting fiber, the quantity of Loose tube and the quantity sum of gasket for packing are not less than 3, fixed bed is liquid sealing relative to the Loose tube of inside and gasket for packing, and the material of fixed bed is polypropylene or tygon or polybutylene terephthalate, the material of the first protective seam is waterstop, and the material of the second protective seam is steel band or aluminium strip.
The layer-stranding cable with gasket for packing described above, is characterized in that the thickness of described fixed bed is 0.05 ~ 0.5mm.
In this embodiment, the difference depending on application scenario can also be omitted separately the first protective seam or omit the second protective seam separately.
In embodiment 3 and embodiment 4, being not limited to two gasket for packings, can be other many gasket for packings, also can be an only gasket for packing.
Certainly, the layer-stranding cable in the utility model embodiment 1 to embodiment 3 described in arbitrary embodiment, as embodiment 4, can arrange the first protective seam and the second protective seam between cable core and restrictive coating; Further, can also the first protective seam be only set between cable core and restrictive coating or the second protective seam is only set.
Layer-stranding cable described in above-mentioned arbitrary embodiment, can also arranging multiple protective seam, as first arranged steel belt layer, then arranging external sheath layer outside restrictive coating, more effectively can protect optical fiber wherein like this, the performances such as mechanical resistance to compression are strengthened greatly; Nylon layer can also be set outside restrictive coating, the object of anti-ant can be reached like this; Etc., numerous.
Layer-stranding cable described in above-mentioned arbitrary embodiment, is characterized in that the material of described reinforcement is steel wire or fiberglass-reinforced plastic lever.
As simplifying further, layer-stranding cable described in above-mentioned embodiment 1,2, is characterized in that the Loose tube in described cable core can also be arranged in parallel, instead of stranded setting, be arranged in parallel the stranding device can saved in cabling device, even do not need cabling device; Certainly, Loose tube and optical fiber can also be saved due to the length of stranded generation, cost can be saved further.
As simplifying further, layer-stranding cable described in above-mentioned embodiment 3,4, is characterized in that the Loose tube in described cable core, gasket for packing can also be arranged in parallel, instead of stranded setting, be arranged in parallel the stranding device can saved in cabling device, even do not need cabling device; Certainly, Loose tube and optical fiber can also be saved due to the length of stranded generation, cost can be saved further.
Layer-stranding cable described in above-mentioned arbitrary embodiment, is characterized in that the material of described restrictive coating is low-smoke non-halogen flame-retardant tygon or linear low density polyethylene or Low Density Polyethylene or medium density polyethylene or high density polyethylene.
Layer-stranding cable described in above-mentioned arbitrary embodiment, is characterized in that the material of described Loose tube is modified polypropene or polybutylene terephthalate.
Layer-stranding cable described in above-mentioned arbitrary embodiment, is characterized in that described light transmitting fiber is G.652 type or G.653 type or G.654 type or G.655 type or G.656 type or G.657 type or A1a type or A1b type or A1c type or A1d type or OM1 type or OM2 type or OM3 type.
embodiment 5
Ask for an interview Fig. 5, and referring to figs. 1 to Fig. 4, the method for making of the layer-stranding cable described in embodiment 1, is characterized in that it includes following steps:
The first step: the step of colouring optical fibres: get G.652 type or G.653 type G.654 type or G.655 type G.656 type or G.657 type or A1a type or A1b type or A1c type or A1d type or OM1 type or OM2 type or the naked light transmitting fiber of OM3 type on optical fiber coloring machine, carry out UV solidification painted, make the thickness of dyed layer be 1 ~ 3 μm, color solidification degree >=85%; Eight times repeatedly, form eight light transmitting fibers, any two different fibre-optic dyed layers have different colors;
Second step: Loose tube forming step: get modified polypropene or polybutylene terephthalate melts in the spiral shell chamber of secondary coated extruding machine, and the color masterbatch adding the color masterbatch of 1% ~ 3% of modified polypropene general assembly (TW) or 1% ~ 3% of polybutylene terephthalate general assembly (TW) melts together and stirs; Be there is by the stretched inside of the extrusion head of secondary coated extruding machine the original Loose tube of cavity, the light transmitting fiber that the first step is formed is penetrated in the cavity of original Loose tube inside simultaneously, drawing original Loose tube makes the light transmitting fiber in cavity move the bosh of 20 ~ 40 DEG C with original Loose tube, form finished product Loose tube, the fibre-optic length in finished product Loose tube is 1.002 ~ 1.008 times of finished product Loose tube length; Three times repeatedly, form three finished product Loose tube 2;
