CN204705319U - 一种磁性微位移平台式级联阶梯角反射镜激光干涉仪 - Google Patents
一种磁性微位移平台式级联阶梯角反射镜激光干涉仪 Download PDFInfo
- Publication number
- CN204705319U CN204705319U CN201520459665.9U CN201520459665U CN204705319U CN 204705319 U CN204705319 U CN 204705319U CN 201520459665 U CN201520459665 U CN 201520459665U CN 204705319 U CN204705319 U CN 204705319U
- Authority
- CN
- China
- Prior art keywords
- group
- displacement
- spectroscope
- laser beam
- directive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Instruments For Measurement Of Length By Optical Means (AREA)
Abstract
本实用新型涉及一种精密测试技术及仪器领域,特别涉及一种磁性微位移平台式级联阶梯角反射镜激光干涉仪,包括有激光源、微动阶梯角反射镜组、干涉测量光电探测器组、移动角反射镜和分光镜组,还包括有反射测量光电探测器组,所述反射测量光电探测器组包括有z个反射测量光电探测器,所述第二激光束组在由所述移动角反射镜射向所述分光镜组后还形成有反射激光束组,所述反射激光束组的各激光束分别射向一个所述反射测量光电探测器。本申请的激光干涉仪,根据反射激光束组的强度确定激光干涉光束的干涉状态,如此实现抗环境干扰的目的。
Description
技术领域
本实用新型涉及一种精密测试技术及仪器领域,特别涉及一种磁性微位移平台式级联阶梯角反射镜激光干涉仪。
背景技术
激光器的出现,使古老的干涉技术得到迅速发展,激光具有亮度高、方向性好、单色性及相干性好等特点,激光干涉测量技术已经比较成熟。激光干涉测量系统应用非常广泛:精密长度、角度的测量如线纹尺、光栅、量块、精密丝杠的检测;精密仪器中的定位检测系统如精密机械的控制、校正;大规模集成电路专用设备和检测仪器中的定位检测系统;微小尺寸的测量等。目前,在大多数激光干涉测长系统中,都采用了迈克尔逊干涉仪或类似的光路结构,比如,目前常用的单频激光干涉仪。
单频激光干涉仪是从激光器发出的光束,经扩束准直后由分光镜分为两路,并分别从固定反射镜和可动反射镜反射回来会合在分光镜上而产生干涉条纹。当可动反射镜移动时,干涉条纹的光强变化由接收器中的光电转换元件和电子线路等转换为电脉冲信号,经整形、放大后输入可逆计数器计算出总脉冲数N,再由电子计算机按计算式Y=N×λ/2,式中λ为激光波长,算出可动反射镜的位移量Y。
在实际使用中,本申请的发明人发现,上述的测量结构和测量方法依然存在着不足:
目前的单频激光干涉仪还存在受环境影响严重的问题,激光干涉仪可动反光镜移动时,干涉条纹的光强变化由接收器中的光电转换元件和电子线路等转换为电脉冲信号,当为最强相长干涉时,信号超过计数器的触发电平被记录下来,如果环境发生变化,比如空气湍流,空气中杂质增多,机床油雾,加工时的切削屑对激光束的影响,使得激光束的强度降低,此时,即使是出现最强相 长干涉,也有可能强度低于计数器的触发电平而不被计数。
所以,基于上述不足,目前亟需一种即能够抗环境干扰,又能够提高测量精度的激光干涉仪。
发明内容
本实用新型的目的在于针对目前激光干涉仪抗环境干扰能力差的不足,提供一种能够抗环境干扰的激光干涉仪。
为了实现上述发明目的,本实用新型提供了以下技术方案:
一种磁性微位移平台式级联阶梯角反射镜激光干涉仪,包括有激光源、微动阶梯角反射镜组、干涉测量光电探测器组、移动角反射镜、分光镜组和磁性微位移平台,所述微动阶梯角反射镜组包括有m个微动阶梯角反射镜和m-1个固定角反射镜,m>2,m个所述微动阶梯角反射镜设置在所述磁性微位移平台上;
所述激光源向所述分光镜组射出z束激光束,其中z为大于或者等于2的正整数,所述干涉测量光电探测器组包括有z个干涉测量光电探测器,每一个干涉测量光电探测器与一束激光束相对应;
各激光束经所述分光镜组后分为第一激光束组和第二激光束组,所述第一激光束组射向所述微动阶梯角反射镜组,经所述微动阶梯角反射镜组反射后再次射向所述分光镜组,再经所述分光镜组后射向所述干涉测量光电探测器组,所述第二激光束组射向所述移动角反射镜,经所述移动角反射镜反射后再次射向所述分光镜组,经所述分光镜组后相对应的与射向所述干涉测量光电探测器组的第一激光束组发生干涉,形成干涉激光束组,干涉激光束组的各干涉光束分别射向各自对应的所述干涉测量光电探测器;
所述微动阶梯角反射镜组包括有两个微动阶梯角反射镜和一个固定角反射镜,每个微动阶梯角反射镜具有成直角的两个反射阶梯面,每个所述反射阶梯 面包括z个成阶梯型的反射平面,第一激光束组射入所述微动阶梯角反射镜组时,先射到其中一个微动阶梯角反射镜的一个反射阶梯面上,第一激光束组的z束激光与该反射阶梯面的z个反射平面一一对应,经该反射阶梯面反射后射到该微动阶梯角反射镜的另一个反射阶梯面上,经反射后再射向所述固定角反射镜,经固定角反射镜反射后再射向另一个微动阶梯角反射镜,经该微动阶梯角反射镜反射后,再射向所述分光镜组;
所述磁性微位移平台式级联阶梯角反射镜激光干涉仪还包括有反射测量光电探测器组,所述反射测量光电探测器组包括有z个反射测量光电探测器,所述第二激光束组在由所述移动角反射镜射向所述分光镜组后还形成有反射激光束组,所述反射激光束组的各激光束分别射向一个所述反射测量光电探测器;
