CN204595074U - 电动汽车的高压上电显示装置 - Google Patents

电动汽车的高压上电显示装置 Download PDF

Info

Publication number
CN204595074U
CN204595074U CN201520066144.7U CN201520066144U CN204595074U CN 204595074 U CN204595074 U CN 204595074U CN 201520066144 U CN201520066144 U CN 201520066144U CN 204595074 U CN204595074 U CN 204595074U
Authority
CN
China
Prior art keywords
voltage
circuit
high pressure
electric automobile
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201520066144.7U
Other languages
English (en)
Inventor
高新杰
李兴华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Electric Vehicle Co Ltd
Original Assignee
Beijing Electric Vehicle Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Electric Vehicle Co Ltd filed Critical Beijing Electric Vehicle Co Ltd
Priority to CN201520066144.7U priority Critical patent/CN204595074U/zh
Application granted granted Critical
Publication of CN204595074U publication Critical patent/CN204595074U/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

本实用新型实施例提供了一种电动汽车的高压上电显示装置。该装置设置在电动汽车的高压控制盒中,所述检测装置包括:依次串联连接的高压输入保护电路、采集电路、比较电路和显示电路,所述比较电路还和基准电压电路电气连接。本实用新型实施例的检测装置通过不采集电动汽车的动力电压的实际电压值,而是将采集的电压值与基准电压进行比较,检测电动汽车的整车上电状态。该检测装置不采用AD采样电路设计方案,不采用微处理器,对于减小动力线束上共模干扰影响起到很大作用,避免了CAN网络受干扰带来的潜在的显示错误风险。

