CN204520668U - 多通道同步耳蜗听神经动作电位测量系统 - Google Patents

多通道同步耳蜗听神经动作电位测量系统 Download PDF

Info

Publication number
CN204520668U
CN204520668U CN201520110674.7U CN201520110674U CN204520668U CN 204520668 U CN204520668 U CN 204520668U CN 201520110674 U CN201520110674 U CN 201520110674U CN 204520668 U CN204520668 U CN 204520668U
Authority
CN
China
Prior art keywords
channel
signal
cochlea
unit
action potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201520110674.7U
Other languages
English (en)
Inventor
田岚
王静轩
夏明�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201520110674.7U priority Critical patent/CN204520668U/zh
Application granted granted Critical
Publication of CN204520668U publication Critical patent/CN204520668U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本实用新型公开了一种多通道同步耳蜗听神经动作电位测量系统,柔性多通道电极阵列,用于采集局部听神经动作电位信号;前置放大单元,与柔性多通道电极阵列的引出线相连接,分别独立的放大电极采集到的微弱听神经电位信号;多路A/D模数转换单元,负责将前置放大单元输出的多路电信号转换为对应的数字信号;信号处理控制器,分别与各个单元相连接,向各模块发出相应控制信号,读取存储器中从上位机下传的配置命令数据缓存和传输单元,对采集的各路并行数据进行本地存储或直接传输到上位机进行处理;上位机和显示单元,对测量各参数作设置,并对采集的数据做处理,对应显示所选观测通道的听神经同步电位波形。

