CN204436394U - 一种采煤机滚筒自动调高控制系统 - Google Patents

一种采煤机滚筒自动调高控制系统 Download PDF

Info

Publication number
CN204436394U
CN204436394U CN201520111087.XU CN201520111087U CN204436394U CN 204436394 U CN204436394 U CN 204436394U CN 201520111087 U CN201520111087 U CN 201520111087U CN 204436394 U CN204436394 U CN 204436394U
Authority
CN
China
Prior art keywords
fuzzy
pressure sensor
coal
proportional valve
electromagnetic proportional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201520111087.XU
Other languages
English (en)
Inventor
曾庆良
张海忠
张鑫
万丽荣
王亮
仉毅
王成龙
刘志海
王新超
高忠燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN201520111087.XU priority Critical patent/CN204436394U/zh
Application granted granted Critical
Publication of CN204436394U publication Critical patent/CN204436394U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本实用新型涉及一种采煤机滚筒自动调高控制系统,包括模糊控制器、数据采集装置、第一压力传感器、第二压力传感器和电磁比例阀,第一压力传感器设置在采煤机调高油缸无杆腔管路接头上,第二压力传感器设置在采煤机调高油缸有杆腔管路接头上,电磁比例阀设置在采煤机调高液压回路上;第一压力传感器和第二压力传感器均与所述的数据采集装置连接,数据采集装置与模糊控制器连接,模糊控制器与电磁比例阀连接。采用模糊控制规则进行采煤机滚筒自动调高的控制,解决了采煤机调高系统的非线性特性、不易获得其精确数学模型的难题,通过模糊控制规则实现采煤机滚筒的自动调高控制。