Description

电动汽车的高压上电显示装置
技术领域
本实用新型涉及电动汽车技术领域,尤其涉及一种电动汽车的高压上电显示装置。
背景技术
纯电动汽车以动力蓄电池和驱动电机为动力装置,工作电压高达数百伏,远远超过人体安全电压36V,线路老化或者绝缘破损等都可能产生人员触电。因此,对电动汽车的动力蓄电池的动力电压进行检测是个非常关键的环节。
目前,现有技术中的一种电动汽车的动力蓄电池的动力电压的检测方法为:在动力蓄电池包内设置电动汽车的动力蓄电池的动力电压的检测点,通过AD采样电路在上述检测点采集电压,将采集的动力蓄电池的动力电压值送微处理器处理,并通过CAN(Controller Area Network,控制器局域网)网络发送到仪表显示。
上述现有技术中的电动汽车的动力蓄电池的动力电压的检测方法的缺点为:这种方式成本高,测试装置体积大,且显示位于仪表盘上,给维修人员检修时查看带来不便。
实用新型内容
本实用新型的实施例提供了一种电动汽车的高压上电显示装置,以实现对电动汽车的动力电压状态进行有效的检测。
一种电动汽车的高压上电显示装置,设置在电动汽车的高压控制盒中,所述检测装置包括:依次串联连接的、采集电路、比较电路和显示电路,所述比较电路还和基准电压电路电气连接;
所述的采集电路,用于通过分压电阻采集电动汽车的高压控制盒中的高压线束电压,通过运放电路对所述高压线束电压进行运算放大处理,得到检测电压,将所述检测电压传输给所述比较电路;
所述的比较电路,用于包括高压上电检测电压比较器,当所述电动汽车处于高压上电状态时,所述高压上电检测电压比较器接收所述基准电压和所述检测电压,将所述高压上电检测电压比较器的输出电平传输给所述显示电路;
所述的显示电路,用于包括高压上电检测显示器,当所述电动汽车处于高压上电状态时,所述高压上电检测显示器接收所述高压上电检测电压比较器的输出电平,根据所述输出电平显示所述电动汽车的高压上电状态为正常或者异常。
所述装置包括:正极电压采集点和负极电压采集点,所述正极电压采集点通过高压控制盒的高压正极母线和动力蓄电池的正极连接,所述负极电压采集点通过高压控制盒的负极正极母线和动力蓄电池的负极连接。
所述装置还包括:
高压输入保护电路,用于包括两个防反接二极管D2和D3,两支高压自恢复保险Fu2和Fu3,正极电压采集点采集的电压vHV+连接所述防反接二极管D2的阳极端,所述防反接二极管D2的阴极端连接到高压自恢复保险Fu2,高压自恢复保险Fu2还连接到电阻分压电路;所述负极电压采集点采集的电压vHV-连接防反接二极管D3的阴极端,防反接二极管D3的阳极端连接到高压自恢复保险Fu3,高压自恢复保险Fu3还连接到电阻分压电路。
所述基准电压电路包括:互相电路连接的低压供电电路和低压电源转换电路,所述低压电源转换电路包括依次串联连接的输入滤波电路、隔离型电源转换芯片、输出滤波电路和基准电压源转换芯片,所述输入滤波电路接收所述低压供电电路输出的12V电压信号,对所述12V电压信号进行滤波处理后传输给所述隔离型电源转换芯片,所述隔离型电源转换芯片根据所述12V电压信号产生隔离的5V电压信号,将所述5V电压信号传输给所述基准电压源转换芯片,所述基准电压源转换芯片将所述5V电压信号转换为2.5V基准电压信号。
将所述隔离型电源转换芯片的输出端的负极作为所述检测装置的浮动地GND。
所述低压供电电路包括依次串联连接的启动点火开关、防反接二极管D1和保险Fu1,以及供电指示灯。
所述采集电路包括:电阻Rn、电阻Rp、电阻R4、电阻R3,差分运算放大器U3,所述电阻R3的一端连接浮动地GND、另一端连接差分运算放大器U3的正输入极,电阻Rp的一端连接高压输入保护电路的输出端、另一端连接差分运算放大器U3的正输入极,电阻Rn的一端连接高压输入保护电路的输出端、另一端连接差分运算放大器U3的负输入极,电阻R4的一端连接差分运算放大器U3的负输入极、另一端连接差分运算放大器U3的输出端。
所述高压上电检测电压比较器的负极输入端连接所述差分运算放大器的输出端、正极输入端连接所述基准电压电路的输出端;
当所述基准电压电路输出的基准电压大于或等于所述差分运算放大器的输出电压vOUT时,所述高压上电检测电压比较器输出高电平;当所述基准电压电路输出的基准电压小于所述差分运算放大器的输出电压vOUT时,所述高压上电检测电压比较器输出低电平。
所述高压上电检测显示器为发光二极管LED3,所述发光二极管LED3的负极通过电路和所述高压上电检测电压比较器的输出端连接,所述发光二极管LED3的正极和限流电阻连接,当高压上电检测电压比较器的输出电平为低电平时,所述发光二极管LED3点亮;当高压上电检测电压比较器的输出电平为高电平时,所述发光二极管LED3不点亮。
由上述本实用新型的实施例提供的技术方案可以看出,本实用新型实施例的检测装置通过不采集电动汽车的动力电压的实际电压值,而是将采集的电压值与基准电压进行比较,可以检测电动汽车的整车上电状态。该检测装置不采用AD采样电路设计方案,不采用微处理器,为纯模拟电路,采用差动运放数据采集,对于减小动力线束上共模干扰影响起到很大作用,上电指示完全依靠物理信号线,避免了CAN网络受干扰带来的潜在的显示错误风险。差动运放输出和精密基准电源比较送给电压比较器进行比较,从而准确判断动力蓄电池是否已上高压电。