Description

多通道同步耳蜗听神经动作电位测量系统
技术领域
本实用新型涉及生物听觉与电生理信号测量领域,具体涉及一种可多通道同步记录耳蜗听神经电位的测量系统。
背景技术
听觉系统的电生理测量对听觉机理研究和分析具有重要意义。目前,针对听觉系统的电生理测量手段主要有听性脑干反应ABR(Auditory Brainstem Response)和听神经复合动作电位CAP(Compound Action Potential),其中,ABR记录的是听觉系统对外界刺激到达听神经后传导到脑桥、丘脑的一系列生物电生理波形,通过对波形各项参数的判断,来确定听通路是否正常。CAP听神经动作电位是耳蜗对声刺激所产生的一种反应,是耳蜗中听细胞换能后所产生的复合神经电信号,它的作用是向中枢传递声音信息,一般认为它是由不同的听神经纤维的电位反应同步叠加产生的复合电位。通常认为,CAP比ABR能更明确、直接地反应听觉系统被激发后听神经传导前端的信号发放情况,其记录可在耳蜗圆窗附近置入单电极测量,也有用植入耳蜗内的多点电极,测量多点局部的CAP。目前,尽管已有类似测量方法,但是都为单电极或多电极非同步分时记录采集,尽管这种测量可以记录多点局部神经电位的反应,但无法观测神经电位在某一时刻同步产生的各点电位变化的情况。
上述两种听觉电生理测量手段均为复合的神经响应测量指标,所反映的是听觉系统对于外部刺激的一种整体或局部的电生理反应。然而,听觉系统的内耳感音有耳蜗的拓扑结构和声音频率成分相互对应的特点,而且其内部按对应位置分布大量的听细胞(又称毛细胞),其作用类似感应音频成分的“传感器”,正是这些毛细胞和后端的听神经相互连接,共同完成声信息到大脑功能区的传递。听细胞阵列神经响应信号的传递应是并行且独立的。目前所使用的听觉神经电生理测量手段(如:ABR,CAP)对于耳蜗内部拓扑结构所对应的局部神经响应无法实现多通道同步、实时的精确测量。
实用新型内容
为了解决现有技术存在的问题,本实用新型具体公开了一种可多通道同步记录耳蜗听神经电位反应的测量系统。
本实用新型采用的技术方案如下:
一种多通道同步耳蜗听神经动作电位测量系统,包括
柔性多通道电极阵列,用于采集耳蜗内部基底膜不同位置的局部听神经动作电位信号;
多路神经电生理信号前置放大单元,其与柔性多通道电极阵列的引出线相连接,分别独立的放大电极采集到的微弱听神经电位信号,并且由信号处理控制器单元控制;
多路A/D模数转换单元,在信号处理控制器的控制下,负责将所述的前置放大单元输出的多路电信号转换为对应的数字信号;
信号处理控制器,分别与所述的前置放大单元、多路A/D模数转换单元以及数据缓存与传输单元相连接,向各模块发出相应控制信号,读取存储器中从上位机下传的配置命令数据;
数据缓存和传输单元,用于对采集的各路并行数据以一定的格式进行本地存储或直接通过通用的数据接口传输到上位机进行处理,并显示分析;
上位机和显示单元,用于对测量各参数作设置,并对采集的数据进行处理,同步显示所选通道的听神经电位波形。
所述的柔性多通道电极阵列包括若干条电极引线,每条引线为带绝缘层的金属细丝,所有引线再由具有生物相容性的柔性材料包裹,塑型成可植入耳蜗内部的一束头细尾粗的长条,其中,每一根电极前端设置有一个与耳蜗内部基底膜不同位置相对应的金属电极触点,各触点暴露在包裹层外,与耳蜗内部组织接触。
所述的电极触点的数目根据测量精度需要选择,测量的精度越高,电极触点越多,精度越低,电极触点越少。
所述的前置放大单元,分为若干个独立通道的信号放大单元,其通道数目与多通道电极的数目相等。
所述的信号处理控制器单元通过调整每个通道信号的放大增益,以适应输入信号的强度。
所述的信号处理控制器,将控制各路信号放大、采集,并加以存储,或直接传输给上位机。且信号处理控制器设置一个输入端口,可与外来输入信号同步,根据需要,可作为该测量系统采集数据的启动信号。
多通道同步耳蜗听神经动作电位测量系统的测量方法,
步骤1.将柔性测量电极植入耳蜗中,并固定;
步骤2.启动上位机中测量软件,根据测量要求,在控制界面上选定测量通道位置及数目,设置工作模式(如,同步、顺序分时、随机分时等),设定各通道的相关参数,如:增益量、采样率、采样精度等;
步骤3发送外来的耳蜗刺激信号;
步骤4在上位机,读取或直接显示各通道听神经动作电位对应波形;
步骤5变换通道选定设置,重复2,3,4步骤,进行单路、多路以及全貌多种测量、分析
和对比研究。
所述的测量电极植入耳蜗的方法包括圆窗植入或从耳蜗骨壁的某处钻孔开窗植入。
所述耳蜗外来刺激信号包括声音、光、电、热、磁、机械等各种刺激。
所述耳蜗刺激信号的形式包括宽谱脉冲短声、纯音短声、多频复合音短声、各种自然声音;耳蜗刺激测量通道数目包括单路单点或多路多点,当为多路多点时,各路间隔可密、可疏。
本实用新型的有益效果:
利用本实用新型装置对耳蜗听神经动作电位的测量可以实现局部、多点、同步精确测量,便于掌握耳蜗内部听神经阵列在外部信号刺激下局部电位的同步响应状况。
本实用新型是为了提高耳蜗听神经阵列电位测量的准确度和精度而设计的,由于听觉系统声信息传导的前端神经阵列分布在耳蜗内部,这些阵列与生物所能感应的声频成分有对应关系,本实用新型正是针对现有的听神经测量方案位置精度不够、时间关系精度不准而提出的,与现有的测量方案相比,该装置具有如下有益效果:
1.通过放置在耳蜗内的多通道电极和独立的多通道信号采集链路可实现多点、同步、准确的听神经动作电位测量,可高密度分布电极数量,通过选点、重复测量等方法,获得耳蜗内各局部神经动作电位同步响应的全貌。
2.对比分析用不同刺激方式的信号刺激听神经,在听神经动作电位上产生的反应效果的异同,便于对比研究。
3.可以实现多通道同步采集,通过软件设置,也可实现分时采集,通过比较不同的采集方式的记录波形,可准确把握听神经阵列响应的固有关系,作为改进人工耳蜗编码的依据。
附图说明
图1多通道同步耳蜗听神经动作电位测量系统结构框图(其中:虚线箭头表示由PC上位机通过数据传输接口下传的对信号处理控制器的设置指令的链路)
图2柔性多通道耳蜗测量电极阵列结构图;
图3(a)、(b)多通道耳蜗测量电极植入方式示意图;图3(a)圆窗植入,图3(b)耳蜗底转开孔植入。
图中:1-1柔性多通道电极阵列,1-2多通道前置信号放大单元,1-3多路A/D模数转换单元,1-4数据缓存和传输单元,1-5信号处理控制器,1-6PC上位机和显示单元,1-7同步信号输入;2-1金属电极触点 2-2带绝缘层的金属丝 2-3柔性包层 2-4电极引线接口;3-1耳蜗 3-2电极触点 3-3圆窗,3-4柔性多通道电极束,3-5底转开窗3-6柔性多通道电极束,3-7电极触点,3-8耳蜗,3-9听神经。
具体实施方式
下面结合附图对本实用新型进行详细说明:
如图1所示,多通道同步耳蜗听神经动作电位测量系统,包括柔性多通道电极阵列1-1、多路神经电生理信号前置放大单元1-2、多路A/D模数转换单元1-3、信号处理控制器1-5、数据缓存和传输单元1-4、PC上位机和显示单元1-6;
所述的柔性多通道电极阵列1-1,分布有多路电极触点(具体数目可根据测量精度需要选择),用于采集耳蜗内部基底膜不同位置的局部听神经动作电位信号。
所述的神经电生理多通道信号前置放大单元1-2,分为若干个独立通道的信号放大单元,其通道数目与多通道电极的数目相等。其与柔性多通道电极的引出线相连接,分别独立的放大电极采集到的微弱听神经电位信号,并且可以由信号处理控制器单元控制,调整每个通道信号的放大增益,以适应输入信号的强度。
所述的多路A/D模数转换单元1-3,在信号处理控制器单元的控制下,负责将前置放大单元输出的多路电信号转换为对应的数字信号。
所述的信号处理控制器1-5,与多通道信号前置放大单元、多路A/D模数转换单元以及数据缓存与传输单元相连接,可向各模块发出相应控制信号,还可读取存储器中从上位机下传的配置命令数据。在其控制下,将各路信号放大、采集,并加以存储,或直接传输给上位机;另外,该单元设置输入端口,与外来输入信号同步,可作为该测量系统采集数据的启动信号。
所述的数据缓存和传输单元1-4,内置存储模块,可以对采集的各路并行数据以一定的格式进行本地存储,也可直接通过某种通用的数据接口(USB/LAN等)传输到上位机进行处理,并显示分析。另外,上位机下发的测量命令或配置参数可下载该处。
所述PC上位机和显示单元1-6,在上位机测量软件的运行下,可对测量各参数作设置,并对采集的数据做适当处理,如滤波、降噪等,并以一定的显示界面,同步显示所选观测通道的听神经电位波形。
如图2所示,柔性多通道电极阵列1-1包括若干条电极引线,每条引线为带绝缘层的金属丝2-2,所有引线再由具有生物相容性材料的柔性包层2-3,塑型成可植入耳蜗内部的一束头细尾粗的长条(约几厘米),其中,每一根电极前端设置有一个与耳蜗内部基底膜不同位置相对应的一个金属电极触点2-1,各触点暴露在包裹层外,与耳蜗内部组织接触。
所述的生物相容性材料,可以是硅橡胶、环氧树脂、聚乙烯、聚合脂等可植入动物体内各种高分子材料。
金属触点,可制成金属电极触点2-1或其它形状,便于采集局部电位变化,采用铂、金、钛等各种具有良好导电性和生物相容性的金属材料。
具体实施方法:
步骤1通过医学专科手术方式,将动物耳蜗3-1组织相应部位切开暴露,将柔性测量电极植入耳蜗中,并固定。
开窗位置可选,一种是圆窗植入,具体如图3(a)所示,在耳蜗3-1的圆窗3-3位置放入柔性多通道电极束3-4,在柔性多通道电极束3-4上设置电极触点3-2。
另一种从耳蜗骨壁某位置开窗植入,具体如图3(b)所示,在分布大量听神经3-9的耳蜗3-8骨壁底转开窗3-5,在开窗位置放置柔性多通道电极束3-6,在柔性多通道电极束3-6上设置电极触点3-7。
步骤2根据测量需要,可与测量系统连接外来同步信号;
步骤3启动上位机中测量软件,根据测量要求,在控制界面上选定测量通道位置及数目,设置工作模式,设定各通道放大倍数、采样率、采样精度等参数;
步骤4发送外来耳蜗刺激信号。听神经3-9刺激方式不仅限于声音刺激,还可能有:光(单路或者多路光纤)、电、热、磁、机械刺激等等;刺激信号形式也可多样,如:脉冲宽谱短声、纯音短声、多频复合音短声、各种自然声音等等);刺激通道数目也可多样,如:单路单点、多路多点,各路间隔可密、可疏;
步骤5在上位机,读取或直接显示各通道听神经动作电位对应波形,可存储打印波形;
步骤6变换通道选定,重复2,3,4,5步骤,以便进行单路、多路或全貌多种分析和对比研究;
上述虽然结合附图对本实用新型的具体实施方式进行了描述,但并非对本实用新型保护范围的限制,所属领域技术人员应该明白,在本实用新型的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本实用新型的保护范围以内。