Description

一种采煤机滚筒自动调高控制系统
技术领域
本实用新型涉及一种采煤机滚筒自动调高控制系统,属于矿井采煤设备技术领域。
背景技术
采煤机是综合机械化采煤工作面的主要设备之一,采煤机的自动化是整个工作面自动化的中心环节,而滚筒高度的自动调节是实现采煤机自动化的一个主要方面。在采煤机滚筒高度调节控制方面,除国内外少数先进采煤机厂家采用记忆智能程控进行滚筒高度控制外,大部分是人工控制调高,即操作工人靠个人视力观察并结合截割噪音来判断采煤机滚筒是在割煤还是割岩,以便调节滚筒的高度。然而采煤机在割煤过程中,大量煤岩粉尘的产生,使工作面能见度降低,同时机器噪音很大,致使操作工人难以准确及时判断采煤机的截割状态,很难及时作出合理的操作。尤其在薄煤层工作面,作业条件差,作业空间小,工人行走不便,使得操作人员难以及时调节滚筒的高度。为了提高采煤机的智能化,将工人从恶劣的工作环境和繁重的体力劳动中解放出来,需要对采煤机进行改进使其滚筒能够自动调节。
实用新型内容
针对现有技术的不足,本实用新型提供一种采煤机滚筒自动调高控制系统。
本实用新型的技术方案如下:
一种采煤机滚筒自动调高控制系统,包括模糊控制器、数据采集装置、第一压力传感器、第二压力传感器和电磁比例阀,所述第一压力传感器设置在采煤机调高油缸无杆腔管路接头上,所述第二压力传感器设置在采煤机调高油缸有杆腔管路接头上,所述电磁比例阀设置在采煤机调高液压回路上;所述第一压力传感器和第二压力传感器均与所述的数据采集装置连接,所述数据采集装置与模糊控制器连接,所述模糊控制器与电磁比例阀连接。本实用新型提供的采煤机滚筒自动调高控制系统,所有传感器通过信号线与数据采集装置连接,数据采集装置对所有传感器信号进行滤波计算处理后,统一向模糊控制器发送滤波处理后的信号,模糊控制器首先计算出调高油缸油液压力和压力变化率,再根据调高油缸油液压力和压力变化率波动情况经过模拟推理判断滚筒截割状态,然后向电磁比例阀发送控制信号,以改变电磁比例阀阀芯运动方向和阀口开度,进而改变进出调高油缸的流量,从而改变调高油缸活塞杆位移,最终实现对滚筒的自动调高控制。
优选的,所述采煤机滚筒自动调高控制系统还包括显示器和键盘,所述显示器和键盘均与模糊控制器连接。此设计的优点在于,通过键盘实现向模糊控制器输入一些参数的设置,显示器用来显示输入的参数或系统工作参数,便于操作和观察。
优选的,所述数据采集装置选用研华股份有限公司生产的型号为PCI-1711U的数据采集卡。
优选的,所述第一压力传感器和第二压力传感器均选用瑞士KISTLER仪器股份公司生产的型号为SM20RE250-HKC的防爆型压力变送器。
优选的,所述电磁比例阀选用博世力士乐公司生产的的型号为4WRZE16E100-7X/6EG24ETK31A1M的不带电气位置反馈的先导三位四通比例方向阀。
优选的,所述模糊控制器选用西门子公司生产的型号为S7-221的PLC,或选用德州仪器公司生产的MSP430系列中型号为MSP430F6659IZQW的单片机,或选用研华股份有限公司生产的带PCI/PCIe扩展的型号为ARK-5260的嵌入式工控机,或选用PC计算机。
该采煤机滚筒自动调高控制系统的工作方法,包括信号采集、数据处理、模糊运算和指令输出,其中,
(1)信号采集:所述第一压力传感器和第二压力传感器分别测量调高油缸无杆腔和调高油缸有杆腔的压力信号并将压力信号传输给数据采集装置,所述数据采集装置对压力信号进行滤波处理后得到压力原始数据,并将压力原始数据传输给模糊控制器;
(2)数据处理:所述模糊控制器内部的数据处理程序根据接收到的压力原始数据计算出调高油缸的负载压力和负载压力变化率;
(3)模糊运算:所述模糊控制器对步骤(2)中计算出的负载压力和负载压力变化率进行模糊化处理,在其对应的模糊子集上由隶属度函数计算出隶属度值作为其对应的模糊化值,然后根据模糊规则表中的模糊规则分别计算每条规则结论的适配度:取每条模糊规则下的负载压力模糊化值、负载压力变化率模糊化值以及电磁比例阀控制电流模糊子集隶属度函数三者的交运算结果作为该条模糊规则结论的适配度,最后将所有模糊规则结论适配度的并运算结果作为控制器模糊运算结果;
(4)指令输出:所述模糊控制器利用重心法对控制器模糊运算结果解模糊得到模糊控制器输出即电磁比例阀的控制信号,所述控制信号控制改变电磁比例阀阀芯运动方向和阀口开度以改变进出调高油缸的流量,从而改变调高油缸活塞杆位移,最终实现对滚筒的自动调高控制。
优选的,步骤(1)中,所述滤波处理是指数据采集装置采用中位值平均滤波法对第一压力传感器和第二压力传感器传输的压力信号进行滤波处理,其具体过程包括:连续采样N个数据,然后采用冒泡法原理对采集到的N个数据进行排序,找出N个采样数据中的最大值和最小值,去掉最大值和最小值,然后计算余下的N-2个数据的算术平均值,N值的选取为3-14。
优选的,步骤(2)中,所述模糊控制器内部的数据处理程序计算调高油缸的负载压力和负载压力变化率,其具体过程包括:
油缸等效负载压力定义为:pL=p1-pA2/A1(Ⅰ)
其中,式(Ⅰ)中,p1为无杆腔侧油压值滤波后的算术平均值,p2为有杆腔侧油压值滤波后的算术平均值,A1为油压无杆腔侧的有效作用面积,A2为油缸有杆腔侧的有效作用面积;
当计算出油缸等效负载压力后,采用最小二乘法得到压力变化率,其具体过程包括:模糊控制器内部的数据处理程序计算出一系列油缸等效负载压力序列(1pL),(2pL),…,(mpL),用一条直线拟合这些数据点,确定拟合直线方程为
p=a0+a1n  (Ⅱ)
其中,式(Ⅱ)中a0、a1为待定实数,n=1,2,…,m。
为确定式(Ⅱ)中的a0和a1,由2-范数度量下的曲线拟合理论可推导出
m Σ n = 1 m n Σ n = 1 m n Σ n = 1 m n 2 a 0 a 1 = Σ n = 1 m p n Σ n = 1 m n p n - - - ( III )
解方程(Ⅲ)可得a0和a1,将拟合曲线的平均值
p ‾ = 1 2 [ ( a 0 + m a 1 ) + ( a 0 + a 1 ) ] = a 0 + 1 2 ( m + 1 ) a 1 - - - ( IV )
作为负载压力;拟合曲线的斜率a1作为负载压力变化率,即负载压力变化率
Δ p ‾ = a 1 - - - ( V ) .
优选的,步骤(3)中,所述模糊控制规则的设计过程,包括以下步骤,
(a)根据滚筒截割介质以及截割量的不同,将滚筒截割工况分为:不完全割煤、完全割煤、截割少量岩石、截割较多岩石四种;将相应的调高油缸负载压力划分为[0P1]、[P1P2]、[P2P3]、[P3P+]四个区间,其中P+为负载压力上限,则负载压力论域为[0P+],负载压力划分的四个区间相对应的模糊子集依次为{Z,PS,PM,PB};
(b)根据负载压力变化率的大小,将滚筒运动状态分为:快速下降、下降、不变、上升、快速上升五种情况,相应的负载压力变化率划分为[DP-DP1]、[DP1DP2]、[DP2DP3]、[DP3DP4]、[DP4DP+]五个区间,其中DP-为负载压力变化率的下限、DP+为负载压力变化率的上限,则负载压力变化率的论域为[DP-DP+],负载压力变化率划分的五个区间相对应的模糊子集依次为{NM,NS,Z,PS,PM};
(c)模糊控制器输出的控制信号即为电磁比例阀的控制电流,用以调节通过电磁比例阀比例电磁铁的电流,电磁比例阀控制电流的大小和方向决定了滚筒的运动速度和运动方向,将电磁比例阀的控制电流划分为[-Ib-Im]、[-Im-Is]、[-Is Is]、[Is Im]、[Im Ib]五个区间,且Ib>Im>Is>0,其中Ib为阀芯运动至极限位置时需要的控制电流,则电磁比例阀控制电流的论域为[-Ib Ib],控制电流划分的五个区间相对应的模糊子集依次为{NB,NS,Z,PS,PB},分别对应控制电流负大、负小、零、正小、正大;
(d)以采煤机操作人员对滚筒的实际控制过程为基础,建立模糊控制规则,模糊控制规则如表一所示:
表一:模糊控制规则表
模糊控制器根据计算的负载压力判断当前滚筒处于何种截割工况,再根据计算的负载压力变化率判断当前滚筒处于何种运动状态,最后,模糊控制器对负载压力、负载压力变化率进行模糊化处理并根据建立的模糊控制规则进行模糊运算得到电磁比例阀控制电流,并对电磁比例阀控制电流解模糊后输出相应的控制信号以调节电磁比例阀的电流,通过电磁比例阀调节进入调高油缸的液压油相应地调节滚筒的运动速度和运动方向,最终实现滚筒的自动调高。
优选的,所述控制系统的工作方法还包括输入预设定参数的过程,在采煤机工作前,通过键盘和显示器进行设定存储于模糊控制器内存的模糊子集参数,包括滚筒不同截割介质下的调高油缸负载压力P1、P2、P3、P+,调高油缸负载压力变化率DP1、DP2、DP3、DP4以及电磁比例阀的控制电流Is、Im、Ib。
优选的,步骤(4)中,所述解模糊的过程包括采用COG重心法对模糊运算得到电磁比例阀控制电流进行反模糊化处理,模糊控制器输出解模糊为其中y为模糊控制器模糊运算结果,x为电磁比例阀控制电流模糊子集取值,a、b为电磁比例阀控制电流模糊子集区间端点值。
本实用新型的有益效果如下:
1.本实用新型采煤机滚筒自动调高控制系统,采用模糊控制规则进行采煤机滚筒自动调高的控制,模糊控制适用于不易获得精确数学模型的被控对象,同时适用于非线性系统的控制,抗干扰能力强,响应速度快,且对系统参数的变化有较强的鲁棒性。
2.本实用新型采煤机滚筒自动调高能够提高煤炭的回采率;降低煤中的矸石、灰份等杂质的含量;提高采煤作业效率;降低设备磨损;减少设备维修量以及停机时间。同时由于振动较小,避免割岩,降低了现场空气中的岩尘含量,并实现作业人员远离危险工作面,对安全生产和劳动保护有显著的改善。
3.本实用新型采煤机滚筒自动调高控制系统,安装使用方便,作用明显,效果显著。
附图说明
图1为本实用新型采煤机滚筒自动调高控制系统的连接关系示意图;
图2为本实用新型负载压力隶属度函数分布示意图;