本实用新型附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本实用新型的实践了解到。
附图说明
为了更清楚地说明本实用新型实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本实用新型实施例一提供的电动汽车的高压上电显示装置在高压控制盒内的电气连接示意图;
图2为本实用新型实施例提供的一种电动汽车的高压上电显示装置的内部结构框图;
图3为本实用新型实施例提供的一种低压供电电路和低压电源转换电路的电路连接示意图;
图4为本实用新型实施例提供的一种图2所示的检测装置中的高压输入保护电路、采集电路、比较电路、显示电路的电路连接示意图;
图5为本实用新型实施例二提供的电动汽车的高压上电显示装置的检测流程示意图;
图6为本实用新型实施例二提供的位于高压控制盒外部的操作及显示面板示意图。
具体实施方式
下面详细描述本实用新型的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本实用新型,而不能解释为对本实用新型的限制。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本实用新型的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的任一单元和全部组合。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本实用新型所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
为便于对本实用新型实施例的理解,下面将结合附图以几个具体实施例为例做进一步的解释说明,且各个实施例并不构成对本实用新型实施例的限定。
实施例一
在实际应用中,对于用户或检修人员来说,关心更多的是动力蓄电池是否正常高压上电。
本实用新型实施例采用分压电阻法采集电动汽车的动力电压,并判断动力电压的电压范围,而不进行动力电压的具体数值测量。本实用新型实施例的电动汽车的高压上电显示装置在电动汽车的动力蓄电池上电时,可以实时检测电动汽车的高压上电状态。
高压控制盒作为动力蓄电池和高压零部件连接的电能分配单元,本实用新型实施例提供的检测装置安装于电动汽车的高压控制盒内,该检测装置在高压控制盒内的电气连接关系示意图如图1所示,本装置安装于高压控制盒内,检测装置的高压检测点选择在高压控制盒内的高压正负极母线上,包括:正极电压采集点A(HV+)和负极电压采集点B(HV-),所述正极电压采集点A通过高压控制盒的高压正极母线和动力蓄电池的正极连接,所述负极电压采集点B通过高压控制盒的负极正极母线和动力蓄电池的负极连接。本检测装置还需提供低压12V供电,根据设计需求,12V电源采用ON电,即电动汽车钥匙开关打开后,保证检测装置低压供电和高压上电同步。
本实用新型实施例提供的一种电动汽车的高压上电显示装置的内部结构框图如图2所示,包括高压输入保护电路、采集电路、比较电路、基准电压电路和显示电路,其中,高压输入保护电路、采集电路、比较电路和显示电路依次串联连接,比较电路还和基准电压电路电气连接,接收基准电压电路输出的基准电压。
所述的采集电路,用于通过分压电阻采集电动汽车的高压控制盒中的高压线束电压(图1中A点和B点之间的高电压),通过运放电路对所述电阻分压电路传输过来的高压线束电压进行运算放大处理,得到检测电压,将所述检测电压传输给所述比较电路;
所述的比较电路,用于包括高压上电检测电压比较器,接收所述基准电压电路输出的基准电压,当所述电动汽车处于高压上电状态时,所述高压上电检测电压比较器接收所述基准电压和所述检测电压,将所述高压上电检测电压比较器的输出电平传输给所述显示电路;
所述的显示电路,用于包括高压上电检测显示器,当所述电动汽车处于高压上电状态时,所述高压上电检测显示器接收所述高压上电检测电压比较器的输出电平,根据所述输出电平显示所述电动汽车的高压上电状态为正常或者异常。
下面详细介绍上述检测装置中的各个模块的结构和功能。
所述基准电压电路包括:互相电路连接的低压供电电路和低压电源转换电路,本实用新型实施例提供的一种低压供电电路和低压电源转换电路的电路连接示意图如图3所示,低压供电电路中的启动点火电路包括依次串联连接的启动点火开关、防反接二极管D1和保险Fu1,启动点火开关后,图3中ON电(低压12V电源)提供给检测装置。R1和LED1为ON电供电指示灯,ON电时,LED1指示灯点亮,当点火开关关闭时,ON电断开,从而切断检测装置低压供电,同时LED1指示灯不点亮。
低压电源转换电路包括依次串联连接的输入滤波电路、隔离型电源转换芯片、输出滤波电路和基准电压源转换芯片,以及指示电路。所述输入滤波电路接收所述低压供电电路输出的12V电压信号,对所述12V电压信号进行滤波处理后传输给所述隔离型电源转换芯片,所述隔离型电源转换芯片根据所述12V电压信号产生隔离的5V电压信号,将所述5V电压信号传输给所述基准电压源转换芯片,所述基准电压源转换芯片将所述5V电压信号转换为2.5V基准电压信号。