3rd step: cable core forming step: (1) get steel wire or fiberglass-reinforced plastic lever to be placed on the reinforcement discharge device of cable-former as reinforcement 3 and pull-out through the first stranded mould 41 the first medium pore 410, then through the second stranded mould 42 the first center pit, after the first interstitial hole of the 3rd stranded mould 43, cross cable core hole 52 again through extrusion head 51 inside; (2) that second step is formed and around the finished product Loose tube 2 on the first dish tool 11 by the first rolling wheels 31 and through the first stranded mould 41 the first edge hole 411, again through the second stranded mould 42 the first hole, edge 421, then through the 3rd stranded mould 43 the first holes around 431, then emptyly cross crossing cable core hole and guaranteeing that finished product Loose tube is positioned at outside reinforcement of extrusion head 51 inside; That second step is formed and around the finished product Loose tube 2 on the second dish tool 12 by the second rolling wheels 32 and through the first stranded mould 41 the first edge hole 411, again through the second stranded mould 42 the first hole, edge 421, then through the 3rd stranded mould 43 the first holes around 431, then emptyly cross crossing cable core hole and guaranteeing that finished product Loose tube is positioned at outside reinforcement of extrusion head 51 inside; That second step is formed and around the finished product Loose tube 2 on the 3rd dish tool 13 by the 3rd rolling wheels 33 and through the first stranded mould 41 the first edge hole 411, again through the second stranded mould 42 the first hole, edge 421, then through the 3rd stranded mould 43 the first holes around 431, then emptyly cross crossing cable core hole and guaranteeing that finished product Loose tube is positioned at outside reinforcement of extrusion head 51 inside; Make adjacent Loose tube tangent; (3) reinforcement and the Loose tube of extrusion head was drawn, and make the first stranded mould, the second stranded mould, the 3rd stranded mould synchronous axial system with rotating mechanism, the polypropylene of melting or tygon or polybutylene terephthalate are injected the injecting hole 53 of extrusion head, adopt air extractor to make the polypropylene of melting or tygon or polybutylene terephthalate be close to finished product Loose tube in the right-hand member exit crossing cable core hole and form fixed bed outward; (4) bar getting polypropylene or tygon formation is filled in outside fixed bed and forms packed layer; And then formation cable core; The material of packed layer and the material of fixed bed are not identical;
Wherein, the first dish tool 11 can rotate relative to the first fixing Fang Guan mechanism 21, and the first rolling wheels 31 are positioned at the top of the first Fang Guan mechanism 21; Second dish tool 12 can rotate relative to the second fixing Fang Guan mechanism 22, and the second rolling wheels 32 are positioned at the top of the second Fang Guan mechanism 22; 3rd dish tool 13 can rotate relative to the 3rd fixing Fang Guan mechanism 23, and the 3rd rolling wheels 33 are positioned at the top of the 3rd Fang Guan mechanism 23; Releasing direction along Loose tube: the front that the front that the 3rd Fang Guan mechanism is positioned at the front of the second Fang Guan mechanism, the second Fang Guan mechanism is positioned at the first Fang Guan mechanism, the first Fang Guan mechanism are positioned at the rear of the first stranded mould, the second stranded mould is positioned at the first stranded mould, the 3rd stranded mould are positioned at the front of the second stranded mould, extrusion head is positioned at the 3rd stranded mould front; First medium pore, the first edge hole run through the first stranded mould and the first medium pore is positioned at the central authorities of the first stranded mould, first edge hole has multiple and to be distributed in outside the first medium pore and the first edge hole does not communicate with the first medium pore, and the distance of the first medium pore central axis and the first edge hole central axis is the first spacing; First center pit, the first hole, edge run through the second stranded mould and the first center pit is positioned at the central authorities of the second stranded mould, first hole, edge has multiple and is distributed in outside the first center pit and the first hole, edge and does not communicate with the first center pit, and the distance of the first center pit central axis and the first hole, edge central axis is the second spacing; First interstitial hole, the first holes around run through the second stranded mould and the first interstitial hole is positioned at the central authorities of the second stranded mould, first holes around has multiple and to be distributed in outside the first interstitial hole and the first holes around does not communicate with the first interstitial hole, first hole, edge has multiple and is distributed in outside the first center pit and the first hole, edge and does not communicate with the first center pit, and the distance of the first interstitial hole central axis and the first holes around central axis is the 3rd spacing; First spacing > second spacing > the 3rd spacing; The injecting hole of extrusion head is connected with mistake cable core hole;
4th step: restrictive coating forming step: low-smoke non-halogen flame-retardant tygon or linear low density polyethylene or Low Density Polyethylene or medium density polyethylene or high density polyethylene are coated on outside the cable core that the 3rd step formed by sheath extruding machine extrusion molding, form restrictive coating, complete the making of layer-stranding cable.
Certainly, in said method, Loose tube is not limited to three, also can be many; As long as correspondingly increase the coiling dish tool of Loose tube, Fang Guan mechanism, rolling wheels; Light transmitting fiber in Loose tube is also not limited to eight, but is at least one.
The method for making with the layer-stranding cable of gasket for packing described in embodiment 4, is characterized in that it includes following steps:
The first step: the step of colouring optical fibres: get G.652 type or G.653 type G.654 type or G.655 type G.656 type or G.657 type or A1a type or A1b type or A1c type or A1d type or OM1 type or OM2 type or the naked light transmitting fiber of OM3 type on optical fiber coloring machine, carry out UV solidification painted, make the thickness of dyed layer be 1 ~ 3 μm, color solidification degree >=85%; Repeated multiple times, form many light transmitting fibers, any two different fibre-optic dyed layers have different colors;
Second step: Loose tube forming step: get modified polypropene or polybutylene terephthalate melts in the spiral shell chamber of secondary coated extruding machine, and the color masterbatch adding the color masterbatch of 1% ~ 3% of modified polypropene general assembly (TW) or 1% ~ 3% of polybutylene terephthalate general assembly (TW) melts together and stirs; Be there is by the stretched inside of the extrusion head of secondary coated extruding machine the original Loose tube of cavity, the light transmitting fiber that the first step is formed is penetrated in the cavity of original Loose tube inside simultaneously, drawing original Loose tube makes the light transmitting fiber in cavity move the bosh of 20 ~ 40 DEG C with original Loose tube, form finished product Loose tube, fibre-optic length in finished product Loose tube is 1.002 ~ 1.008 times of finished product Loose tube length, the light transmitting fiber in finished product Loose tube at least one; Repeated multiple times, form many finished product Loose tube;
3rd step: cable core forming step: (1) get steel wire or fiberglass-reinforced plastic lever to be placed on the reinforcement discharge device of cable-former as reinforcement and pull-out through the first stranded mould 41 the first medium pore 410, then through the second stranded mould 42 the first center pit, after the first interstitial hole of the 3rd stranded mould 43, cross cable core hole 52 again through extrusion head 51 inside; (2) that second step is formed and around the finished product Loose tube on dish tool by rolling wheels and through the first stranded mould 41 the first edge hole 411, again through the second stranded mould 42 the first hole, edge 421, then through the 3rd stranded mould 43 the first holes around 431, then emptyly cross crossing cable core hole and guaranteeing that finished product Loose tube is positioned at outside reinforcement of extrusion head 51 inside; There are many Loose tube and Loose tube is positioned at adjacent position time make adjacent Loose tube tangent; (3) get the gasket for packing that polypropylene or polythene material make, through the first stranded mould 41 the first edge hole 411, again through the second stranded mould 42 the first hole, edge 421, then through the 3rd stranded mould 43 the first holes around 431, then emptyly cross crossing cable core hole and guaranteeing that finished product gasket for packing is positioned at outside reinforcement of extrusion head 51 inside; Have many gasket for packings and gasket for packing is positioned at adjacent position time make adjacent gasket for packing tangent, gasket for packing and adjacent Loose tube tangent; (4) reinforcement of extrusion head, gasket for packing and Loose tube was drawn, and make the first stranded mould, the second stranded mould, the 3rd stranded mould synchronous axial system with rotating mechanism, the polypropylene of melting or tygon or polybutylene terephthalate are injected the injecting hole 53 of extrusion head, adopt air extractor to make the polypropylene of melting or tygon or polybutylene terephthalate be close to finished product Loose tube in the right-hand member exit crossing cable core hole and gasket for packing forms fixed bed outward; And then formation cable core; The quantity of Loose tube and the quantity sum of gasket for packing are not less than 3;
Wherein, dish tool can rotate relative to fixing Fang Guan mechanism, and rolling wheels are positioned at the top of Fang Guan mechanism; Releasing direction along Loose tube: the front that Fang Guan mechanism is positioned at the rear of the first stranded mould, the second stranded mould is positioned at the first stranded mould, the 3rd stranded mould are positioned at the front of the second stranded mould, extrusion head is positioned at the 3rd stranded mould front; First medium pore, the first edge hole run through the first stranded mould and the first medium pore is positioned at the central authorities of the first stranded mould, first edge hole has multiple and to be distributed in outside the first medium pore and the first edge hole does not communicate with the first medium pore, and the distance of the first medium pore central axis and the first edge hole central axis is the first spacing; First center pit, the first hole, edge run through the second stranded mould and the first center pit is positioned at the central authorities of the second stranded mould, first hole, edge has multiple and is distributed in outside the first center pit and the first hole, edge and does not communicate with the first center pit, and the distance of the first center pit central axis and the first hole, edge central axis is the second spacing; First interstitial hole, the first holes around run through the second stranded mould and the first interstitial hole is positioned at the central authorities of the second stranded mould, first holes around has multiple and to be distributed in outside the first interstitial hole and the first holes around does not communicate with the first interstitial hole, first hole, edge has multiple and is distributed in outside the first center pit and the first hole, edge and does not communicate with the first center pit, and the distance of the first interstitial hole central axis and the first holes around central axis is the 3rd spacing; First spacing > second spacing > the 3rd spacing; The injecting hole of extrusion head is connected with mistake cable core hole;
4th step: the step forming the first protective seam: get outside the longitudinal cable core being coated on the 3rd step formation of waterstop and form the first protective seam, the overlapping widths of waterstop lap-joint is 2 ~ 4mm;
5th step: the step forming the second protective seam: get outside steel band or longitudinal the first protective seam being coated on the 4th step formation of aluminium strip and form the second protective seam, when the first protective seam diameter is not more than 8.5mm, the overlapping widths of steel band or aluminium strip lap-joint is not less than 20% of the first protective seam diameter; When the first protective seam diameter is greater than 8.5mm, the overlapping widths of steel band or aluminium strip lap-joint is not less than 5mm;
6th step: restrictive coating forming step: low-smoke non-halogen flame-retardant tygon or linear low density polyethylene or Low Density Polyethylene or medium density polyethylene or high density polyethylene are coated on outside the second protective seam that the 5th step formed by sheath extruding machine extrusion molding; form restrictive coating, complete the making of layer-stranding cable.
Another kind described in embodiment 4 has the method for making of the layer-stranding cable of gasket for packing, it is characterized in that it includes following steps:
The first step: the step of colouring optical fibres: get G.652 type or G.653 type G.654 type or G.655 type G.656 type or G.657 type or A1a type or A1b type or A1c type or A1d type or OM1 type or OM2 type or the naked light transmitting fiber of OM3 type on optical fiber coloring machine, carry out UV solidification painted, make the thickness of dyed layer be 1 ~ 3 μm, color solidification degree >=85%; Repeated multiple times, form many light transmitting fibers, any two different fibre-optic dyed layers have different colors;
Second step: Loose tube forming step: get modified polypropene or polybutylene terephthalate melts in the spiral shell chamber of secondary coated extruding machine, and the color masterbatch adding the color masterbatch of 1% ~ 3% of modified polypropene general assembly (TW) or 1% ~ 3% of polybutylene terephthalate general assembly (TW) melts together and stirs; Be there is by the stretched inside of the extrusion head of secondary coated extruding machine the original Loose tube of cavity, the light transmitting fiber that the first step is formed is penetrated in the cavity of original Loose tube inside simultaneously, drawing original Loose tube makes the light transmitting fiber in cavity move the bosh of 20 ~ 40 DEG C with original Loose tube, form finished product Loose tube, fibre-optic length in finished product Loose tube is 1.002 ~ 1.008 times of finished product Loose tube length, the light transmitting fiber in finished product Loose tube at least one; Repeated multiple times, form many finished product Loose tube;
3rd step: cable core forming step: (1) get steel wire or fiberglass-reinforced plastic lever to be placed on the reinforcement discharge device of cable-former as reinforcement and pull-out through the first stranded mould 41 the first medium pore 410, then through the second stranded mould 42 the first center pit, after the first interstitial hole of the 3rd stranded mould 43, cross cable core hole 52 again through extrusion head 51 inside; (2) that second step is formed and around the finished product Loose tube on dish tool by rolling wheels and through the first stranded mould 41 the first edge hole 411, again through the second stranded mould 42 the first hole, edge 421, then through the 3rd stranded mould 43 the first holes around 431, then emptyly cross crossing cable core hole and guaranteeing that finished product Loose tube is positioned at outside reinforcement of extrusion head 51 inside; There are many Loose tube and Loose tube is positioned at adjacent position time, the gap between the Loose tube that adjacent Loose tube is tangent and not adjacent is not more than 0.2mm; (3) get the gasket for packing that polypropylene or polythene material make, through the first stranded mould 41 the first edge hole 411, again through the second stranded mould 42 the first hole, edge 421, then through the 3rd stranded mould 43 the first holes around 431, then emptyly cross crossing cable core hole and guaranteeing that finished product gasket for packing is positioned at outside reinforcement of extrusion head 51 inside; Have many gasket for packings and gasket for packing is positioned at adjacent position time, adjacent gasket for packing is not tangent, and the gap between adjacent gasket for packing is not more than 0.2mm, and the gap between gasket for packing and adjacent Loose tube is not more than 0.2mm; (4) reinforcement of extrusion head, gasket for packing and Loose tube was drawn, and make the first stranded mould, the second stranded mould, the 3rd stranded mould synchronous axial system with rotating mechanism, the polypropylene of melting or tygon or polybutylene terephthalate are injected the injecting hole 53 of extrusion head, adopt air extractor to make the polypropylene of melting or tygon or polybutylene terephthalate be close to finished product Loose tube in the right-hand member exit crossing cable core hole and gasket for packing outer and enter the fixed bed forming integration in the internal clearance that Loose tube formed; And then formation cable core; The quantity of Loose tube and the quantity sum of gasket for packing are not less than 3;
Wherein, dish tool can rotate relative to fixing Fang Guan mechanism, and rolling wheels are positioned at the top of Fang Guan mechanism; Releasing direction along Loose tube: the front that Fang Guan mechanism is positioned at the rear of the first stranded mould, the second stranded mould is positioned at the first stranded mould, the 3rd stranded mould are positioned at the front of the second stranded mould, extrusion head is positioned at the 3rd stranded mould front; First medium pore, the first edge hole run through the first stranded mould and the first medium pore is positioned at the central authorities of the first stranded mould, first edge hole has multiple and to be distributed in outside the first medium pore and the first edge hole does not communicate with the first medium pore, and the distance of the first medium pore central axis and the first edge hole central axis is the first spacing; First center pit, the first hole, edge run through the second stranded mould and the first center pit is positioned at the central authorities of the second stranded mould, first hole, edge has multiple and is distributed in outside the first center pit and the first hole, edge and does not communicate with the first center pit, and the distance of the first center pit central axis and the first hole, edge central axis is the second spacing; First interstitial hole, the first holes around run through the second stranded mould and the first interstitial hole is positioned at the central authorities of the second stranded mould, first holes around has multiple and to be distributed in outside the first interstitial hole and the first holes around does not communicate with the first interstitial hole, first hole, edge has multiple and is distributed in outside the first center pit and the first hole, edge and does not communicate with the first center pit, and the distance of the first interstitial hole central axis and the first holes around central axis is the 3rd spacing; First spacing > second spacing > the 3rd spacing; The injecting hole of extrusion head is connected with mistake cable core hole;
4th step: the step forming the first protective seam: get outside the longitudinal cable core being coated on the 3rd step formation of waterstop and form the first protective seam, the overlapping widths of waterstop lap-joint is 2 ~ 4mm;
5th step: the step forming the second protective seam: get outside steel band or longitudinal the first protective seam being coated on the 4th step formation of aluminium strip and form the second protective seam, when the first protective seam diameter is not more than 8.5mm, the overlapping widths of steel band or aluminium strip lap-joint is not less than 20% of the first protective seam diameter; When the first protective seam diameter is greater than 8.5mm, the overlapping widths of steel band or aluminium strip lap-joint is not less than 5mm;
6th step: restrictive coating forming step: low-smoke non-halogen flame-retardant tygon or linear low density polyethylene or Low Density Polyethylene or medium density polyethylene or high density polyethylene are coated on outside the second protective seam that the 5th step formed by sheath extruding machine extrusion molding; form restrictive coating, complete the making of layer-stranding cable.
In the utility model, the first spacing > second spacing > the 3rd spacing, can make the Loose tube/gasket for packing in cable core progressively shaping reach fixed bed shaping time, the technique effects such as it is indeformable, easy shaping.
Compared with the utility model is wrapped up with traditional employing yarn class, there is speed of production advantage faster, reach the fastest stranding speed of 250m/min, and stranding speed of the prior art only 80m/min; Therefore, the input of electric power and artificial input is obviously saved.
Do the water penetration test of 10000 optical cables equally, the utility model is compared with traditional layer-stranding cable, by the method test that YD/T901-2009 specifies, infiltration phenomenon is not had in the utility model, and traditional layer-stranding cable reaches the seepage rate of 10%, therefore, the utility model has better water permeability resistance energy.
The utility model is placed in-50 to+90 DEG C of temperature test chambers and does experiment, and keeps 24 hours with-50 DEG C ,+90 DEG C every temperature spots, and be alternately once a circulation, continuous 300 times, maximum temperature variation additional attenuation value is 0.035dB/km; And layer-stranding cable of the prior art, within the scope of said temperature, 2 circulations have just occurred that temperature variation additional attenuation value is the phenomenon of 0.3dB/km, have impact on normally carrying out of optical communication, through dissecting, having on the Loose tube of many places and occurring pricking trace; Therefore, the utility model has more excellent temperature resistance sex change energy.
In the utility model, length mark can be stamped on fixed bed, the convenient object identified can be reached, meanwhile, the fixed bed of different colours can also be used, reach the object of differentiation.
The layer-stranding cable with gasket for packing in the utility model have structure simple, be easy to make, more save cost, stable optical performance after the temperature scope that broadens becomes, the machinery and equipment of use is simple, less investment; The main Advantageous Effects such as block-water effect is excellent, cable core length is known.
The utility model is not limited to above-mentioned preferred forms, and should be appreciated that design of the present utility model can be implemented to use by other various forms, they drop in protection domain of the present utility model equally.

Claims (9)

1. there is the layer-stranding cable of gasket for packing, it includes cable core, be positioned at the first protective seam outside cable core, be positioned at the second protective seam outside the first protective seam, and extrusion molding is coated on the restrictive coating outside the second protective seam, it is characterized in that described cable core is by the reinforcement being positioned at central authorities, around at least one Loose tube that reinforcement is stranded, at least one gasket for packing, the fixed bed of all Loose tube and all gasket for packing integral coating being lived is formed, when having many Loose tube, the Loose tube of arbitrary neighborhood is nontangential mutually, and the spacing maximum between adjacent Loose tube is 0.2mm, when having many gasket for packings, the gasket for packing of arbitrary neighborhood is nontangential mutually, and the spacing maximum between adjacent gasket for packing is 0.2mm, adjacent Loose tube and gasket for packing are nontangential mutually, and the spacing maximum between adjacent Loose tube and gasket for packing is 0.2mm, fixed bed extend into Loose tube, in the internal clearance that gasket for packing is formed, in every root Loose tube, all there is at least one light transmitting fiber, the quantity of Loose tube and the quantity sum of gasket for packing are not less than 3, fixed bed is liquid sealing relative to the Loose tube of inside and gasket for packing, and the material of fixed bed is polypropylene or tygon or polybutylene terephthalate.
2. there is the layer-stranding cable of gasket for packing, it includes cable core, be positioned at the first protective seam outside cable core, be positioned at the second protective seam outside the first protective seam, and extrusion molding is coated on the restrictive coating outside the second protective seam, it is characterized in that described cable core is by the reinforcement being positioned at central authorities, around at least one Loose tube that reinforcement is stranded, at least one gasket for packing, the fixed bed of all Loose tube and all gasket for packing integral coating being lived is formed, when having many Loose tube, the Loose tube of arbitrary neighborhood is tangent, when having many gasket for packings, the gasket for packing of arbitrary neighborhood is tangent, adjacent Loose tube and gasket for packing are tangent, in every root Loose tube, all there is at least one light transmitting fiber, the quantity of Loose tube and the quantity sum of gasket for packing are not less than 3, fixed bed is liquid sealing relative to the Loose tube of inside and gasket for packing, and the material of fixed bed is polypropylene or tygon or polybutylene terephthalate.
3. the layer-stranding cable with gasket for packing according to claim 2, is characterized in that the thickness of described fixed bed is 0.05 ~ 0.5mm.
4., according to claim 1 or claim 2 or the layer-stranding cable with gasket for packing according to claim 3, it is characterized in that the material of described packed layer is polypropylene or tygon, and the material of packed layer and the material of fixed bed are not identical.
5. the layer-stranding cable with gasket for packing according to claim 4, is characterized in that the material of described restrictive coating is low-smoke non-halogen flame-retardant tygon or linear low density polyethylene or Low Density Polyethylene or medium density polyethylene or high density polyethylene.
6. the layer-stranding cable with gasket for packing according to claim 5, is characterized in that the material of described Loose tube is modified polypropene or polybutylene terephthalate.
7., according to claim 1 or claim 2 or claim 3 or claim 5 or the layer-stranding cable with gasket for packing according to claim 6, it is characterized in that described light transmitting fiber is G.652 type or G.653 type or G.654 type or G.655 type or G.656 type or G.657 type or A1a type or A1b type or A1c type or A1d type or OM1 type or OM2 type or OM3 type.
8. the layer-stranding cable with gasket for packing according to claim 7, is characterized in that the material of described first protective seam is waterstop.
9. the layer-stranding cable with gasket for packing according to claim 8, is characterized in that the material of described second protective seam is steel band or aluminium strip.
CN201520250605.6U 2015-04-23 2015-04-23 There is the layer-stranding cable of gasket for packing Expired - Fee Related CN204719281U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520250605.6U CN204719281U (en) 2015-04-23 2015-04-23 There is the layer-stranding cable of gasket for packing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520250605.6U CN204719281U (en) 2015-04-23 2015-04-23 There is the layer-stranding cable of gasket for packing

Publications (1)

Publication Number Publication Date
CN204719281U true CN204719281U (en) 2015-10-21

Family

ID=54318267

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520250605.6U Expired - Fee Related CN204719281U (en) 2015-04-23 2015-04-23 There is the layer-stranding cable of gasket for packing

Country Status (1)

Country Link
CN (1) CN204719281U (en)

Similar Documents

Publication Publication Date Title
CN104749730A (en) Method for manufacturing layer-stranded optical cable
CN104730668A (en) Layer stranded optical cable and manufacture method
CN103744151B (en) Optical unit and optical cable using the same
CN108363152A (en) A kind of inserted rodent-resistant cable of nonmetallic yarn and preparation method thereof
CN107357013A (en) A kind of slotted core cable and preparation method
CN104730664A (en) Layer-stranding cable with filling ropes and manufacturing method of layer-stranding cable
CN105511036A (en) Non-metal layer-stranding cable
CN104765119A (en) Method for manufacturing layer-stranding cable
CN104730666A (en) Layer-stranding cable and manufacturing method
CN107731397A (en) A kind of composite band for cable or optical cable
CN204731455U (en) A kind of layer-stranding cable containing gasket for packing
CN204758880U (en) Layer stranded type optical cable
CN204790094U (en) Layer stranded type optical cable
CN104730665A (en) Layer-stranded optical fiber cable containing filled strings and manufacturing method of layer-stranded optical fiber cable
CN204719281U (en) There is the layer-stranding cable of gasket for packing
CN106950669B (en) Central-beam tube type fiber optic cable and production method
CN104749728A (en) Layer-stranded optical cable manufacturing method
CN104749729A (en) Method for manufacturing layer-stranding cable
CN204650037U (en) A kind of layer-stranding cable with high density of optic fibre
CN205844597U (en) Central tubular fire-retardant cable
CN203895171U (en) Photoelectric composite cable for electric power system
CN106772867A (en) A kind of cable or optical cable with multiple color identification strip
CN104297881B (en) Optical cable for remote radio head and manufacturing method of optical cable
CN104536110A (en) Method for manufacturing cable for remote radio head

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160420

Address after: 510000 Guangdong city of Guangzhou province Tianhe District Kexinlu Dragon Head Industrial Zone No. 2 building D room 501-2

Patentee after: Guangzhou Changsheng Computer Network Technology Co.,Ltd.

Address before: Suzhou City, Jiangsu Province, 215554 Changshou City Shang Hu Zhen Da he Cun Shen Tang Wan Tao (28) No. 79

Patentee before: Gong Lifen

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151021

CF01 Termination of patent right due to non-payment of annual fee