Claims (6)

1.一种多通道同步耳蜗听神经动作电位测量系统,其特征在于,包括
柔性多通道电极阵列,用于采集耳蜗内部基底膜不同位置的局部听神经动作电位信号;
多路神经电生理信号前置放大单元,其与柔性多通道电极阵列的引出线相连接,分别独立的放大电极采集到的微弱听神经电位信号,并且由信号处理控制器单元控制;
多路A/D模数转换单元,在信号处理控制器的控制下,负责将所述的前置放大单元输出的多路电信号转换为对应的数字信号;
信号处理控制器,分别与所述的前置放大单元、多路A/D模数转换单元以及数据缓存与传输单元相连接,向各模块发出相应控制信号,读取存储器中从上位机下传的配置命令数据;
数据缓存和传输单元,用于对采集的各路并行数据以一定的格式进行本地存储或直接通过通用的数据接口传输到上位机进行处理,并显示分析;
上位机和显示单元,用于对测量各参数作设置,并对采集的数据做处理同步显示所选观测通道的听神经电位波形。
2.如权利要求1所述的多通道同步耳蜗听神经动作电位测量系统,其特征在于,所述的柔性多通道电极阵列包括若干条电极引线,每条引线为带绝缘层的金属细丝,所有引线再由具有生物相容性的柔性材料包裹,塑型成可植入耳蜗内部的一束头细尾粗的长条,其中,每一根电极前端设置有一个与耳蜗内部基底膜不同位置相对应的一个金属电极触点,各触点暴露在包裹层外,与耳蜗内部组织接触。
3.如权利要求1所述的多通道同步耳蜗听神经动作电位测量系统,其特征在于,所述的电极触点的数目根据测量精度需要选择,测量的精度越高,电极触点越多,精度越低,电极触点越少,在高精度测量时,电极触点工作位置和数量进行选择设置。
4.如权利要求1所述的多通道同步耳蜗听神经动作电位测量系统,其特征在于,所述的前置放大单元,分为若干个独立通道的信号放大单元,其通道数目与多通道电极的数目相等。
5.如权利要求1所述的多通道同步耳蜗听神经动作电位测量系统,其特征在于,所述的信号处理控制器单元通过上位机设置,统一调整每个通道信号的放大增益,以适应输入信号的强度。
6.如权利要求1所述的多通道同步耳蜗听神经动作电位测量系统,其特征在于,所述的信号处理控制器,将控制各路信号放大、采集,并加以存储,或直接传输给上位机,且信号处理控制器设置输入端口,与外来输入信号同步,作为该测量系统采集数据的启动信号。
CN201520110674.7U 2015-02-15 2015-02-15 多通道同步耳蜗听神经动作电位测量系统 Active CN204520668U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520110674.7U CN204520668U (zh) 2015-02-15 2015-02-15 多通道同步耳蜗听神经动作电位测量系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520110674.7U CN204520668U (zh) 2015-02-15 2015-02-15 多通道同步耳蜗听神经动作电位测量系统