如图3所示,U1为隔离型电源变换芯片(DC/DC),上述低压供电电路输出的+12V电压经过输入滤波电路后送给U1,U1产生隔离的VCC(+5V),该VCC(+5V)经过输出滤波电路后输出给上述检测装置,为检测装置低压电路供电。基准电压源转换芯片U2将VCC(+5V)转换为+2.5V基准电压源并输出。
由于电动汽车动力蓄电池管理系统(BMS)都带有绝缘检测功能,其检测原理为在高压正负极和车体之间接有检测电阻,即选择车体负极搭铁点(图3中所示)作为检测参考点,若本实用新型实施例中高压检测电路仍以车体负极搭铁点为参考点,这样就导致高压正负极和车体负极搭铁点之间既有绝缘检测时的检测电阻,又有动力电压采集的分压电阻,电阻并联从而导致绝缘检测失效,所以高压检测参考地不能选择车体负极。本实用新型实施例采用隔离型电源转换芯片U2的输出端的负极GND(图4中所示)为高压检测参考点,这可看做一个“浮动地”,但这个浮动地GND为局部地,保证了检测功能,同时又保证了12V电源输入端负极即车体和转换后电源负极GND(浮动地GND)完全隔离。U2可以选择高精度低漂移、低功耗的LT1790AIS6-2.5芯片。LED2为VCC状态指示灯,可用于判断检测装置是否有+12V供电。
为保证整车低压电气系统12V电源的质量,各低压用电设备必须保证足够的电磁兼容性,本实用新型实施例采用的电源转换芯片其典型开关频率为300kHz,其工作时容易带来高频电磁干扰问题,本实用新型实施例的低压电源输入端滤波电路对降低传导和辐射发射起到了决定作用,实际测试显示本实用新型实施例的电源输入端传导发射可满足低压电源传导发射限值的最高级,输出滤波电路保证输出“干净”的VCC电源,保证了高压检测电路中运放、基准电源和电压比较器的电源质量。
本实用新型实施例提供的一种图2所示的检测装置中的高压输入保护电路、采集电路、比较电路、显示电路的电路连接示意图如图4所示。
高压输入保护电路,用于和所述检测装置的正极电压采集点和负极电压采集点连接,对所述正极电压采集点采集的电压vHV+、所述负极电压采集点采集的电压vHV-进行保护处理,将保护处理后的电压vHV+、电压vHV-传输给所述电阻分压电路。高压正负极输入采用两个接插件,保证了电气间隙,输入端首先经过高压输入保护电路,高压输入保护电路包括两个防反接二极管D2和D3,防反接二极管反向耐压为1000V,额定电流为1A,满足设计需求,高压输入保护电路还包括两支高压自恢复保险Fu2和Fu3,在高压检测电路出现短接故障时起到防护作用,不影响高压系统正常工作。正极电压采集点采集的电压vHV+连接所述防反接二极管D2的阳极端,所述防反接二极管D2的阴极端连接到高压自恢复保险Fu2,高压自恢复保险Fu2还连接到电阻分压电路中的电阻Rp。所述负极电压采集点采集的电压vHV-连接防反接二极管D3的阴极端,防反接二极管D3的阳极端连接到高压自恢复保险Fu3,高压自恢复保险Fu3还连接到电阻分压电路中的Rn。
所述采集电路包括:电阻Rn、电阻Rp、电阻R4、电阻R3,差分运算放大器U3,所述电阻R3的一端连接浮动地GND、另一端连接差分运算放大器U3的正输入极,电阻Rp的一端连接高压输入保护电路的输出端、另一端连接差分运算放大器U3的正输入极,电阻Rn的一端连接高压输入保护电路的输出端、另一端连接差分运算放大器U3的负输入极,电阻R4的一端连接差分运算放大器U3的负输入极、另一端连接差分运算放大器U3的输出端。
设R3为电阻R3的阻值,Rp为电阻Rp的阻值,R4为电阻R4的阻值,Rn为电阻Rn的阻值,为保证分压电阻网络平衡,Rn=Rp,R4=R3,为提高Rn、Rp耐压等级,实际设计中,Rn和Rp分别由多个分压电阻串联组成。所述R3、Rp、R4和Rn根据所述电动汽车的动力蓄电池的输出最低电压和所述基准电压电路输出的基准电压而确定。
所述差分运算放大器U3的输出电压为vOUT:
Vout = ( v HV + - v HV - ) × R 3 Rp + R 3
差动运放的输出电压与两个输入电压之差成正比,运放的放大倍数取决于R3与Rp,而与运放的内部参数没有关系。最为关键的是,采用差动运放电路采集动力电压可减小共模干扰带来的影响。
设动力蓄电池的动力电压为vHV,并设高压正极输入电压为vHV+,负极电压为vHV-,可知vHV=vHV+-vHV-。由于高压控制盒的动力母线的阻抗非常低,可认为高压控制盒内的高压母线电压也为vHV。U3为单电源供电的差分运算放大器,与其周围的电阻、电容构成差动运算放大电路。
示例性的,目前动力蓄电池的输出最低电压为240VDC,实际使用中动力蓄电池的最低输出vHV大于250V,本实用新型实施例以250V为最低输出电压,分压电阻的选择基于以下考虑,R3选择6.2K高精度电阻,Rp分别由四支150K电阻串联组成,可知R3/(R3+Rp)≈0.01,同理可得整车上电状态时,U3输出(VOUT)理论最小值约等于0.01*250V=2.5V。同时动力蓄电池输出最高低压不超过400V,以400V为输出最大值,可得400*R3/(R3+Rp)=4V,在U3输出量程范围之内,同理保证U3输出不超过U4输入范围。
如图4所示,整车下电检测电压比较器U4a和高压上电检测电压比较器U4为电压比较器,若U4的芯片负极(-)引脚输入高于正极(+)引脚输入时,U4输出低电平;若U4的芯片负极(-)引脚输入低于正极(+)引脚输入时,U4输出高电平。
高压上电检测电压比较器U4的负极输入端连接所述差分运算放大器U3的输出端、正极输入端连接所述基准电压电路的输出端,即连接+2.5V基准电压。当所述基准电压电路输出的基准电压+2.5V大于或等于所述差分运算放大器的输出电压vOUT时,所述高压上电检测电压比较器U4输出高电平;当所述基准电压电路输出的基准电压+2.5V小于所述差分运算放大器的输出电压vOUT时,所述高压上电检测电压比较器U4输出低电平。
由图4可知,U4输出端连接到显示电路,显示电路由R5、R6和发光二极管LED3构成,高压上电检测显示器为发光二极管LED3。所述发光二极管LED3的负极通过电路和所述高压上电检测电压比较器U4的输出端连接,所述发光二极管LED3的正极和限流电阻R6连接,
其中R5为上拉电阻,R6用作LED3点亮时的限流电阻。当U4输出高电平时,LED3不点亮;当U4输出低电平时,LED3点亮。上述显示说明,当LED3点亮时,代表U4的反相输入端大于+2.5V,也即U3输出端大于+2.5V,也即vHV大于250V,表明此时整车已上高压。
实施例二
基于上述实施例一的检测装置,该实施例提供的一种电动汽车的高压上电显示装置的检测流程示意图如图5所示,包括如下的检测过程:
动力蓄电池的母线动力电压状态可分为三个状态:上电状态(vHV>250V)、放电状态(36V<vHV<250V)以及安全状态(vHV<36V):
检测开始,当低压供电电路中的LED1已经点亮后,电动汽车进行整车高压上电过程,由于上电状态时,动力蓄电池的最低输出电压远大于250V,所以整车上电时,U3输出vOUT大于2.5V,U4_out为低电平,表示整车上高压电,从而发光二极管LED3点亮,电动汽车处于上电状态。
当上电状态时,发光二极管LED3没有点亮,则说明动力蓄电池的输出电压小于250V,U3输出vOUT小于2.5V,整车没有上高压电。
当低压供电电路中的LED1没有点亮时,则说明低压供电电路中的ON开关没有按下。
本实用新型实施例的检测装置的指示灯及常电开关安装于高压控制盒盖,位于高压控制盒外部的操作及显示面板示意图如图6所示,便于观察和操作。该实施例提供的一种LED3的点亮/熄灭状态和电动汽车的高压上电状态的对应关系如下表所示:
检测装置显示电路指示灯状态对应关系如下表所示,由下表可知检测装置高压上电指示状态非常明确。
综上所述,本实用新型实施例的检测装置通过不采集电动汽车的动力电压的实际电压值,而是将采集的电压值与基准电压进行比较,可以检测电动汽车的整车上电状态。该检测装置不采用AD采样电路设计方案,不采用微处理器,为纯模拟电路,采用差动运放数据采集,对于减小动力线束上共模干扰影响起到很大作用,上电指示完全依靠物理信号线,避免了CAN网络受干扰带来的潜在的显示错误风险。差动运放输出和精密基准电源比较送给电压比较器进行比较,从而准确判断动力蓄电池是否已上高压电。
本实用新型实施例的检测装置安装于电动汽车高压控制盒内,动力电压指示灯从高压控制盒顶盖露出,便于检修人员及时了解动力蓄电池及与其并联的高压辅助电器上电情况。
本实用新型实施例的检测装置成本低,安装体积小。加上该装置后可实时显示高压上电情况,操作人员可直观了解动力蓄电池上电情况,不必采用万用表测量,节约时间,且安全性高,这样便于维修、维护时安全操作。
本实用新型实施例的检测装置中的隔离型电源转换电路既保证了高压和低压之间足够的电气隔离,又为检测总电压提供了一个参考地,不影响原有绝缘测试功能,且充分考虑了电磁兼容性设计,在满足功能的同时,大大降低了该装置沿电源线传导发射强度,在保证正常显示高压上电功能的同时考虑了电磁兼容及安全保护设计。
本领域普通技术人员可以理解:附图只是一个实施例的示意图,附图中的模块或流程并不一定是实施本实用新型所必须的。
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本实用新型可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本实用新型的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本实用新型各个实施例或者实施例的某些部分所述的方法。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置或系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的装置及系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述,仅为本实用新型较佳的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本实用新型的保护范围之内。因此,本实用新型的保护范围应该以权利要求的保护范围为准。