图3为本实用新型负载压力变化率隶属度函数分布示意图;
图4为本实用新型电磁比例阀控制电流隶属度函数分布示意图;
图5为本实用新型中模糊运算过程示意图;
图6为本实用新型滚筒自动调高控制流程图;
其中:1、采煤机机身,2、键盘,3、显示器,4、模糊控制器,5、数据采集装置,6、第一压力传感器,7、第二压力传感器,8、摇臂,9、滚筒,10、调高油缸,11、电磁比例阀。
具体实施方式
下面通过实施例并结合附图对本实用新型做进一步说明,但不限于此。
实施例1:
如图1所示,本实用新型提供的一种采煤机滚筒自动调高控制系统,包括模糊控制器4、数据采集装置5、第一压力传感器6、第二压力传感器7和电磁比例阀11;其中,第一压力传感器6安装在采煤机调高油缸10无杆腔管路接头上,第二压力传感器7安装在采煤机调高油缸10有杆腔管路接头上,电磁比例阀11安装在采煤机调高液压回路上,电磁比例阀11用来控制进入调高油缸10内的液压油的流量和流向;第一压力传感器6和第二压力传感器7均与所述的数据采集装置5连接,数据采集装置5与模糊控制器4连接,模糊控制器4与电磁比例阀11连接,模糊控制器4输出的控制信号为电磁比例阀的控制电流,用来调节电磁比例阀11的比例电磁铁的电流,电磁比例阀控制电流可以改变电磁比例阀11阀芯运动方向和阀口开度,进而改变进出调高油缸10的流量,从而改变调高油缸10活塞杆位移,最终实现对滚筒9的自动调高控制。
其中,数据采集装置5选用研华股份有限公司生产的型号为PCI-1711U的数据采集卡;第一压力传感器6和第二压力传感器7均选用瑞士KISTLER仪器股份公司生产的由鞍山市东方仪器仪表厂代理的CERALINE-S系列中的型号为SM20RE250-HKC的防爆型压力变送器;电磁比例阀11选用博世力士乐公司生产的型号为4WRZE16E100-7X/6EG24ETK31A1M的不带电气位置反馈的先导三位四通比例方向阀;模糊控制器4选用PC计算机。
本实施例的采煤机滚筒自动调高控制系统,第一压力传感器6和第二压力传感器7通过信号线与数据采集装置5连接,数据采集装置5对所有传感器信号进行滤波处理后得到较为纯净的信号,统一向PC计算机发送处理后的信号,PC计算机事先进行模糊规则的编程,当PC计算机接收到压力信号后,先进行压力信号的计算得出调高油缸实际负载的压力值和调高压力变化率,在通过一系列的模糊化-模糊推理-解模糊操作,最后由PC计算机控制输入电磁比例阀的电流,以此来改变电磁比例阀的液压油的流量和流向,进而改变调高油缸中油杆的移动,油杆带动摇臂活动,最终使摇臂前端的滚筒实现位置的改变,实现滚筒高度的自动调节。
本实施例的装置设计合理,安装使用方便,针对采煤机调高系统的非线性特性,不易获得其精确数学模型,即使建立了调高系统的数学模型,由于滚筒截割工况的多变以及截割载荷的强干扰也很难实现对滚筒的控制。可见传统的经典控制理论和方法很难应用于采煤机滚筒的控制,而模糊控制从属于智能控制的范畴,适用于不易获得精确数学模型的被控对象,同时适用于非线性系统的控制,抗干扰能力强,响应速度快,对系统参数的变化有较强的鲁棒性,因此可以将模糊控制应用于采煤机滚筒的控制。采煤机工作过程中,传感器对采煤机的工作参数进行采集和处理,经过模糊控制器的模糊推理可以对滚筒的不同截割状态进行识别,并相应地控制调高油缸活塞杆的伸缩实现滚筒的自动调高。
实施例2:
本实用新型提供的一种采煤机滚筒自动调高控制系统,连接关系如实施例1所述,其不同之处在于:模糊控制器4除了选用PC计算机外,还可以选用西门子公司生产的型号为S7-221的PLC,或选用德州仪器公司生产的MSP430系列中型号为MSP430F6659IZQW的单片机,或选用研华股份有限公司生产的带PCI/PCIe扩展的型号为ARK-5260的嵌入式工控机。
实施例3:
如图1所示,本实用新型提供的一种采煤机滚筒自动调高控制系统,连接关系如实施例1所述,其不同之处在于,采煤机滚筒自动调高控制系统还包括显示器3和键盘2,显示器3和键盘2均与模糊控制器4连接。通过键盘实现向模糊控制器输入一些预设定参数的设置,显示器用来显示输入的参数或系统工作参数,便于操作和观察。
实施例4:
如图2至图6所示,本实用新型提供的一种采煤机滚筒自动调高控制系统的工作方法,包括信号采集、数据处理、模糊运算和指令输出,其中,
(1)信号采集:第一压力传感器6和第二压力传感器7分别测量调高油缸无杆腔和调高油缸有杆腔的压力信号并将压力信号传输给数据采集装置5,数据采集装置5对压力信号进行滤波处理后得到压力原始数据,并将压力原始数据传输给模糊控制器4;
(2)数据处理:模糊控制器4内部的数据处理程序根据接收到的压力原始数据计算出调高油缸的负载压力和负载压力变化率