所述磁性微位移平台,包括有支撑平台和设置在所述支撑平台上的位移装置,所述支撑平台上设置有第一位移件,所述第一位移件与所述位移装置连接,所述位移装置带动所述第一位移件沿所述支撑平台运动,所述第一位移件具有一相对于其位移方向倾斜的斜面,所述第一位移件的斜面上滑动设置有第二位移件,所述第一位移件与第二位移件之间贴紧配合,所述支撑平台上还设置有约束装置,所述约束装置限制所述第二位移件沿所述第一位移件位移方向上的运动,使得当第一位移件被所述位移装置带动而产生位移时,所述第二位移件被所述第一位移件带动而产生位移,所述第二位移件的位移方向与所述第一位移件的位移方向相垂直,所述第一位移件的斜面与其位移方向的夹角为A度,0<A<45,所述第一位移件与所述支撑平台之间还设置有具有磁性的磁性件,所述第二位移件具有磁性,所述第二位移件与所述磁性件为异性相吸状态,所述微动阶梯角反射镜设置在所述第二位移件上,随第二位移件运动。
作为进一步的优选方案,所述分光镜组包括有第一分光镜和第二分光镜, 所述激光源射出的z束激光束先射到第一分光镜,经第一分光镜反射形成第一激光束组,经第一分光镜透射形成第二激光束组,第一激光束组射向所述微动阶梯角反射镜组,经反射后再次射向所述第一分光镜,然后再透射过所述第一分光镜,所述第二激光束组射向所述移动角反射镜,经所述移动角反射镜反射后射向所述第二分光镜,经所述第二分光镜透射后射向所述第一分光镜,并且与从所述第一分光镜透射出的第一激光束组发生干涉,形成干涉激光束组后射向所述干涉测量光电探测器组,由所述移动角反射镜射向所述第二分光镜的所述第二激光束组还被所述第二分光镜反射形成所述反射激光束组。
本申请的激光干涉仪,由于反射测量光电探测器组可以测量移动角反射镜反射激光束组的强度,根据反射激光束组的强度确定激光干涉光束的干涉状态,如此实现抗环境干扰的目的;
并且,在本申请中,微动阶梯角反射镜设置在磁性微位移平台上,支撑平台上设置位移装置和第一位移件,位移装置带动第一位移件运动,第一位移件具有一相对于其位移方向倾斜的斜面,当位移装置提供一定的位移值带动第一位移件时,由于约束装置的存在,此时,第二位移件在垂直于第一位移件位移方向上将产生一定的位移值,第二位移件的位移值与位移装置提供的位移值相关,还与第一位移件斜面的倾斜程度相关,即,设第一位移件的斜面与其位移方向的夹角为A度,当位移装置提供的位移值为X时,第二位移件产生的位移值即为Y=Xtan(A),第二位移件的位移方向与第一位移件的位移方向相垂直,如此,当夹角A小于45度时,将得到一个小于X值的位移值,当进一步的减小夹角A时,位移值Y也随之减小,如此,使得在本申请的方案中,通过以行程换精度的方式,最终得到一个小于位移装置输出位移值的第二位移件的位移值,直接提高了本申请磁性微位移平台的精度,也就直接提高了微动阶梯角反 射镜的移动精度,直接提高了本申请激光干涉仪的测量精度。
作为进一步的优选方案,所述位移装置为压电陶瓷型位移装置。压电陶瓷能够将机械能和电能互相转换的功能陶瓷材料,其在电场作用下产生的形变量很小,最多不超过本身尺寸的千万分之一的微位移,具有良好的往复形变恢复能力,稳定性好、精度高,如此使得本申请的位移装置能够提供足够小的位移值,进一步提高了本申请微位移平台的精度,提高本申请激光干涉仪的测量精度。
作为进一步的优选方案,所述激光干涉仪还包括有处理系统,所述处理系统与所述干涉测量光电探测器和反射测量光电探测器电连接,通过所述处理系统控制所述干涉测量光电探测器和反射测量光电探测器的启动和停止,并且使所述干涉测量光电探测器数据和反射测量光电探测器数据存储在所述处理系统内,所述处理系统还与所述磁性微位移平台的位移装置电连接,通过所述处理系统控制所述位移装置的启动和停止,所述处理系统还与所述激光源电连接,通过所述处理系统控制所述激光源的启动和停止。在本申请中,通过设置处理系统,对干涉测量光电探测器的数据和反射测量光电探测器的数据进行储存,生成标定数据库,在实际测量过程中通过实时的数据与标定数据库的数据进行比对,进而判断出当前光路的干涉情况;处理系统还与磁性微位移平台的位移装置电连接,根据实时的测量结果控制位移装置的输出位移,进而实现对微动阶梯角反射镜位置的协调控制,提高本申请的激光干涉仪的适应性。
作为进一步的优选方案,在所述激光源、微动阶梯角反射镜组、干涉测量光电探测器组、分光镜组、反射测量光电探测器组中任意两个之间的激光束设置在封闭空间内而不与外部环境空间接触。在本申请中,激光源、微动阶梯角反射镜组、干涉测量光电探测器组、分光镜组和反射测量光电探测器组这些部 件任意两个之间的激光束设置在封闭空间内,使得在进行测量的过程中,上述这些部件之间的激光束并不会受到环境因素的影响,进而保证了本申请激光干涉仪的测量精度。
作为进一步的优选方案,所述分光镜组与所述移动角反射镜之间的激光束暴露在环境空气之中。在实际使用时,移动角反射镜设置在被测物体上,随被测物体运动,所以在本申请中,将分光镜组与移动角反射镜之间的激光束暴露在环境空气之中,首先是使得本申请激光干涉仪结构简单,同时还方便本申请激光干涉仪的布置。
作为进一步的优选方案,所述第二位移件与m个所述微动阶梯角反射镜为一体式结构。在本申请中,将第二位移件和m个微动阶梯角反射镜设置为一体式结构,也就是说在本申请的方案中,将第二位移件的一面设置为m个微动阶梯角反射镜反射面的形状,并抛光或镀膜,使该面形成反射面参与到激光干涉仪的光路反射中,如此,直接省略了传统意义上的m个微动阶梯角反射镜这一部件,也就省去了第二位移件与m个微动阶梯角反射镜之间的配合关系,直接消除了第二位移件与m个微动阶梯角反射镜之间配合误差的存在,所以,不仅方便了本申请的光路调整工作,而且还简化了本申请激光干涉仪的结构,降低了制造成本和后期保养维护成本,特别是还降低了本申请激光干涉仪结构内部的误差值,进一步的提高了本申请激光干涉仪的测量精度。