Claims (9)

1.一种电动汽车的高压上电显示装置,其特征在于,设置在电动汽车的高压控制盒中,所述装置包括:依次串联连接的采集电路、比较电路和显示电路,所述比较电路还和基准电压电路电气连接;
所述的采集电路,通过分压电阻采集电动汽车的高压控制盒中的高压线束电压,通过运放电路对所述高压线束电压进行运算放大处理,得到检测电压,将所述检测电压传输给所述比较电路;
所述的比较电路,包括高压上电检测电压比较器,当所述电动汽车处于高压上电状态时,所述高压上电检测电压比较器接收所述基准电压和所述检测电压,将所述高压上电检测电压比较器的输出电平传输给所述显示电路;
所述的显示电路,包括高压上电检测显示器,当所述电动汽车处于高压上电状态时,所述高压上电检测显示器接收所述高压上电检测电压比较器的输出电平,根据所述输出电平显示所述电动汽车的高压上电状态为正常或者异常。
2.根据权利要求1所述的电动汽车的高压上电显示装置,其特征在于,所述装置包括:正极电压采集点和负极电压采集点,所述正极电压采集点通过高压控制盒的高压正极母线和动力蓄电池的正极连接,所述负极电压采集点通过高压控制盒的负极正极母线和动力蓄电池的负极连接。
3.根据权利要求2所述的电动汽车的高压上电显示装置,其特征在于,所述装置还包括:
高压输入保护电路,包括两个防反接二极管D2和D3,两支高压自恢复保险Fu2和Fu3,正极电压采集点采集的电压vHV+连接所述防反接二极管D2的阳极端,所述防反接二极管D2的阴极端连接到高压自恢复保险Fu2,高压自恢复保险Fu2还连接到电阻分压电路;所述负极电压采集点采集的电压vHV-连接防 反接二极管D3的阴极端,防反接二极管D3的阳极端连接到高压自恢复保险Fu3,高压自恢复保险Fu3还连接到电阻分压电路。
4.根据权利要求1所述的电动汽车的高压上电显示装置,其特征在于,所述基准电压电路包括:互相电路连接的低压供电电路和低压电源转换电路,所述低压电源转换电路包括依次串联连接的输入滤波电路、隔离型电源转换芯片、输出滤波电路和基准电压源转换芯片,所述输入滤波电路接收所述低压供电电路输出的12V电压信号,对所述12V电压信号进行滤波处理后传输给所述隔离型电源转换芯片,所述隔离型电源转换芯片根据所述12V电压信号产生隔离的5V电压信号,将所述5V电压信号传输给所述基准电压源转换芯片,所述基准电压源转换芯片将所述5V电压信号转换为2.5V基准电压信号。
5.根据权利要求4所述的电动汽车的高压上电显示装置,其特征在于,将所述隔离型电源转换芯片的输出端的负极作为所述检测装置的浮动地GND。
6.根据权利要求4所述的电动汽车的高压上电显示装置,其特征在于,所述低压供电电路包括依次串联连接的启动点火开关、防反接二极管D1和保险Fu1,以及供电指示灯。
7.根据权利要求5所述的电动汽车的高压上电显示装置,其特征在于,所述采集电路包括:电阻Rn、电阻Rp、电阻R4、电阻R3,差分运算放大器U3,所述电阻R3的一端连接浮动地GND、另一端连接差分运算放大器U3的正输入极,电阻Rp的一端连接高压输入保护电路的输出端、另一端连接差分运算放大器U3的正输入极,电阻Rn的一端连接高压输入保护电路的输出端、另一端连接差分运算放大器U3的负输入极,电阻R4的一端连接差分运算放大器U3的负输入极、另一端连接差分运算放大器U3的输出端。
8.根据权利要求7所述的电动汽车的高压上电显示装置,其特征在于,所述高压上电检测电压比较器的负极输入端连接所述差分运算放大器的输出端、正极输入端连接所述基准电压电路的输出端;
当所述基准电压电路输出的基准电压大于或等于所述差分运算放大器的输出电压vOUT时,所述高压上电检测电压比较器输出高电平;当所述基准电压电路输出的基准电压小于所述差分运算放大器的输出电压vOUT时,所述高压上电检测电压比较器输出低电平。
9.根据权利要求8所述的电动汽车的高压上电显示装置,其特征在于,所述高压上电检测显示器为发光二极管LED3,所述发光二极管LED3的负极通过电路和所述高压上电检测电压比较器的输出端连接,所述发光二极管LED3的正极和限流电阻连接,当高压上电检测电压比较器的输出电平为低电平时,所述发光二极管LED3点亮;当高压上电检测电压比较器的输出电平为高电平时,所述发光二极管LED3不点亮。
CN201520066144.7U 2015-01-29 2015-01-29 电动汽车的高压上电显示装置 Withdrawn - After Issue CN204595074U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520066144.7U CN204595074U (zh) 2015-01-29 2015-01-29 电动汽车的高压上电显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520066144.7U CN204595074U (zh) 2015-01-29 2015-01-29 电动汽车的高压上电显示装置