(3)模糊运算:模糊控制器4对步骤(2)中计算出的负载压力和负载压力变化率进行模糊化处理,在其对应的模糊子集上由隶属度函数计算出隶属度值作为其对应的模糊化值,然后根据模糊规则表中的20条模糊规则分别计算每条规则结论的适配度,取每条模糊规则下的负载压力模糊化值、负载压力变化率模糊化值以及电磁比例阀控制电流模糊子集隶属度函数三者的交运算结果作为该条模糊规则结论的适配度,最后将20条模糊规则结论适配度的并运算结果作为控制器模糊运算结果;
模糊运算包括两个阶段,如图6所示:
1)计算每条模糊规则的结论:①输入量模糊化,即求出负载压力和负载压力变化率在各自模糊子集上的隶属度;②计算模糊规则条件部分(即If p is Z and dp is NM)的逻辑组合,模糊规则表中负载压力和负载压力变化率之间是且的关系,则进行交运算,即取步骤①得到的隶属度中的较小值;③将模糊规则条件命题逻辑组合的隶属度与结论部分(即Then i is PB)的隶属函数作交运算,求出结论的适配度,即步骤②中得到的隶属度与电磁比例阀控制信号隶属度函数的交运算结果作为该条模糊规则结论的适配度。
2)对所有模糊规则结论的适配度作并运算,得到模糊运算结果,即模糊规则表中的20条模糊规则结论的适配度进行并运算,得到模糊控制器模糊运算结果。
例如,步骤(2)得到的负载压力为Px,负载压力变化率为dPx,控制器根据表一的模糊规则得到模糊运算结果,解模糊后得到电磁比例阀控制信号ik,如图5所示,共有四条模糊规则有效: 负载压力Px的隶属度为其它模糊子集上的隶属度均为零,负载压力变化率dPx的隶属度为其它模糊子集上的隶属度均为零,且有b>d>c>a。分别计算四条模糊规则结论的适配度:第一条规则结论适配度为:第二条规则结论适配度为:第五条规则结论适配度为:第六条规则结论适配度为:其余模糊规则结论的适配度均为零。最后对所有20条模糊规则结论的适配度作并运算,得到模糊运算结果μ(i)=μ1(i)∨μ2(i)∨μ3(i)∨...∨μ20(i)=μ1(i)∨μ2(i)∨μ5(i)∨μ6(i)。
(4)指令输出:模糊控制器4利用重心法对控制器模糊运算结果解模糊得到模糊控制器输出即电磁比例阀11的控制信号,该控制信号控制电磁比例阀11阀芯运动方向和阀口开度以改变进出调高油缸10的流量,从而改变调高油缸活塞杆位移,最终实现对滚筒9的自动调高控制。
其中,在步骤(1)中,滤波处理是指数据采集装置5采用中位值平均滤波法对第一压力传感器和第二压力传感器传输的压力信号进行滤波处理,其具体过程包括:连续采样N个数据,然后采用冒泡法原理对采集到的N个数据进行排序,找出N个采样数据中的最大值和最小值,去掉最大值和最小值,然后计算余下的N-2个数据的算术平均值,N值的选取为3-14。
其中,在步骤(2)中,模糊控制器4内部的数据处理程序计算调高油缸的负载压力和负载压力变化率,其具体过程包括:
油缸等效负载压力定义为:pL=p1-p2×A2/A1  (Ⅰ)
其中,式(Ⅰ)中,p1为无杆腔侧油压值滤波后的算术平均值,p2为有杆腔侧油压值滤波后的算术平均值,A1为油压无杆腔侧的有效作用面积,A2为油缸有杆腔侧的有效作用面积;
当计算出油缸等效负载压力后,采用最小二乘法得到负载压力变化率,其具体过程包括:模糊控制器内部的数据处理程序计算出一系列油缸等效负载压力序列(1pL),(2pL),…,(mpL),用一条直线拟合这些数据点,确定拟合直线方程为
p=a0+a1n    (Ⅱ)
其中,式(Ⅱ)中a0、a1为待定实数,n=1,2,…,m。
为确定式(Ⅱ)中的a0和a1,由2-范数度量下的曲线拟合(最小二乘法)理论可推导出
m Σ n = 1 m n Σ n = 1 m n Σ n = 1 m n 2 a 0 a 1 = Σ n = 1 m p n Σ n = 1 m n p n - - - ( III )
解方程(Ⅲ)可得a0和a1,将拟合曲线的平均值
p ‾ = 1 2 [ ( a 0 + m a 1 ) + ( a 0 + a 1 ) ] = a 0 + 1 2 ( m + 1 ) a 1 - - - ( IV )
作为负载压力;拟合曲线的斜率a1作为负载压力变化率,即负载压力变化率
Δ p ‾ = a 1 - - - ( V ) .
其中,步骤(3)中,所述模糊控制规则的设计过程,包括步骤如下,
(a)根据滚筒截割介质以及截割量的不同,将滚筒截割工况分为:不完全割煤、完全割煤、截割少量岩石、截割较多岩石四种;将相应的调高油缸负载压力划分为[0P1]、[P1P2]、[P2P3]、[P3P+]四个区间,其中P+为负载压力上限,则负载压力论域为[0P+],相应的模糊子集为{Z,PS,PM,PB};
(b)根据负载压力变化率的大小,将滚筒运动状态分为:快速下降、下降、不变、上升、快速上升五种情况,相应的负载压力变化率划分为[DP-DP1]、[DP1DP2]、[DP2DP3]、[DP3DP4]、[DP4DP+]五个区间,其中DP-为负载压力变化率的下限、DP+为负载压力变化率的上限,则负载压力变化率的论域为[DP-DP+],相应的模糊子集为{NM,NS,Z,PS,PM};
(c)模糊控制器输出的控制信号即为电磁比例阀的控制电流,用以调节通过电磁比例阀比例电磁铁的控制电流,电磁比例阀控制电流的大小和方向决定了滚筒的运动速度和运动方向,将电磁比例阀的控制电流划分为[-Ib-Im]、[-Im-Is]、[-Is Is]、[Is Im]、[Im Ib]五个区间,且Ib>Im>Is>0,其中Ib为阀芯运动至极限位置时需要的控制电流,则电磁比例阀控制电流的论域为[-Ib Ib],相应的模糊子集为{NB,NS,Z,PS,PB},分别对应控制电流负大、负小、零、正小、正大;
(d)以采煤机操作人员对滚筒的实际控制过程为基础,建立模糊控制规则,具体为:①如果负载压力低于滚筒正常割煤时的压力,说明滚筒此时没有完全割煤,负载压力变化率减小、不变或增加较小时,需要增大电磁换向阀的控制电流,从而使摇臂上升、滚筒完全割煤,若负载压力变化率增加较大,说明滚筒上升较快,此时电磁比例阀需要较小的控制电流从而避免滚筒快速上升;②如果负载压力在滚筒正常割煤时的压力波动范围之内,表明滚筒此时完全割煤,当负载压力变化率为零时,表明滚筒高度不变,则电磁比例阀控制电流置为零,使滚筒保持在该高度割煤;当负载压力变化率为正或负时,表明滚筒有向上或向下运动的趋势,则相应地使电磁比例阀控制电流为负或正,从而使滚筒避免向上或向下运动,最终使滚筒保持在完全割煤时的高度;③如果负载压力稍大于滚筒正常割煤时的压力,表明滚筒此时截割到少量岩石,而采煤机割煤过程中允许截割少量岩石,负载压力变化率变化不大即为负小、零或正小时,使电磁比例阀的控制电流为零,从而避免滚筒频繁调高同时保证了顶底板的平整性,当负载压力变化率绝对值较大即为负大或正大时,表明负载压力在迅速减小或增大,则相应地使电磁比例阀的控制电流为正大或负大,从而使负载压力增大或减小,避免滚筒迅速下降而留煤或迅速上升而割到更多岩石;④如果负载压力较滚筒正常割煤时的压力较大,表明滚筒截割到较多的岩石,无论负载压力变化率怎样变化,均应使电磁比例阀的控制电流为负,从而降低负载压力避免滚筒继续截割较多的岩石;
模糊控制器根据计算的负载压力判断当前滚筒处于何种截割工况,再根据计算的负载压力变化率判断当前滚筒处于何种运动状态,最后,模糊控制器对负载压力、负载压力变化率进行模糊化处理并根据建立的模糊规则进行模糊运算以及对模糊运算结果解模糊后输出相应的控制信号以调节电磁比例阀的电流,通过电磁比例阀调节进入调高油缸的液压油相应地调节滚筒的运动速度和运动方向,最终实现滚筒的自动调高。
实施例5:
本实用新型提供的一种采煤机滚筒自动调高控制系统的工作方法,方法步骤如实施例4所述,其不同之处在于:控制系统的工作方法还包括输入预设定参数的步骤,其具体过程包括,在采煤机工作前,通过键盘和显示器进行设定存储于模糊控制器内存的模糊子集参数,包括滚筒不同截割介质下的调高油缸负载压力P1、P2、P3、P+,调高油缸负载压力变化率DP1、DP2、DP3、DP4以及电磁比例阀的控制电流Is、Im、Ib。
本实用新型中,负载压力区间的划分、负载压力变化率区间的划分以及控制电流的区间划分是以采煤机操作人员对滚筒的实际控制过程为基础,在人工控制滚筒调高的过程中大量收集各个工况和滚筒运动状态的下压力区间的端点参数(即P1、P2、P3、P+和DP1、DP2、DP3、DP4),以及在不同工况和不同滚筒运动状态下的控制电流的端点参数(Is、Im、Ib),也就是说,区间端点参数的设定是根据人工调节滚筒时的数据进行取值的。
各模糊子集区间划分参数确定后,需要对输入模糊控制器的模糊子集参数进行模糊化处理,把各个输入参数的有效值从准确值在其各自的论域上转变为模糊值。
以调高油缸负载压力的模糊化为例,说明模糊控制器对各输入参数的模糊化处理过程。滚筒不完全割煤、完全割煤、截割少量岩石以及截割较多岩石四种工况下分别得到调高油缸压力有效值为且有则负载压力的物理论域为而其模糊论域为[0,p+],首先将物理论域映射到模糊论域,线性化映射关系为则量化因子pj为物理论域的数值映射到模糊论域后的数值,然后将模糊论域划分为四个区间,即[0P1]、[P1P2]、[P2P3]和[P3P+],相应的模糊子集为{Z,PS,PM,PB},模糊子集Z对应的模糊论域[0P1]区间的数据采用Z型隶属度函数映射,模糊子集PS和PM对应的模糊论域[P1P2]和[P2P3]区间的数据采用梯形或钟形隶属度函数映射,模糊子集PB对应的模糊论域[P3P+]区间的数据采用S型隶属度函数映射,如图2所示。油缸负载压力变化率模糊化过程以及电磁比例阀的控制电流模糊化过程与此类似,其中,负载压力变化率模糊化过程的隶属度函数映射关系,如图3所示;电磁比例阀的控制电流模糊化过程的隶属度函数映射关系,如图4所示;至此完成模糊控制器对负载压力p、负载压力变化率和电磁比例阀控制电流三者的模糊化过程。
模糊控制器输出的控制信号为电磁比例阀控制电流,需要对其反模糊化处理,采用重心法(COG)反模糊化方法,模糊控制器输出解模糊为其中y为模糊控制器模糊运算结果,x为电磁比例阀控制电流模糊子集取值,a、b为电磁比例阀控制电流模糊子集区间端点值。

Claims (4)

1.一种采煤机滚筒自动调高控制系统,其特征在于,包括模糊控制器、数据采集装置、第一压力传感器、第二压力传感器和电磁比例阀,所述第一压力传感器设置在采煤机调高油缸无杆腔管路接头上,所述第二压力传感器设置在采煤机调高油缸有杆腔管路接头上,所述电磁比例阀设置在采煤机调高液压回路上;所述第一压力传感器和第二压力传感器均与所述的数据采集装置连接,所述数据采集装置与模糊控制器连接,所述模糊控制器与电磁比例阀连接。
2.如权利要求1所述的采煤机滚筒自动调高控制系统,其特征在于,所述采煤机滚筒自动调高控制系统还包括显示器和键盘,所述显示器和键盘均与模糊控制器连接。
3.如权利要求1或2所述的采煤机滚筒自动调高控制系统,其特征在于,所述数据采集装置选用研华股份有限公司生产的型号为PCI-1711U的数据采集卡;所述第一压力传感器和第二压力传感器均选用瑞士KISTLER仪器股份公司生产的型号为SM20RE250-HKC的防爆型压力变送器;所述电磁比例阀选用博世力士乐公司生产的的型号为4WRZE16E100-7X/6EG24ETK31A1M的不带电气位置反馈的先导三位四通比例方向阀。
4.如权利要求1或2所述的采煤机滚筒自动调高控制系统,其特征在于,所述模糊控制器选用西门子公司生产的型号为S7-221的PLC,或选用德州仪器公司生产的MSP430系列中型号为MSP430F6659IZQW的单片机,或选用研华股份有限公司生产的带PCI/PCIe扩展的型号为ARK-5260的嵌入式工控机,或选用PC计算机。
CN201520111087.XU 2015-02-15 2015-02-15 一种采煤机滚筒自动调高控制系统 Expired - Fee Related CN204436394U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520111087.XU CN204436394U (zh) 2015-02-15 2015-02-15 一种采煤机滚筒自动调高控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520111087.XU CN204436394U (zh) 2015-02-15 2015-02-15 一种采煤机滚筒自动调高控制系统

Publications (1)

Publication Number Publication Date
CN204436394U true CN204436394U (zh) 2015-07-01

Family

ID=53604272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520111087.XU Expired - Fee Related CN204436394U (zh) 2015-02-15 2015-02-15 一种采煤机滚筒自动调高控制系统

Country Status (1)

Country Link
CN (1) CN204436394U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104695957A (zh) * 2015-02-15 2015-06-10 山东科技大学 一种采煤机滚筒自动调高控制系统及其工作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104695957A (zh) * 2015-02-15 2015-06-10 山东科技大学 一种采煤机滚筒自动调高控制系统及其工作方法

Similar Documents

Publication Publication Date Title
CN104695953B (zh) 一种实现滚筒自动调高的采煤机及其工作方法
CN104790948B (zh) 一种采煤机滚筒自动调高的控制方法
CN204436379U (zh) 一种实现滚筒自动调高的采煤机
CN104343426A (zh) 一种天然气井下智能节流系统及工艺方法
CN103301927B (zh) 道路碎石机的自动控制系统
Kychkin et al. IoT-based mine ventilation control system architecture with digital twin
CN102000627A (zh) 一种圆锥式破碎机挤满给矿的自动控制装置及其方法
CN103643926A (zh) 注水井智能流量监控装置
CN101566059B (zh) 广适应的新型自动送钻装置
CN102629107A (zh) 大循环灌浆监控系统的压力闭环控制方法
CN105298966A (zh) 一种活塞式调节阀的监测控制系统及其控制方法
CN204436394U (zh) 一种采煤机滚筒自动调高控制系统
CN203730006U (zh) 模拟盾构机试验控制系统
CN104695957B (zh) 一种采煤机滚筒自动调高控制系统及其工作方法
CN106269198A (zh) 基于dcs的立磨智能控制系统
CN104047328B (zh) 一种挖掘机正流量控制方法
CN105201455A (zh) 基于互联网信息下页岩气开采井口节流自动调控系统
CN106216079A (zh) 基于plc的立磨智能控制方法
CN108132597B (zh) 一种微分超前智能模型集pid控制器设计方法
CN108132596A (zh) 一种微分超前广义智能内部模型集pid控制器设计方法
CN205954388U (zh) 热磨机磨盘间隙液压伺服控制系统
CN205117869U (zh) 一种活塞式调节阀的监测控制系统
Li et al. Swing speed control strategy of fuzzy PID roadheader based on PSO-BP Algorithm
CN103064284B (zh) 应用逆向差分抑制不可测扰动的模型预测控制器及方法
Kadu et al. Design, analysis and motion control of hydraulic excavator using discrete sliding mode control with inertial delay

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150701

Termination date: 20170215