本申请还公开了一种用于上述激光干涉仪结构的标定方法,
一种用于磁性微位移平台式级联阶梯角反射镜激光干涉仪的标定方法,包括下述步骤:
步骤一、位置调整:调整好激光源、微动阶梯角反射镜组、分光镜组、干 涉测量光电探测器组、反射测量光电探测器组、移动角反射镜和磁性微位移平台的位置;
步骤二、调整光路:启动所述激光源,进一步精确调整微动阶梯角反射镜组、分光镜组、干涉测量光电探测器组、反射测量光电探测器组、移动角反射镜和磁性微位移平台的位置,使激光干涉仪的光路达到设计要求;
步骤三、生成最强干涉数据库:选取干涉测量光电探测器组中的一个干涉测量光电探测器作为标定干涉测量光电探测器,选取反射测量光电探测器组中的一个反射测量光电探测器作为标定反射测量光电探测器,所述标定干涉测量光电探测器与所述标定反射测量光电探测器与所述激光源射出的同一束激光束相对应,在空气洁净的环境下控制所述磁性微位移平台,使第二位移件移动,当射向所述标定干涉测量光电探测器的干涉光束为最强相长干涉时停止所述磁性微位移平台,使第二位移件被固定,记录此时标定反射测量光电探测器读数和标定干涉测量光电探测器读数,改变空气环境使所述标定反射测量光电探测器读数变化,同时记录若干个标定反射测量光电探测器读数以及对应的标定干涉测量光电探测器读数,得到最强干涉数据库。
作为进一步的优选方案,重复所述步骤三,每次选取不同的标定反射测量光电探测器和标定干涉测量光电探测器,得到z个最强干涉数据库。由于重复了步骤三,得到z个最强干涉数据库,直接增加的数据库的数量,更加利于检测过程中数据的匹配查询,并且,实现多波长激光源、微动阶梯角反射镜组和z个最强干涉数据库之间的相互协同,提高激光干涉仪的测量精度。
本申请的激光干涉仪结构以及标定方法,在最强相长干涉时,改变测量环境,记录标定反射测量光电探测器读数和标定干涉测量光电探测器读数形成最 强干涉数据库,在实际测量过程中,如果存在由于环境因素而导致干涉测量光电探测器组不能够正常检测到最强相长干涉时,可以根据标定反射测量光电探测器读数和标定干涉测量光电探测器读数与最强干涉数据库中的数据进行比对,如果存在有匹配数据,则该位置为最强相长干涉,如此使得本申请的激光干涉仪实现抗环境干扰的能力。
作为进一步的优选方案,还包括有步骤四、生成最弱干涉数据库:在空气洁净的环境下控制所述磁性微位移平台,使第二位移件移动,当射向所述标定干涉测量光电探测器的干涉光束为最弱相消干涉时停止所述磁性微位移平台,使第二位移件被固定,记录此时标定反射测量光电探测器读数和标定干涉测量光电探测器读数,改变空气环境使所述标定反射测量光电探测器读数变化,同时记录若干个标定反射测量光电探测器读数以及对应的标定干涉测量光电探测器读数,得到最弱干涉数据库。
作为进一步的优选方案,重复所述步骤四,每次选取不同的标定反射测量光电探测器和标定干涉测量光电探测器,得到z个最弱干涉数据库。
作为进一步的优选方案,还包括有步骤五、生成1/n波长干涉数据库,n为大于或等2的正整数,在空气洁净的环境下控制所述磁性微位移平台,使第二位移件移动,当射向所述标定干涉测量光电探测器的干涉光束为最强相长干涉时,再继续移动1/2mn波长的距离,记录此时标定反射测量光电探测器读数和标定干涉测量光电探测器读数,然后改变空气环境使所述标定反射测量光电探测器读数变化,同时记录若干个所述标定反射测量光电探测器读数以及对应的标定干涉测量光电探测器读数,得到1/n波长干涉数据库。
在两束激光发生干涉时,相邻的最强相长干涉与最弱相消干涉之间的光程 差为半个波长,在本申请的标定方法中,对最强相长干涉、最弱相消干涉、1/n波长干涉都进行了标定,也就是说,在采用本申请的激光干涉仪进行实际测量时,可以根据标定反射测量光电探测器读数和标定干涉测量光电探测器读数与最强干涉数据库、最弱干涉数据库、1/n波长干涉数据库中的数据进行比对,根据数据的匹配情况确定该位置是最强相长干涉、最弱相消干涉还是1/n波长干涉。使得本申请的激光干涉仪不仅能够抗环境干扰,而且还提高了测量精度。
作为进一步的优选方案,重复所述步骤五,每次选取不同的标定反射测量光电探测器和标定干涉测量光电探测器,得到z个1/n波长干涉数据库。
本实用新型还公开了一种采用上述干涉仪以及标定方法的测量方法,
一种采用磁性微位移平台式级联阶梯角反射镜激光干涉仪和标定方法的测量方法:
在实际测量环境中,设所述标定反射测量光电探测器测量到的信号读数为x,所述标定干涉测量光电探测器测量得到的信号读数为y,将x值和y值在最强干涉数据库、最弱干涉数据库、1/n波长干涉数据库中进行比对,当x值和y值与最强干涉数据库中的某一组值相匹配,则认为此位置为最强相长干涉位置,当x值和y值与最弱干涉数据库中的某一组值相匹配,则认为此位置为最弱相消干涉位置,当x值和y值与1/n波长干涉数据库中的某一组值相匹配,则认为此位置为1/n波长干涉位置。
本申请的测量方法,通过x值和y值确定当前干涉光束的干涉情况,以此实现抗环境干扰的能力,同时还提高了测量精度。
作为进一步的优选方案,设定y值的匹配阈值Δ,设最强干涉数据库、最弱干涉数据库、1/n波长干涉数据库中标定干涉测量光电探测器对应的数值为y’,根据x值对最强干涉数据库、最弱干涉数据库、1/n波长干涉数据库进行y’的查 询,如果存在y’使|y-y'|<Δ,再区分y’所在的数据库,如果y’在最强干涉数据库内,则认为此位置为最强相长干涉位置,如果y’在最弱干涉数据库内,则认为此位置为最弱相消干涉位置,如果y’在1/n波长干涉数据库内,则认为此位置为1/n波长干涉位置。
作为进一步的优选方案,设最强干涉数据库、最弱干涉数据库、1/n波长干涉数据库中标定反射测量光电探测器对应的数值为x’,在实际测量中,选择最接近实际测量值x的x’作为匹配值,根据x’值对最强干涉数据库、最弱干涉数据库、1/n波长干涉数据库进行y’进行查询,如果存在y’使|y-y'|<Δ,再区分y’所在的数据库,如果y’在最强干涉数据库内,则认为此位置为最强相长干涉位置,如果y’在最弱干涉数据库内,则认为此位置为最弱相消干涉位置,如果y’在1/n波长干涉数据库内,则认为此位置为1/n波长干涉位置。
作为进一步的优选方案,所述匹配阈值Δ的大小保证在进行数据查询时,当满足|y-y'|<Δ时,y’为唯一值。当匹配阈值Δ较大时,可能会出现一组x值和y值匹配到两组或者多组x’值和y’值,给测量带来不便,所以先匹配阈值Δ,使在测量过程中一组x值和y值最多匹配一组x’值和y’值,方便测量。
作为进一步的优选方案,所述匹配阈值Δ的大小按照实际测量的精度要求进行设定,当需要高精度的测量值时,采用较小的匹配阈值,当不需要高精度测量值时,采用较大的匹配阈值。
作为进一步的优选方案,设Δ=5%。
在本申请的测量方法中,通过设置匹配阈值Δ,根据实际测量精度的需要设置匹配阈值Δ的大小,以此方便测量过程中,数据的匹配选择,降低测量难度。
与现有技术相比,本实用新型的有益效果:
本申请的磁性微位移平台式级联阶梯角反射镜激光干涉仪,首先通过设置 多光束、微动阶梯角反射镜组以及角反射镜提高激光干涉仪的测量精度,同时通过设置反射测量光电探测器,激光干涉测量环境发生变化后,可以通过对移动角反射镜反射激光强度进行测量,激光干涉状态不再直接由干涉测量光电探测器组的信号大小确定,而是由反射测量光电探测器与干涉测量光电探测器组共同决定,如此实现激光干涉仪的抗干扰能力。
本申请其他实施方案的有益效果:
本申请的激光干涉仪,不仅能够确定最强相长干涉的位置,而且还能够确定最弱相消干涉的位置及1/n波长干涉位置,使本申请的激光干涉仪不仅能够抗环境干扰,而且还提高了测量精度;并且,本申请的测量方法、标定方法、多光束激光源、微动阶梯角反射镜组之间相互配合,进一步的提高了本申请激光干涉仪的测量精度。
附图说明:
图1为本实用新型激光干涉仪结构的光路示意图;
图2为微动阶梯角反射镜移动后的结构示意图;
图3为磁性微位移平台的结构示意图,
图中标记:
1-激光源,2-微动阶梯角反射镜组,3-移动角反射镜,4-干涉测量光电探测器组,5-分光镜组,6-反射测量光电探测器组,7-第一激光束组,8-第二激光束组,9-反射激光束组,10-磁性微位移平台,21-微动阶梯角反射镜,22-固定角反射镜,41-干涉测量光电探测器,41a-标定干涉测量光电探测器,51-第一分光镜,52-第二分光镜,61-反射测量光电探测器,61a-标定反射测量光电探测器,101-支撑平台,102-位移装置,103-第一位移件,104-斜面,105-第二位移件,106- 约束装置,107-磁性件,11-处理系统。
具体实施方式
下面结合试验例及具体实施方式对本实用新型作进一步的详细描述。但不应将此理解为本实用新型上述主题的范围仅限于以下的实施例,凡基于本实用新型内容所实现的技术均属于本实用新型的范围。
实施例1,如图所示,一种磁性微位移平台式级联阶梯角反射镜激光干涉仪,包括有激光源1、微动阶梯角反射镜组2、干涉测量光电探测器组4、移动角反射镜3、分光镜组5和磁性微位移平台10,所述微动阶梯角反射镜组2包括有两个微动阶梯角反射镜21和一个固定角反射镜22,两个所述微动阶梯角反射镜21设置在所述磁性微位移平台10上;
所述激光源1向所述分光镜组5射出z束激光束,其中z为大于或者等于2的正整数,所述干涉测量光电探测器组4包括有z个干涉测量光电探测器,每一个干涉测量光电探测器41与一束激光束相对应;
各激光束经所述分光镜组5后分为第一激光束组7和第二激光束组8,所述第一激光束组7射向所述微动阶梯角反射镜组2,经所述微动阶梯角反射镜组2反射后再次射向所述分光镜组5,再经所述分光镜组5后射向所述干涉测量光电探测器组4,所述第二激光束组8射向所述移动角反射镜3,经所述移动角反射镜3反射后再次射向所述分光镜组5,经所述分光镜组5后相对应的与射向所述干涉测量光电探测器组4的第一激光束组7发生干涉,形成干涉激光束组,干涉激光束组的各干涉光束分别射向各自对应的所述干涉测量光电探测器41;
所述微动阶梯角反射镜组2包括有两个微动阶梯角反射镜21和一个固定角反射镜22,每个微动阶梯角反射镜21具有成直角的两个反射阶梯面,每个所述 反射阶梯面包括z个成阶梯型的反射平面,第一激光束组7射入所述微动阶梯角反射镜组2时,先射到其中一个微动阶梯角反射镜21的一个反射阶梯面上,第一激光束组的z束激光与该反射阶梯面的z个反射平面一一对应,经该反射阶梯面反射后射到该微动阶梯角反射镜的另一个反射阶梯面上,经反射后再射向所述固定角反射镜22,经固定角反射镜22反射后再射向另一个微动阶梯角反射镜21,经该微动阶梯角反射镜21反射后,再射向所述分光镜组5;
所述磁性微位移平台式级联阶梯角反射镜激光干涉仪还包括有反射测量光电探测器组6,所述反射测量光电探测器组6包括有z个反射测量光电探测器61,所述第二激光束组8在由所述移动角反射镜3射向所述分光镜组5后还形成有反射激光束组9,所述反射激光束组9的各激光束分别射向一个所述反射测量光电探测器61;
所述磁性微位移平台10,包括有支撑平台101和设置在所述支撑平台101上的位移装置102,所述支撑平台101上设置有第一位移件103,所述第一位移件103与所述位移装置102连接,所述位移装置102带动所述第一位移件103沿所述支撑平台101运动,所述第一位移件103具有一相对于其位移方向倾斜的斜面104,所述第一位移件103的斜面104上滑动设置有第二位移件105,所述第一位移件103与第二位移件105之间贴紧配合,所述支撑平台101上还设置有约束装置106,所述约束装置106限制所述第二位移件105沿所述第一位移件103位移方向上的运动,使得当第一位移件103被所述位移装置102带动而产生位移时,所述第二位移件105被所述第一位移件103带动而产生位移,所述第二位移件105的位移方向与所述第一位移件103的位移方向相垂直,所述第一位移件103的斜面104与其位移方向的夹角为A度,0<A<45,所述第一位移件103与所述支撑平台101之间还设置有具有磁性的磁性件107,所述第二 位移件105具有磁性,所述第二位移件105与所述磁性件107为异性相吸状态,m个所述微动阶梯角反射镜21设置在所述第二位移件105上,随第二位移件105运动。
作为进一步的优选方案,所述分光镜组5包括有第一分光镜51和第二分光镜52,所述激光源1射出的z束激光束先射到第一分光镜51,经第一分光镜51反射形成第一激光束组7,经第一分光镜51透射形成第二激光束组8,第一激光束组7射向所述微动阶梯角反射镜组2,经反射后再次射向所述第一分光镜51,然后再透射过所述第一分光镜51,所述第二激光束组8射向所述移动角反射镜3,经所述移动角反射镜3反射后射向所述第二分光镜52,经所述第二分光镜52透射后射向所述第一分光镜51,并且与从所述第一分光镜51透射出的第一激光束组7发生干涉,形成干涉激光束组后射向所述干涉测量光电探测器组4,由所述移动角反射镜3射向所述第二分光镜52的所述第二激光束组8还被所述第二分光镜52反射形成所述反射激光束组9。
本申请的激光干涉仪,由于反射测量光电探测器组6可以测量移动角反射镜3反射激光束组9的强度,根据反射激光束组9的强度确定激光干涉光束的干涉状态,如此实现抗环境干扰的目的。
并且,在本实施例中,m个微动阶梯角反射镜21设置在磁性微位移平台10上,支撑平台101上设置位移装置102和第一位移件103,位移装置102带动第一位移件103运动,第一位移件103具有一相对于其位移方向倾斜的斜面104,当位移装置102提供一定的位移值带动第一位移件103时,由于约束装置106的存在,此时,第二位移件105在垂直于第一位移件103位移方向上将产生一定的位移值,第二位移件105的位移值与位移装置102提供的位移值相关,还与第一位移件103斜面104的倾斜程度相关,即,设第一位移件103的斜面104 与其位移方向的夹角为A度,当位移装置102提供的位移值为X时,第二位移件105产生的位移值即为Y=Xtan(A),第二位移件105的位移方向与第一位移件103的位移方向相垂直,如此,当夹角A小于45度时,将得到一个小于X值的位移值,当进一步的减小夹角A时,位移值Y也随之减小,如此,使得在本实施例的方案中,通过以行程换精度的方式,最终得到一个小于位移装置102输出位移值的第二位移件105的位移值,直接提高了本实施例磁性微位移平台的精度,也就直接提高了微动阶梯角反射镜21的移动精度,进而提高了本申请激光干涉仪的测量精度。
作为进一步的优选方案,所述位移装置102为压电陶瓷型位移装置。压电陶瓷能够将机械能和电能互相转换的功能陶瓷材料,其在电场作用下产生的形变量很小,最多不超过本身尺寸的千万分之一的微位移,具有良好的往复形变恢复能力,稳定性好、精度高,如此使得本申请的位移装置102能够提供足够小的X值,进一步提高了本申请微位移平台10的精度,提高本申请激光干涉仪的测量精度。
作为进一步的优选方案,所述激光干涉仪还包括有处理系统11,所述处理系统11与所述干涉测量光电探测器4和反射测量光电探测器6电连接,通过所述处理系统11控制所述干涉测量光电探测器4和反射测量光电探测器6的启动和停止,并且使所述干涉测量光电探测器4数据和反射测量光电探测器6数据存储在所述处理系统11内,所述处理系统11还与所述磁性微位移平台10的位移装置102电连接,通过所述处理系统11控制所述位移装置102的启动和停止,所述处理系统11还与所述激光源1电连接,通过所述处理系统11控制所述激光源1的启动和停止。在本申请中,通过设置处理系统11,对干涉测量光电探测器4的数据和反射测量光电探测器6的数据进行储存,生成标定数据库,在 实际测量过程中通过实时的数据与标定数据库的数据进行比对,进而判断出当前光路的干涉情况;处理系统11还与磁性微位移平台10的位移装置102电连接,根据实时的测量结果控制位移装置102的输出位移,进而实现对微动阶梯角反射镜21位置的协调控制,提高本申请的激光干涉仪的适应性。
作为进一步的优选方案,在所述激光源1、微动阶梯角反射镜组2、干涉测量光电探测器组4、分光镜组5、反射测量光电探测器组6中任意两个之间的激光束设置在封闭空间内而不与外部环境空间接触。在本申请中,激光源1、微动阶梯角反射镜组2、干涉测量光电探测器组4、分光镜组5和反射测量光电探测器组6这些部件任意两个之间的激光束设置在封闭空间内,使得在进行测量的过程中,上述这些部件之间的激光束并不会受到环境因素的影响,进而保证了本申请激光干涉仪的测量精度。
作为进一步的优选方案,所述分光镜组5与所述移动角反射镜3之间的激光束暴露在环境空气之中。在实际使用时,移动角反射镜3设置在被测物体上,随被测物体运动,所以在本申请中,将分光镜组5与移动角反射镜3之间的激光束暴露在环境空气之中,首先是使得本申请激光干涉仪结构简单,同时还方便本申请激光干涉仪的布置。
作为进一步的优选方案,所述第二位移件105与m个所述微动阶梯角反射镜21为一体式结构,在本申请中,将第二位移件105和m个微动阶梯角反射镜21设置为一体式结构,也就是说在本申请的方案中,将第二位移件105的一面设置为m个微动阶梯角反射镜21反射面的形状,并抛光或镀膜,使该面形成反射面参与到激光干涉仪的光路反射中,如此,直接省略了传统意义上的m个微动阶梯角反射镜21这一部件,也就省去了第二位移件105与m个微动阶梯角反射镜21之间的配合关系,直接消除了第二位移件105与m个微动阶梯角反射镜 21之间配合误差的存在,所以,不仅方便了本申请激光干涉仪的光路调整工作,而且还简化了本申请激光干涉仪的结构,降低了制造成本和后期保养维护成本,特别是还降低了本申请激光干涉仪结构内部的误差值,进一步的提高了本申请激光干涉仪的测量精度。
实施例2,如图所示,一种用于磁性微位移平台式级联阶梯角反射镜激光干涉仪的标定方法,包括下述步骤:
步骤一、位置调整:调整好激光源1、微动阶梯角反射镜组2、分光镜组5、干涉测量光电探测器组4、反射测量光电探测器组6、移动角反射镜3和磁性微位移平台10的位置;
步骤二、调整光路:启动所述激光源1,进一步精确调整微动阶梯角反射镜组2、分光镜组5、干涉测量光电探测器组4、反射测量光电探测器组6、移动角反射镜3和磁性微位移平台10的位置,使激光干涉仪的光路达到设计要求;
步骤三、生成最强干涉数据库:选取干涉测量光电探测器组4中的一个干涉测量光电探测器41作为标定干涉测量光电探测器41a,选取反射测量光电探测器组6中的一个反射测量光电探测器61作为标定反射测量光电探测器61a,所述标定干涉测量光电探测器41a与所述标定反射测量光电探测器61a与所述激光源1射出的同一束激光束相对应,在空气洁净的环境下控制所述磁性微位移平台10,使第二位移件105移动,当射向所述标定干涉测量光电探测器41a的干涉光束为最强相长干涉时停止所述磁性微位移平台10,使第二位移件105固定,记录此时标定反射测量光电探测器61a读数和标定干涉测量光电探测器41a读数,改变空气环境使所述标定反射测量光电探测器61a读数变化,同时记录若干个标定反射测量光电探测器61a读数以及对应的标定干涉测量光电探测器 41a读数,得到最强干涉数据库。
作为进一步的优选方案,重复所述步骤三,每次选取不同的标定反射测量光电探测器61a和标定干涉测量光电探测器41a,得到z个最强干涉数据库。
本申请的激光干涉仪结构以及标定方法,在最强相长干涉时,改变测量环境,记录标定反射测量光电探测器读数61a和标定干涉测量光电探测器41a读数形成最强干涉数据库,在实际测量过程中,如果存在由于环境因素而导致干涉测量光电探测器组4不能够正常检测到最强相长干涉时,可以根据标定反射测量光电探测器61a读数和标定干涉测量光电探测器41a读数与最强干涉数据库中的数据进行比对,如果存在有匹配数据,则该位置为最强相长干涉,如此使得本申请的激光干涉仪实现抗环境干扰的能力。
作为进一步的优选方案,还包括有步骤四、生成最弱干涉数据库:在空气洁净的环境下控制所述磁性微位移平台10,使第二位移件105移动,当射向所述标定干涉测量光电探测器41a的干涉光束为最弱相消干涉时停止所述磁性微位移平台10,使第二位移件105固定,记录此时标定反射测量光电探测器61a读数和标定干涉测量光电探测器41a读数,改变空气环境使所述标定反射测量光电探测器61a读数变化,同时记录若干个标定反射测量光电探测器61a读数以及对应的标定干涉测量光电探测器41a读数,得到最弱干涉数据库。
作为进一步的优选方案,重复所述步骤四,每次选取不同的标定反射测量光电探测器61a和标定干涉测量光电探测器41a,得到z个最弱干涉数据库。
作为进一步的优选方案,还包括有步骤五、生成1/n波长干涉数据库,n为大于或等2的正整数,在空气洁净的环境下控制所述磁性微位移平台10,使第二位移件105移动,当射向所述标定干涉测量光电探测器41a的干涉光束为最 强相长干涉时,再继续移动1/2mn波长的距离,记录此时标定反射测量光电探测器读数61a和标定干涉测量光电探测器41a读数,然后改变空气环境使所述标定反射测量光电探测器61a读数变化,同时记录若干个所述标定反射测量光电探测器61a读数以及对应的标定干涉测量光电探测器41a读数,得到1/n波长干涉数据库。
在两束激光发生干涉时,相邻的最强相长干涉与最弱相消干涉之间的光程差为半个波长,在本申请的标定方法中,对最强相长干涉、最弱相消干涉、1/n波长干涉都进行了标定,也就是说,在采用本申请的激光干涉仪进行实际测量时,可以根据标定反射测量光电探测器61a读数和标定干涉测量光电探测器41a读数与最强干涉数据库、最弱干涉数据库、1/n波长干涉数据库中的数据进行比对,根据数据的匹配情况确定该位置是最强相长干涉、最弱相消干涉还是1/n波长干涉。使得本申请的激光干涉仪不仅能够抗环境干扰,而且还提高了测量精度。
作为进一步的优选方案,重复所述步骤五,每次选取不同的标定反射测量光电探测器61a和标定干涉测量光电探测器41a,得到z个1/n波长干涉数据库。
实施例3,如图所示,一种采用磁性微位移平台式级联阶梯角反射镜激光干涉仪和标定方法的测量方法:
在实际测量环境中,设所述标定反射测量光电探测器61a测量到的信号读数为x,所述标定干涉测量光电探测器41a测量得到的信号读数为y,将x值和y值在最强干涉数据库、最弱干涉数据库、1/n波长干涉数据库中进行比对,当x值和y值与最强干涉数据库中的某一组值相匹配,则认为此位置为最强相长干涉位置,当x值和y值与最弱干涉数据库中的某一组值相匹配,则认为此位置 为最弱相消干涉位置,当x值和y值与1/n波长干涉数据库中的某一组值相匹配,则认为此位置为1/n波长干涉位置。
本申请的测量方法,通过x值和y值确定当前干涉光束的干涉情况,以此实现抗环境干扰的能力,同时还提高了测量精度。
作为进一步的优选方案,设定y值的匹配阈值Δ,设最强干涉数据库、最弱干涉数据库、1/n波长干涉数据库中标定干涉测量光电探测器对应的数值为y’,根据x值对最强干涉数据库、最弱干涉数据库、1/n波长干涉数据库进行y’的查询,如果存在y’使|y-y'|<Δ,再区分y’所在的数据库,如果y’在最强干涉数据库内,则认为此位置为最强相长干涉位置,如果y’在最弱干涉数据库内,则认为此位置为最弱相消干涉位置,如果y’在1/n波长干涉数据库内,则认为此位置为1/n波长干涉位置。
作为进一步的优选方案,设最强干涉数据库、最弱干涉数据库、1/n波长干涉数据库中标定反射测量光电探测器61a对应的数值为x’,在实际测量中,选择最接近实际测量值x的x’作为匹配值,根据x’值对最强干涉数据库、最弱干涉数据库、1/n波长干涉数据库进行y’进行查询,如果存在y’使|y-y'|<Δ,再区分y’所在的数据库,如果y’在最强干涉数据库内,则认为此位置为最强相长干涉位置,如果y’在最弱干涉数据库内,则认为此位置为最弱相消干涉位置,如果y’在1/n波长干涉数据库内,则认为此位置为1/n波长干涉位置。
作为进一步的优选方案,所述匹配阈值Δ的大小保证在进行数据查询时,当满足|y-y'|<Δ时,y’为唯一值。当匹配阈值Δ较大时,可能会出现一组x值和y值匹配到两组或者多组x’值和y’值,给测量带来不便,所以先匹配阈值Δ,使在测量过程中一组x值和y值最多匹配一组x’值和y’值,方便测量。
作为进一步的优选方案,所述匹配阈值Δ的大小按照实际测量的精度要求进 行设定,当需要高精度的测量值时,采用较小的匹配阈值,当不需要高精度测量值时,采用较大的匹配阈值。
作为进一步的优选方案,设Δ=5%。
在本申请的测量方法中,通过设置匹配阈值Δ,根据实际测量精度的需要设置匹配阈值Δ的大小,以此方便测量过程中,数据的匹配选择,降低测量难度。
以上实施例仅用以说明本实用新型而并非限制本实用新型所描述的技术方案,尽管本说明书参照上述的各个实施例对本实用新型已进行了详细的说明,但本实用新型不局限于上述具体实施方式,因此任何对本实用新型进行修改或等同替换;而一切不脱离发明的精神和范围的技术方案及其改进,其均应涵盖在本实用新型的权利要求范围当中。
Claims (2)
1.一种磁性微位移平台式级联阶梯角反射镜激光干涉仪,包括有激光源、微动阶梯角反射镜组、干涉测量光电探测器组、移动角反射镜、分光镜组和磁性微位移平台,所述微动阶梯角反射镜组包括有m个微动阶梯角反射镜和m-1个固定角反射镜,m>2,m个所述微动阶梯角反射镜设置在所述磁性微位移平台上;所述激光源向所述分光镜组射出z束激光束,其中z为大于或者等于2的正整数,所述干涉测量光电探测器组包括有z个干涉测量光电探测器,每一个干涉测量光电探测器与一束激光束相对应,各激光束经所述分光镜组后分为第一激光束组和第二激光束组,所述第一激光束组射向所述微动阶梯角反射镜组,经所述微动阶梯角反射镜组反射后再次射向所述分光镜组,再经所述分光镜组后射向所述干涉测量光电探测器组,所述第二激光束组射向所述移动角反射镜,经所述移动角反射镜反射后再次射向所述分光镜组,经所述分光镜组后相对应的与射向所述干涉测量光电探测器组的第一激光束组发生干涉,形成干涉激光束组,干涉激光束组的各干涉光束分别射向各自对应的所述干涉测量光电探测器;其特征在于,所述磁性微位移平台式级联阶梯角反射镜激光干涉仪还包括有反射测量光电探测器组,所述反射测量光电探测器组包括有z个反射测量光电探测器,所述第二激光束组在由所述移动角反射镜射向所述分光镜组后还形成有反射激光束组,所述反射激光束组的各激光束分别射向一个所述反射测量光电探测器;
所述磁性微位移平台,包括有支撑平台和设置在所述支撑平台上的位移装置,所述支撑平台上设置有第一位移件,所述第一位移件与所述位移装置连接,所述位移装置带动所述第一位移件沿所述支撑平台运动,所述第一位移件具有一相对于其位移方向倾斜的斜面,所述第一位移件的斜面上滑动设置有第二位移件,所述第一位移件与第二位移件之间贴紧配合,所述支撑平台上还设置有 约束装置,所述约束装置限制所述第二位移件沿所述第一位移件位移方向上的运动,使得当第一位移件被所述位移装置带动而产生位移时,所述第二位移件被所述第一位移件带动而产生位移,所述第二位移件的位移方向与所述第一位移件的位移方向相垂直,所述第一位移件的斜面与其位移方向的夹角为A度,0<A<45,所述第一位移件与所述支撑平台之间还设置有具有磁性的磁性件,所述第二位移件具有磁性,所述第二位移件与所述磁性件为异性相吸状态,所述微动阶梯角反射镜设置在所述第二位移件上,随第二位移件运动。
2.如权利要求1所述的磁性微位移平台式级联阶梯角反射镜激光干涉仪,其特征在于,所述分光镜组包括有第一分光镜和第二分光镜,所述激光源射出的z束激光束先射到第一分光镜,经第一分光镜反射形成第一激光束组,经第一分光镜透射形成第二激光束组,第一激光束组射向所述微动阶梯角反射镜组,经反射后再次射向所述第一分光镜,然后再透射过所述第一分光镜,所述第二激光束组射向所述移动角反射镜,经所述移动角反射镜反射后射向所述第二分光镜,经所述第二分光镜透射后射向所述第一分光镜,并且与从所述第一分光镜透射出的第一激光束组发生干涉,形成干涉激光束组后射向所述干涉测量光电探测器组,由所述移动角反射镜射向所述第二分光镜的所述第二激光束组还被所述第二分光镜反射形成所述反射激光束组。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520459665.9U CN204705319U (zh) | 2015-06-29 | 2015-06-29 | 一种磁性微位移平台式级联阶梯角反射镜激光干涉仪 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520459665.9U CN204705319U (zh) | 2015-06-29 | 2015-06-29 | 一种磁性微位移平台式级联阶梯角反射镜激光干涉仪 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN204705319U true CN204705319U (zh) | 2015-10-14 |
Family
ID=54284924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201520459665.9U Expired - Fee Related CN204705319U (zh) | 2015-06-29 | 2015-06-29 | 一种磁性微位移平台式级联阶梯角反射镜激光干涉仪 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN204705319U (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104964641A (zh) * | 2015-06-29 | 2015-10-07 | 成都信息工程大学 | 一种磁性微位移平台式级联阶梯角反射镜激光干涉仪及标定方法和测量方法 |
-
2015
- 2015-06-29 CN CN201520459665.9U patent/CN204705319U/zh not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104964641A (zh) * | 2015-06-29 | 2015-10-07 | 成都信息工程大学 | 一种磁性微位移平台式级联阶梯角反射镜激光干涉仪及标定方法和测量方法 |
CN104964641B (zh) * | 2015-06-29 | 2017-10-10 | 成都信息工程大学 | 一种磁性微位移平台式级联阶梯角反射镜激光干涉仪及标定方法和测量方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104964641A (zh) | 一种磁性微位移平台式级联阶梯角反射镜激光干涉仪及标定方法和测量方法 | |
CN105043242A (zh) | 一种对比式抗干扰阶梯平面反射镜激光干涉仪及标定方法和测量方法 | |
CN104880147A (zh) | 一种磁性微位移平台式角反射镜激光干涉仪及标定方法和测量方法 | |
CN105509636A (zh) | 一种波长修正式多光束角阶梯反射镜激光干涉仪及其测量方法 | |
CN204705316U (zh) | 一种磁性微位移平台式平面反射镜激光干涉仪 | |
CN204705319U (zh) | 一种磁性微位移平台式级联阶梯角反射镜激光干涉仪 | |
CN204718549U (zh) | 一种磁性微位移平台式阶梯角反射镜激光干涉仪 | |
CN204705317U (zh) | 一种磁性微位移平台式阶梯平面反射镜激光干涉仪 | |
CN204757922U (zh) | 一种对比式抗干扰微动级联阶梯角反射镜激光干涉仪 | |
CN105371755A (zh) | 一种波长修正式多光束阶梯平面反射镜激光干涉仪及波长修正方法 | |
CN105371754A (zh) | 一种波长修正式多光束级联阶梯角反射镜激光干涉仪及其测量方法 | |
CN204705318U (zh) | 一种磁性微位移平台式角反射镜激光干涉仪 | |
CN205120038U (zh) | 一种激光波长修正式平面反射镜激光干涉仪 | |
CN205209430U (zh) | 一种波长修正式多光束角阶梯反射镜激光干涉仪 | |
CN104930968A (zh) | 一种磁性微位移平台式阶梯平面反射镜激光干涉仪及标定方法和测量方法 | |
CN204988173U (zh) | 一种对比式抗干扰微动阶梯平面反射镜激光干涉仪 | |
CN104897049A (zh) | 一种磁性微位移平台式平面反射镜激光干涉仪及标定方法和测量方法 | |
CN204854622U (zh) | 一种对比式抗干扰级联阶梯角反射镜激光干涉仪 | |
CN204740001U (zh) | 一种对比式抗干扰微动阶梯角反射镜激光干涉仪 | |
CN204740000U (zh) | 一种对比式抗干扰阶梯平面反射镜激光干涉仪 | |
CN204757921U (zh) | 一种对比式抗干扰阶梯型角反射镜激光干涉仪 | |
CN105004263A (zh) | 一种对比式抗干扰微动平面反射镜激光干涉仪及标定方法和测量方法 | |
CN205138419U (zh) | 一种激光波长修正式角反射镜激光干涉仪 | |
CN204757920U (zh) | 一种对比式抗干扰微动平面反射镜激光干涉仪 | |
CN104964642A (zh) | 一种磁性微位移平台式阶梯角反射镜激光干涉仪及标定方法和测量方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20151014 Termination date: 20160629 |
|
CF01 | Termination of patent right due to non-payment of annual fee |