Publications (1)

Publication Number Publication Date
CN204595074U true CN204595074U (zh) 2015-08-26

Family

ID=53931219

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520066144.7U Withdrawn - After Issue CN204595074U (zh) 2015-01-29 2015-01-29 电动汽车的高压上电显示装置

Country Status (1)

Country Link
CN (1) CN204595074U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104678158A (zh) * 2015-01-29 2015-06-03 北京新能源汽车股份有限公司 电动汽车的高压上电显示装置
CN107957530A (zh) * 2017-11-10 2018-04-24 上海机电工程研究所 导弹测试设备供电控制方法
CN109769386A (zh) * 2018-12-03 2019-05-17 天津津航计算技术研究所 Vpx机箱vga显示的滤波系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104678158A (zh) * 2015-01-29 2015-06-03 北京新能源汽车股份有限公司 电动汽车的高压上电显示装置
CN104678158B (zh) * 2015-01-29 2017-12-19 北京新能源汽车股份有限公司 电动汽车的高压上电显示装置
CN107957530A (zh) * 2017-11-10 2018-04-24 上海机电工程研究所 导弹测试设备供电控制方法
CN109769386A (zh) * 2018-12-03 2019-05-17 天津津航计算技术研究所 Vpx机箱vga显示的滤波系统

Similar Documents

Publication Publication Date Title
CN104678158A (zh) 电动汽车的高压上电显示装置
CN104678311A (zh) 电动汽车的动力电压状态的检测装置
CN204595104U (zh) 电动汽车下电后高压余电的检测装置
CN103718055A (zh) 用于使用ac剩余电流检测在dc电源中进行故障检测的系统和装置
CN2924549Y (zh) 照明电缆断电时被盗检测装置
CN105548784B (zh) 一种电动汽车直流车辆接口电路模拟器
CN204595074U (zh) 电动汽车的高压上电显示装置
CN202404164U (zh) 一种供电系统处理机仿真系统
CN108196176B (zh) 一种电池包的绝缘检测报警装置及其方法
CN104691349B (zh) 电动汽车的高压部件余电的放电装置
CN104655959A (zh) 电动汽车下电后高压余电的检测装置
CN201344948Y (zh) 一种测试仪表
CN204515091U (zh) 电动汽车的动力电压状态的检测装置
CN102680908A (zh) 电池状态检测记录分析仪及控制方法
CN109856498A (zh) 电池线束检测电路及检测方法
CN204586540U (zh) 电动汽车的高压部件余电的放电装置
CN202025057U (zh) 一种印制电路板的短路、开路检测装置
CN201084792Y (zh) 车载蓄电池地面维护装置
CN104691350B (zh) 电动汽车的高压部件余电的放电装置
CN206725670U (zh) 用于plc模块中滤波电容的检测装置
CN214376006U (zh) 充电桩主控制器的测试系统
CN211061633U (zh) 一种基于交直流漏电流传感器的直流绝缘监测装置
CN210181189U (zh) 一种充电桩电源模块自动测试装置
CN113777514A (zh) 一种后备式储能系统的绝缘检测电路、系统及方法
CN103323668A (zh) 航天器电源控制器母线电磁兼容性传导发射频域测试方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20150826

Effective date of abandoning: 20171219

AV01 Patent right actively abandoned