Publications (1)

Publication Number Publication Date
CN204520668U true CN204520668U (zh) 2015-08-05

Family

ID=53734732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520110674.7U Active CN204520668U (zh) 2015-02-15 2015-02-15 多通道同步耳蜗听神经动作电位测量系统

Country Status (1)

Country Link
CN (1) CN204520668U (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104622457A (zh) * 2015-02-15 2015-05-20 山东大学 多通道同步耳蜗听神经动作电位测量系统和测量方法
US20220417678A1 (en) * 2021-06-28 2022-12-29 Ofer Moshe Methods and Systems for Auditory Nerve Signal Conversion
US11712191B2 (en) 2021-06-03 2023-08-01 Moshe OFER Methods and systems for transformation between eye images and digital images
US11733776B2 (en) 2021-07-29 2023-08-22 Moshe OFER Methods and systems for non-sensory information rendering and injection

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104622457A (zh) * 2015-02-15 2015-05-20 山东大学 多通道同步耳蜗听神经动作电位测量系统和测量方法
US11712191B2 (en) 2021-06-03 2023-08-01 Moshe OFER Methods and systems for transformation between eye images and digital images
US20220417678A1 (en) * 2021-06-28 2022-12-29 Ofer Moshe Methods and Systems for Auditory Nerve Signal Conversion
US11641555B2 (en) * 2021-06-28 2023-05-02 Moshe OFER Methods and systems for auditory nerve signal conversion
US11733776B2 (en) 2021-07-29 2023-08-22 Moshe OFER Methods and systems for non-sensory information rendering and injection

Similar Documents

Publication Publication Date Title
CN204520668U (zh) 多通道同步耳蜗听神经动作电位测量系统
US20060149139A1 (en) Apparatus and method for ascertaining and recording electrophysiological signals
CN104622457A (zh) 多通道同步耳蜗听神经动作电位测量系统和测量方法
Roy et al. Wireless multi-channel single unit recording in freely moving and vocalizing primates
Chertoff et al. Click-and chirp-evoked human compound action potentials
CN103239221B (zh) 测量生物电势的电极及其制造方法和测量生理信号的系统
CN102973277A (zh) 一种频率跟随响应信号测试系统
CN103829941B (zh) 一种多维心电信号成像系统及方法
CN104380297B (zh) 光电同步脑活动记录的数据存储方法
CN101352336A (zh) 一种带运动信息采集的长时间动态心电记录装置
CN102908150A (zh) 一种复合神经动作电位调谐曲线校准及检测系统
CN113197580A (zh) 电极组件的制备方法及装置、光电极装置及其植入方法
CN101690664B (zh) 一种听觉系统传输通路的听力指标综合检测平台
US20240181254A1 (en) Systems and methods for measuring evoked responses from a brain of a patient
Tooker et al. Towards a large-scale recording system: demonstration of polymer-based penetrating array for chronic neural recording
CN201135436Y (zh) 带位置稳定结构的针状神经微电极
Zhong et al. Decoding electrophysiological signals with organic electrochemical transistors
CN109620251B (zh) 一种基于复合神经动作电位的听觉无创检测方法
McGuirt et al. Development of cochlear potentials in the neonatal gerbil
CN105852855A (zh) 用于鼠类大脑初级视觉皮层脑电测量的植入式脑电极
CN209508276U (zh) 一种用于培养细胞的电刺激装置
CN108508288B (zh) 植物电信号检测装置及方法
WO2020139397A1 (en) Systems and methods for monitoring of evoked responses that occur during an electrode lead insertion procedure
CN209826721U (zh) 一种超微型无线电生理信号采集处理系统
CN217408828U (zh) 基于NB-Iot的脑电数据采集系统

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant