CN204336898U - A kind of virtual protection emitter-base bandgap grading manifold type accurate reverse current source temp measuring system - Google Patents
A kind of virtual protection emitter-base bandgap grading manifold type accurate reverse current source temp measuring system Download PDFInfo
- Publication number
- CN204336898U CN204336898U CN201420738628.7U CN201420738628U CN204336898U CN 204336898 U CN204336898 U CN 204336898U CN 201420738628 U CN201420738628 U CN 201420738628U CN 204336898 U CN204336898 U CN 204336898U
- Authority
- CN
- China
- Prior art keywords
- resistance
- circuit
- outfan
- audion
- pole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Amplifiers (AREA)
Abstract
The utility model discloses a kind of virtual protection emitter-base bandgap grading manifold type accurate reverse current source temp measuring system, primarily of temperature collection circuit, signaling conversion circuit and differential amplifier circuit, be arranged on the constant-current and constant-voltage control circuit between temperature collection circuit and signaling conversion circuit, be arranged on the accurate reverse current source circuit of the input end of temperature collection circuit, and form with the beam excitation formula logic amplifying circuit that accurate reverse current source circuit is connected with signaling conversion circuit, it is characterized in that, virtual protection emitter-base bandgap grading manifold type amplifying circuit is also serially connected with between signaling conversion circuit and differential amplifier circuit.This utility model adopts accurate reverse current source circuit to provide operating current for temperature collection circuit, therefore can guarantee its stable performance.This utility model additionally uses beam excitation formula logic amplifying circuit simultaneously, therefore effectively can remove the electromagnetic interference of external environment condition.
Description
Technical field
This utility model relates to a kind of electronic measuring instrument, specifically refers to a kind of virtual protection emitter-base bandgap grading manifold type accurate reverse current source temp measuring system.
Background technology
At present, the measurement of bldy temperature instrument on market mainly contains two kinds, and a kind of is traditional mercurial thermometer, and another kind is electronic clinical thermometer.Although traditional mercurial thermometer Applicative time is longer, it exists measures the defects such as inconvenient, frangible, Measuring Time is longer, is not easy to long-time continuous temperature monitoring.Though and electronic clinical thermometer is convenient to detect, one of its core requirement will have low power capabilities exactly, to make product practical.In order to realize low-power consumption, just requiring that electronic clinical thermometer will enter low power consumpting state in non-measured state, entering the higher measuring state of power consumption when there being measurement demand again.Whether have measurement demand for detecting, traditional method is all that when button is not pressed, body temperature counts low power consumpting state, when button is pressed, then can wake electronic clinical thermometer up and enter measuring state for electronic clinical thermometer increases button.A part of power consumption can be reduced in this way although adopt, but because human body inherently exists electrostatic, therefore when this kind of electronic clinical thermometer touches human body skin, just the operating current of electronic clinical thermometer and voltage can be made to fluctuate, and then data can be caused often to change, the reference data that user one is comparatively constant can not be given to.
Utility model content
The purpose of this utility model is to overcome the defect that complex structure existing for current electronic clinical thermometer and operating current and voltage can occur to fluctuate, and provides a kind of virtual protection emitter-base bandgap grading manifold type accurate reverse current source temp measuring system.
The purpose of this utility model is achieved through the following technical solutions: a kind of virtual protection emitter-base bandgap grading manifold type accurate reverse current source temp measuring system; primarily of temperature collection circuit, signaling conversion circuit and differential amplifier circuit; be arranged on the constant-current and constant-voltage control circuit between temperature collection circuit and signaling conversion circuit; be arranged on the accurate reverse current source circuit of the input end of temperature collection circuit, and form with the beam excitation formula logic amplifying circuit that accurate reverse current source circuit is connected with signaling conversion circuit.
Meanwhile, between signaling conversion circuit and differential amplifier circuit, be also serially connected with virtual protection emitter-base bandgap grading manifold type amplifying circuit, described accurate reverse current source circuit is by LMC6062 type operational amplifier P, one end is connected with the negative input of LMC6062 type operational amplifier P, the resistance R12 that the other end is connected with the electrode input end of LMC6062 type operational amplifier P after current source S, one end is connected with the negative input of LMC6062 type operational amplifier P, the resistance R11 that the other end is connected with the outfan of LMC6062 type operational amplifier P after LM4431 reference circuits, and the resistance R13 be serially connected between the electrode input end of LMC6062 type operational amplifier P and outfan forms, the input of described temperature collection circuit is then connected with the outfan of LMC6062 type operational amplifier P.
Described beam excitation formula logic amplifying circuit is primarily of power amplifier P2, NAND gate IC1, NAND gate IC2, NAND gate IC3, negative pole is connected with the electrode input end of power amplifier P2, the polar capacitor C5 of positive pole ground connection after optical diode D2, one end is connected with the positive pole of polar capacitor C5, the resistance R14 of other end ground connection after diode D3, positive pole is connected with the junction point of diode D3 with resistance R14, the polar capacitor C7 of minus earth, one end is connected with the negative input of NAND gate IC1, the resistance R15 that the other end is connected with the electrode input end of power amplifier P2, be serially connected in the resistance R16 between the negative input of power amplifier P2 and outfan, one end is connected with the outfan of NAND gate IC1, the resistance R17 that the other end is connected with the negative input of NAND gate IC3, positive pole is connected with the outfan of NAND gate IC2, the electric capacity C6 that negative pole is connected with the negative input of NAND gate IC3, and one end is connected with the positive pole of polar capacitor C7, the resistance R18 that the other end is connected with the negative input of NAND gate IC2 forms, the electrode input end of described NAND gate IC1 is connected with the negative input of power amplifier P2, and its outfan is connected with the electrode input end of NAND gate IC2, the electrode input end of NAND gate IC3 is connected with the outfan of power amplifier P2, and its outfan is then connected with signaling conversion circuit, and the positive pole of polar capacitor C5 is then connected with the electrode input end of LMC6062 type operational amplifier P.
Described virtual protection emitter-base bandgap grading manifold type amplifying circuit is primarily of audion Q3, audion Q4, power amplifier P3, power amplifier P4, be serially connected in the resistance R20 between the negative input of power amplifier P3 and outfan, be serially connected in the polar capacitor C10 between the electrode input end of power amplifier P4 and outfan, be serially connected in the resistance R19 between the electrode input end of power amplifier P3 and the colelctor electrode of audion Q3, be serially connected in the resistance R21 between the colelctor electrode of audion Q3 and the base stage of audion Q4, the electric capacity C9 be in parallel with resistance R21, negative pole is connected with the electrode input end of power amplifier P3, the polar capacitor C8 that positive pole is connected with the emitter stage of audion Q3 after resistance R22, be serially connected in the resistance R23 between the base stage of audion Q4 and the positive pole of polar capacitor C8, positive pole is connected with the emitter stage of audion Q4, negative pole is in turn through electric capacity C11 that Zener diode D4 is connected with the outfan of power amplifier P3 after resistance R24, P pole is connected with the outfan of power amplifier P4, the diode D5 that N pole is connected with the junction point of resistance R24 with Zener diode D4 after resistance R25 through resistance R26, and P pole is connected with the negative pole of electric capacity C11, the Zener diode D6 that N pole is connected with the junction point of resistance R26 with diode D5 forms, the base stage of described audion Q3 is connected with the positive pole of polar capacitor C8, and its emitter stage is connected with the emitter stage of audion Q4, and its colelctor electrode is connected with the negative input of power amplifier P3, the colelctor electrode of audion Q4 is connected with the negative input of power amplifier P4, and the electrode input end of power amplifier P4 is connected with the outfan of power amplifier P3, the positive pole of described polar capacitor C8 is connected with signaling conversion circuit, and resistance R26 is then connected with differential amplifier circuit with the junction point of resistance R25.
Further, the input of described differential amplifier circuit is connected with the outfan of constant-current and constant-voltage control circuit; Wherein, described constant-current and constant-voltage control circuit by audion Q1, audion Q2, controlled thyristor D1, slide rheostat W1, slide rheostat W2, resistance R10, and the resistance R9 be serially connected between the colelctor electrode of audion Q1 and base stage forms; The N pole of described controlled thyristor D1 is connected with the base stage of audion Q1, and its P pole is connected with the emitter stage of audion Q1 after slide rheostat W2, and it controls pole and is then connected with the sliding end of slide rheostat W2; The emitter stage of audion Q2 is connected with the emitter stage of audion Q1, and its base stage is connected with the P pole of controlled thyristor D1 after resistance R10 through slide rheostat W1 in turn; The outfan of described temperature collection circuit is then connected with the colelctor electrode of audion Q1, the outfan of signaling conversion circuit is then connected with the P pole of controlled thyristor D, and the input of differential amplifier circuit is then connected with the P pole of controlled thyristor D1 with the colelctor electrode of audion Q2 respectively.
Described temperature collection circuit is made up of resistance R1, resistance R2, resistance R4, electric capacity C2 and voltage follower U3; One end of described resistance R1 is connected with the outfan of LMC6062 type operational amplifier P, and its other end is ground connection after resistance R4; Electric capacity C2 and resistance R4 is in parallel; The negative pole of voltage follower U3 is connected with the junction point of resistance R1 with resistance R4, and its outfan is then connected with the colelctor electrode of audion Q1 after resistance R2.
Described signaling conversion circuit is by temperature sensor R8, the divider resistance R5 be in series with this temperature sensor R8, the electric capacity C1 be in parallel with temperature sensor R8, and positive pole and the temperature sensor R8 voltage follower U1 that outfan is then connected with the P pole of controlled thyristor D after resistance R3 that is connected with the junction point of divider resistance R5 forms; The other end of described resistance R5 is then connected with the outfan of LMC6062 type operational amplifier P; The positive pole of described polar capacitor C8 is connected with the outfan of voltage follower U1.
Described differential amplifier circuit is by difference amplifier U2, one end is connected with the negative pole of difference amplifier U2, the resistance R6 of other end ground connection, the electric capacity C3 be in parallel with resistance R6, the resistance R7 that one end is connected with the positive pole of difference amplifier U2, the other end is connected with the outfan of difference amplifier U2, and form with the electric capacity C4 that resistance R7 is in parallel; The colelctor electrode of described audion Q2 is connected with the negative pole of difference amplifier U2, and the P pole of controlled thyristor D is then connected with the positive pole of difference amplifier U2; Described resistance R26 is connected with the positive pole of difference amplifier U2 with the junction point of resistance R25.
This utility model comparatively prior art is compared and is had the following advantages and beneficial effect:
(1) this utility model overall structure is very simple, when not increasing electronic thermometer structure complicated process and waterproof difficulty, can realize the low power capabilities of clinical thermometer.
(2) this utility model adds constant-current and constant-voltage control circuit, and when therefore can guarantee to use, its operating current and voltage is stable, can improve the Stability and veracity of measurement data significantly.
(3) this utility model adopts accurate reverse current source circuit to provide operating current for temperature collection circuit, therefore can guarantee its stable performance.
Accompanying drawing explanation
Fig. 1 is integrated circuit structural representation of the present utility model.
Fig. 2 is the structural representation of virtual protection emitter-base bandgap grading manifold type amplifying circuit of the present utility model.
Detailed description of the invention
Below in conjunction with embodiment, this utility model is described in further detail, but embodiment of the present utility model is not limited thereto.
Embodiment
As shown in Figure 1, this utility model forms primarily of temperature collection circuit, signaling conversion circuit, difference amplifier, constant-current and constant-voltage control circuit, accurate reverse current source circuit, beam excitation formula logic amplifying circuit and this seven part of virtual protection emitter-base bandgap grading manifold type amplifying circuit.Wherein, accurate reverse current source circuit is used for providing working power for temperature collection circuit, it is by LMC6062 type operational amplifier P, one end is connected with the negative input of LMC6062 type operational amplifier P, the resistance R12 that the other end is connected with the electrode input end of LMC6062 type operational amplifier P after current source S, one end is connected with the negative input of LMC6062 type operational amplifier P, the resistance R11 that the other end is connected with the outfan of LMC6062 type operational amplifier P after LM4431 reference circuits, and the resistance R13 be serially connected between the electrode input end of LMC6062 type operational amplifier P and outfan forms.
For guaranteeing the current quality of accurate reverse current source circuit, this LMC6062 type power amplifier P and LM4431 reference circuits are produced by National Semiconductor.
Temperature collection circuit is used for the collection of human body temperature signal, and it is made up of resistance R1, resistance R2, resistance R4, electric capacity C2 and voltage follower U3.During connection, one end of resistance R1 is connected with the outfan of LMC6062 type power amplifier P, and its other end is ground connection after resistance R4.And electric capacity C2 and resistance R4 is in parallel; The negative pole of voltage follower U3 is connected with the junction point of resistance R1 with resistance R4, and its outfan is then connected with constant-current and constant-voltage control circuit input after resistance R2.
The temperature signal that signaling conversion circuit is used for temperature collection circuit to collect converts voltage signal to, and it is made up of divider resistance R5, temperature sensor R8, electric capacity C1, resistance R3 and voltage follower U1.During connection, one end of divider resistance R5 is connected with the outfan of LMC6062 type power amplifier P equally, and electric capacity C1 is then in parallel with temperature sensor R8.
The positive pole of voltage follower U1 and the temperature sensor R8 outfan that is connected with the junction point of divider resistance R5 is then connected with another input of constant-current and constant-voltage control circuit after resistance R3.Meanwhile, the negative pole of voltage follower U1 is connected with the outfan of voltage follower U1.
Described beam excitation formula logic amplifying circuit is primarily of power amplifier P2, NAND gate IC1, NAND gate IC2, NAND gate IC3, negative pole is connected with the electrode input end of power amplifier P2, the polar capacitor C5 of positive pole ground connection after optical diode D2, one end is connected with the positive pole of polar capacitor C5, the resistance R14 of other end ground connection after diode D3, positive pole is connected with the junction point of diode D3 with resistance R14, the polar capacitor C7 of minus earth, one end is connected with the negative input of NAND gate IC1, the resistance R15 that the other end is connected with the electrode input end of power amplifier P2, be serially connected in the resistance R16 between the negative input of power amplifier P2 and outfan, one end is connected with the outfan of NAND gate IC1, the resistance R17 that the other end is connected with the negative input of NAND gate IC3, positive pole is connected with the outfan of NAND gate IC2, the electric capacity C6 that negative pole is connected with the negative input of NAND gate IC3, and one end is connected with the positive pole of polar capacitor C7, the resistance R18 that the other end is connected with the negative input of NAND gate IC2 forms.
Meanwhile, the electrode input end of this NAND gate IC1 is connected with the negative input of power amplifier P2, and its outfan is connected with the electrode input end of NAND gate IC2; The electrode input end of NAND gate IC3 is connected with the outfan of power amplifier P2, and its outfan is then connected with the positive pole of voltage follower U1, and the positive pole of polar capacitor C5 is then connected with the electrode input end of LMC6062 type operational amplifier P.
Described constant-current and constant-voltage control circuit by audion Q1, audion Q2, controlled thyristor D, slide rheostat W1, slide rheostat W2, resistance R10, and the resistance R9 be serially connected between the colelctor electrode of audion Q1 and base stage forms.During connection, the N pole of controlled thyristor D is connected with the base stage of audion Q1, and its P pole is connected with the emitter stage of audion Q1 after slide rheostat W2, and it controls pole and is then connected with the sliding end of slide rheostat W2.The emitter stage of audion Q2 is connected with the emitter stage of audion Q1, and its base stage is connected with the P pole of controlled thyristor D after resistance R10 through slide rheostat W1 in turn.
Meanwhile, the outfan (i.e. the outfan of voltage follower U3) of described temperature collection circuit needs to be connected with the colelctor electrode of audion Q1, and the outfan (i.e. the outfan of voltage follower U1) of signaling conversion circuit is then connected with the P pole of controlled thyristor D.
For guaranteeing result of use, this controlled thyristor D can adopt TL431 to substitute.Consider that TL431 is controllable accurate source of stable pressure, its output voltage just can be set to from Verf(2.5V with two resistance arbitrarily) to any value within the scope of 36V.Therefore, when adopting TL431, the loss of native system can farthest be reduced.
Differential amplifier circuit is by difference amplifier U2, one end is connected with the negative pole of difference amplifier U2, the resistance R6 of other end ground connection, the electric capacity C3 be in parallel with resistance R6, the resistance R7 that one end is connected with the positive pole of difference amplifier U2, the other end is connected with the outfan of difference amplifier U2, and form with the electric capacity C4 that resistance R7 is in parallel.Wherein, the colelctor electrode of audion Q2 will be connected with the negative pole of difference amplifier U2, and the P pole of controlled thyristor D is then connected with the positive pole of difference amplifier U2.
The structure of described virtual protection emitter-base bandgap grading manifold type amplifying circuit as shown in Figure 2, it is primarily of audion Q3, audion Q4, power amplifier P3, power amplifier P4, be serially connected in the resistance R20 between the negative input of power amplifier P3 and outfan, be serially connected in the polar capacitor C10 between the electrode input end of power amplifier P4 and outfan, be serially connected in the resistance R19 between the electrode input end of power amplifier P3 and the colelctor electrode of audion Q3, be serially connected in the resistance R21 between the colelctor electrode of audion Q3 and the base stage of audion Q4, the electric capacity C9 be in parallel with resistance R21, negative pole is connected with the electrode input end of power amplifier P3, the polar capacitor C8 that positive pole is connected with the emitter stage of audion Q3 after resistance R22, be serially connected in the resistance R23 between the base stage of audion Q4 and the positive pole of polar capacitor C8, positive pole is connected with the emitter stage of audion Q4, negative pole is in turn through electric capacity C11 that Zener diode D4 is connected with the outfan of power amplifier P3 after resistance R24, P pole is connected with the outfan of power amplifier P4, the diode D5 that N pole is connected with the junction point of resistance R24 with Zener diode D4 after resistance R25 through resistance R26, and P pole is connected with the negative pole of electric capacity C11, the Zener diode D6 that N pole is connected with the junction point of resistance R26 with diode D5 forms.
Meanwhile, the base stage of described audion Q3 is connected with the positive pole of polar capacitor C8, and its emitter stage is connected with the emitter stage of audion Q4, and its colelctor electrode is connected with the negative input of power amplifier P3; The colelctor electrode of audion Q4 is connected with the negative input of power amplifier P4, and the electrode input end of power amplifier P4 is connected with the outfan of power amplifier P3.During connection, the positive pole of described polar capacitor C8 is connected with the outfan of voltage follower U1, and resistance R26 is then connected with the positive pole of difference amplifier U2 with the junction point of resistance R25.
As mentioned above, just this utility model can well be realized.
Claims (5)
1. a virtual protection emitter-base bandgap grading manifold type accurate reverse current source temp measuring system, primarily of temperature collection circuit, signaling conversion circuit and differential amplifier circuit, be arranged on the constant-current and constant-voltage control circuit between temperature collection circuit and signaling conversion circuit, be arranged on the accurate reverse current source circuit of the input end of temperature collection circuit, and form with the beam excitation formula logic amplifying circuit that accurate reverse current source circuit is connected with signaling conversion circuit, it is characterized in that, virtual protection emitter-base bandgap grading manifold type amplifying circuit is also serially connected with between signaling conversion circuit and differential amplifier circuit, described accurate reverse current source circuit is by LMC6062 type operational amplifier P, one end is connected with the negative input of LMC6062 type operational amplifier P, the resistance R12 that the other end is connected with the electrode input end of LMC6062 type operational amplifier P after current source S, one end is connected with the negative input of LMC6062 type operational amplifier P, the resistance R11 that the other end is connected with the outfan of LMC6062 type operational amplifier P after LM4431 reference circuits, and the resistance R13 be serially connected between the electrode input end of LMC6062 type operational amplifier P and outfan forms, the input of described temperature collection circuit is then connected with the outfan of LMC6062 type operational amplifier P, described beam excitation formula logic amplifying circuit is primarily of power amplifier P2, NAND gate IC1, NAND gate IC2, NAND gate IC3, negative pole is connected with the electrode input end of power amplifier P2, the polar capacitor C5 of positive pole ground connection after optical diode D2, one end is connected with the positive pole of polar capacitor C5, the resistance R14 of other end ground connection after diode D3, positive pole is connected with the junction point of diode D3 with resistance R14, the polar capacitor C7 of minus earth, one end is connected with the negative input of NAND gate IC1, the resistance R15 that the other end is connected with the electrode input end of power amplifier P2, be serially connected in the resistance R16 between the negative input of power amplifier P2 and outfan, one end is connected with the outfan of NAND gate IC1, the resistance R17 that the other end is connected with the negative input of NAND gate IC3, positive pole is connected with the outfan of NAND gate IC2, the electric capacity C6 that negative pole is connected with the negative input of NAND gate IC3, and one end is connected with the positive pole of polar capacitor C7, the resistance R18 that the other end is connected with the negative input of NAND gate IC2 forms, the electrode input end of described NAND gate IC1 is connected with the negative input of power amplifier P2, and its outfan is connected with the electrode input end of NAND gate IC2, the electrode input end of NAND gate IC3 is connected with the outfan of power amplifier P2, and its outfan is then connected with signaling conversion circuit, and the positive pole of polar capacitor C5 is then connected with the electrode input end of LMC6062 type operational amplifier P, described virtual protection emitter-base bandgap grading manifold type amplifying circuit is primarily of audion Q3, audion Q4, power amplifier P3, power amplifier P4, be serially connected in the resistance R20 between the negative input of power amplifier P3 and outfan, be serially connected in the polar capacitor C10 between the electrode input end of power amplifier P4 and outfan, be serially connected in the resistance R19 between the electrode input end of power amplifier P3 and the colelctor electrode of audion Q3, be serially connected in the resistance R21 between the colelctor electrode of audion Q3 and the base stage of audion Q4, the electric capacity C9 be in parallel with resistance R21, negative pole is connected with the electrode input end of power amplifier P3, the polar capacitor C8 that positive pole is connected with the emitter stage of audion Q3 after resistance R22, be serially connected in the resistance R23 between the base stage of audion Q4 and the positive pole of polar capacitor C8, positive pole is connected with the emitter stage of audion Q4, negative pole is in turn through electric capacity C11 that Zener diode D4 is connected with the outfan of power amplifier P3 after resistance R24, P pole is connected with the outfan of power amplifier P4, the diode D5 that N pole is connected with the junction point of resistance R24 with Zener diode D4 after resistance R25 through resistance R26, and P pole is connected with the negative pole of electric capacity C11, the Zener diode D6 that N pole is connected with the junction point of resistance R26 with diode D5 forms, the base stage of described audion Q3 is connected with the positive pole of polar capacitor C8, and its emitter stage is connected with the emitter stage of audion Q4, and its colelctor electrode is connected with the negative input of power amplifier P3, the colelctor electrode of audion Q4 is connected with the negative input of power amplifier P4, and the electrode input end of power amplifier P4 is connected with the outfan of power amplifier P3, the positive pole of described polar capacitor C8 is connected with signaling conversion circuit, and resistance R26 is then connected with differential amplifier circuit with the junction point of resistance R25.
2. the accurate reverse current source of a kind of virtual protection emitter-base bandgap grading manifold type according to claim 1 temp measuring system, it is characterized in that, the input of described differential amplifier circuit is connected with the outfan of constant-current and constant-voltage control circuit; Wherein, described constant-current and constant-voltage control circuit by audion Q1, audion Q2, controlled thyristor D1, slide rheostat W1, slide rheostat W2, resistance R10, and the resistance R9 be serially connected between the colelctor electrode of audion Q1 and base stage forms; The N pole of described controlled thyristor D1 is connected with the base stage of audion Q1, and its P pole is connected with the emitter stage of audion Q1 after slide rheostat W2, and it controls pole and is then connected with the sliding end of slide rheostat W2; The emitter stage of audion Q2 is connected with the emitter stage of audion Q1, and its base stage is connected with the P pole of controlled thyristor D1 after resistance R10 through slide rheostat W1 in turn; The outfan of described temperature collection circuit is then connected with the colelctor electrode of audion Q1, the outfan of signaling conversion circuit is then connected with the P pole of controlled thyristor D, and the input of differential amplifier circuit is then connected with the P pole of controlled thyristor D1 with the colelctor electrode of audion Q2 respectively.
3. the accurate reverse current source of a kind of virtual protection emitter-base bandgap grading manifold type according to claim 2 temp measuring system, it is characterized in that, described temperature collection circuit is made up of resistance R1, resistance R2, resistance R4, electric capacity C2 and voltage follower U3; One end of described resistance R1 is connected with the outfan of LMC6062 type operational amplifier P, and its other end is ground connection after resistance R4; Electric capacity C2 and resistance R4 is in parallel; The negative pole of voltage follower U3 is connected with the junction point of resistance R1 with resistance R4, and its outfan is then connected with the colelctor electrode of audion Q1 after resistance R2.
4. the accurate reverse current source of a kind of virtual protection emitter-base bandgap grading manifold type according to claim 3 temp measuring system, it is characterized in that, described signaling conversion circuit is by temperature sensor R8, the divider resistance R5 be in series with this temperature sensor R8, the electric capacity C1 be in parallel with temperature sensor R8, and positive pole and the temperature sensor R8 voltage follower U1 that outfan is then connected with the P pole of controlled thyristor D after resistance R3 that is connected with the junction point of divider resistance R5 forms; The other end of described resistance R5 is then connected with the outfan of LMC6062 type operational amplifier P; The positive pole of described polar capacitor C8 is connected with the outfan of voltage follower U1.
5. the accurate reverse current source of a kind of virtual protection emitter-base bandgap grading manifold type according to claim 4 temp measuring system, it is characterized in that, described differential amplifier circuit is by difference amplifier U2, one end is connected with the negative pole of difference amplifier U2, the resistance R6 of other end ground connection, the electric capacity C3 be in parallel with resistance R6, the resistance R7 that one end is connected with the positive pole of difference amplifier U2, the other end is connected with the outfan of difference amplifier U2, and form with the electric capacity C4 that resistance R7 is in parallel; The colelctor electrode of described audion Q2 is connected with the negative pole of difference amplifier U2, and the P pole of controlled thyristor D is then connected with the positive pole of difference amplifier U2; Described resistance R26 is connected with the positive pole of difference amplifier U2 with the junction point of resistance R25.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420738628.7U CN204336898U (en) | 2014-11-28 | 2014-11-28 | A kind of virtual protection emitter-base bandgap grading manifold type accurate reverse current source temp measuring system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420738628.7U CN204336898U (en) | 2014-11-28 | 2014-11-28 | A kind of virtual protection emitter-base bandgap grading manifold type accurate reverse current source temp measuring system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN204336898U true CN204336898U (en) | 2015-05-20 |
Family
ID=53220209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201420738628.7U Expired - Fee Related CN204336898U (en) | 2014-11-28 | 2014-11-28 | A kind of virtual protection emitter-base bandgap grading manifold type accurate reverse current source temp measuring system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN204336898U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104958068A (en) * | 2014-11-28 | 2015-10-07 | 成都雷克尔科技有限公司 | Logic protection emitter coupling type double filtering precise reverse current resource temperature measurement system |
-
2014
- 2014-11-28 CN CN201420738628.7U patent/CN204336898U/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104958068A (en) * | 2014-11-28 | 2015-10-07 | 成都雷克尔科技有限公司 | Logic protection emitter coupling type double filtering precise reverse current resource temperature measurement system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN205037982U (en) | Utilize constant current source temperature detection circuit of operational amplifier characteristic | |
CN204336898U (en) | A kind of virtual protection emitter-base bandgap grading manifold type accurate reverse current source temp measuring system | |
CN104398243A (en) | Logic protection emitter coupled precision reverse current source temperature measuring system | |
CN104382564A (en) | Excitation type low-power consumption temperature measuring system based on precise reverse current source | |
CN204188299U (en) | Multichannel IGBT inner NTC high temperature real-time detection circuit | |
CN204181593U (en) | A kind of low-power consumption temp measuring system based on accurate reverse current source | |
CN204181594U (en) | A kind of constant pressure type low-power consumption temp measuring system | |
CN104997490A (en) | Novel amplification type field intensity detection low-power temperature measurement system | |
CN204363963U (en) | A kind of excitation formula low-power consumption temp measuring system based on accurate reverse current source | |
CN203465349U (en) | Micro-power-consumption detection circuit based on sensitive resistor | |
CN204330173U (en) | A kind of easy electronic temperature transmitter | |
CN203480300U (en) | Intelligent agriculture sensing and controlling terminal based on the internet of things | |
CN203775372U (en) | Touch wireless microphone with electric quantity display | |
CN204306805U (en) | A kind of novel staggered bi-directional constant pressure type low-power consumption temp measuring system | |
CN204181592U (en) | A kind of staggered bi-directional constant pressure type low-power consumption temp measuring system | |
CN204033318U (en) | Based on the low power-consumption intelligent clinical thermometer of NFC | |
CN104737638A (en) | Garden shovel capable of measuring humidity | |
CN204066103U (en) | A kind of usb signal for computing machine amplifies transmission circuit | |
CN204214569U (en) | Based on the temperature sensing circuit of transformer isolation | |
CN202648785U (en) | Circuit used for eliminating electronic weighing zero drift | |
CN105656393A (en) | General AC asynchronous motor driving protective apparatus | |
CN206339591U (en) | A kind of electrotechnical, electronic surveys electric installation | |
CN205068076U (en) | Battery data acquisition device | |
CN203506710U (en) | Signal acquisition circuit for heart rate monitor of medical internal medicine | |
CN204243834U (en) | A kind of charging circuit of ZigBee terminal equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150520 Termination date: 20151128 |