CN204332989U - Multi-Channel Gallium Arsenide Photoconductive Switch - Google Patents
Multi-Channel Gallium Arsenide Photoconductive Switch Download PDFInfo
- Publication number
- CN204332989U CN204332989U CN201520001528.0U CN201520001528U CN204332989U CN 204332989 U CN204332989 U CN 204332989U CN 201520001528 U CN201520001528 U CN 201520001528U CN 204332989 U CN204332989 U CN 204332989U
- Authority
- CN
- China
- Prior art keywords
- gaas
- channel
- photoconductive switch
- utility
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001218 Gallium arsenide Inorganic materials 0.000 title claims abstract description 60
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 title claims description 48
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 13
- 239000000956 alloy Substances 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 abstract description 8
- 230000003685 thermal hair damage Effects 0.000 description 5
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Switches Operated By Changes In Physical Conditions (AREA)
Abstract
Description
技术领域 technical field
本实用新型属于高功率半导体器件领域,具体涉及一种多通道砷化镓光电导开关,可用作纳秒量级高功率脉冲系统的开关。 The utility model belongs to the field of high-power semiconductor devices, in particular to a multi-channel gallium arsenide photoconductive switch, which can be used as a switch of a high-power pulse system of nanosecond order.
背景技术 Background technique
目前,砷化镓光电导开关已广泛应用于光电探测设备、太赫兹发生和探测装置、紧凑型脉冲功率系统等领域。但是,在非线性导通模式下,高功率的实用砷化镓光电导开关存在热损伤严重、工作寿命短的缺点,研制低导通内阻、长寿命的高功率砷化镓光电导开关是该领域的必然趋势。 At present, gallium arsenide photoconductive switches have been widely used in photodetection equipment, terahertz generation and detection devices, compact pulse power systems and other fields. However, in the nonlinear conduction mode, high-power practical GaAs photoconductive switches have the disadvantages of severe thermal damage and short working life. It is necessary to develop high-power GaAs photoconductive switches with low internal resistance and long life. inevitable trend in this field.
发明内容 Contents of the invention
为了克服现有技术中砷化镓光电导开关在非线性导通模式下高功率工作时存在严重热损伤的不足,本实用新型提供一种多通道砷化镓光电导开关。本实用新型在实现砷化镓光电导开关高电压、大电流导通的同时,确保砷化镓光电导开关具有更高的使用寿命。 In order to overcome the disadvantage of severe thermal damage in the prior art when the gallium arsenide photoconductive switch operates at high power in a nonlinear conduction mode, the utility model provides a multi-channel gallium arsenide photoconductive switch. The utility model ensures that the gallium arsenide photoconductive switch has a higher service life while realizing high voltage and large current conduction of the gallium arsenide photoconductive switch.
本实用新型解决其技术问题所采用的技术方案是: The technical scheme that the utility model solves its technical problem adopts is:
本实用新型的多通道砷化镓光电导开关,其特点是,所述的光电导开关包括绝缘基座、高迁移率的砷化镓、绝缘介质、欧姆接触的合金电极。其连接关系是,在所述绝缘基座上设置有平行排列的N个长条形的砷化镓,砷化镓与绝缘基座固定连接,相邻的砷化镓之间的间距相等,相邻的砷化镓之间在绝缘基座上构成通道,砷化镓的两端齐平,所述的绝缘介质设置在通道中。采用光刻掩模、电子束蒸发或磁控溅射、高温退火等工艺在每个长条形的砷化镓两端设置欧姆接触的合金电极,砷化镓同一端的合金电极相互连接。从而获得多通道砷化镓光电导开关。 The multi-channel gallium arsenide photoconductive switch of the utility model is characterized in that the photoconductive switch includes an insulating base, a high-mobility gallium arsenide, an insulating medium, and an alloy electrode with ohmic contact. The connection relationship is that N elongated gallium arsenides arranged in parallel are arranged on the insulating base, the gallium arsenide is fixedly connected to the insulating base, and the distance between adjacent gallium arsenides is equal A channel is formed between adjacent gallium arsenides on the insulating base, the two ends of the gallium arsenide are flush, and the insulating medium is arranged in the channel. A photolithography mask, electron beam evaporation or magnetron sputtering, high temperature annealing and other processes are used to set ohmic-contact alloy electrodes at both ends of each elongated gallium arsenide, and the alloy electrodes at the same end of the gallium arsenide are connected to each other. Thus a multi-channel gallium arsenide photoconductive switch is obtained.
所述的绝缘介质或用间隙替代。 The insulating medium may be replaced by a gap.
所述的高迁移率的砷化镓的数量范围为二到五十个。 The number of high mobility GaAs ranges from two to fifty.
基于多个开关并联导通的思路,可以实现砷化镓光电导开关从单通道导通到多通道导通的技术跨越,大大降低开关导通内阻和热损伤,提高砷化镓光电导开关的使用寿命。本实用新型的多通道砷化镓光电导开关,是采用半导体工艺或机械工艺,制作并整齐摆放N个窄条形的、砷化镓材料互不相连的单通道光电导开关,但每个单通道光电导开关的阳极电极相互连接形成共有阳极,每个单通道光电导开关的阴极电极相互连接形成共有阴极,从而由N个单通道砷化镓光电导开关并联构成1个多通道砷化镓光电导开关。 Based on the idea of parallel conduction of multiple switches, the technical leap from single-channel conduction to multi-channel conduction of GaAs photoconductive switches can be realized, which greatly reduces the internal resistance and thermal damage of switches, and improves the performance of GaAs photoconductive switches. service life. The multi-channel gallium arsenide photoconductive switch of the present utility model is a single-channel photoconductive switch which adopts semiconductor technology or mechanical technology to make and arrange N narrow strips and the gallium arsenide materials are not connected to each other, but each The anode electrodes of the single-channel photoconductive switches are connected to each other to form a common anode, and the cathode electrodes of each single-channel photoconductive switch are connected to each other to form a common cathode, so that N single-channel gallium arsenide photoconductive switches are connected in parallel to form a multi-channel arsenide Gallium photoconductive switch.
本实用新型的有益效果是:本实用新型的多通道砷化镓光电导开关在合适的偏置电场和红外激光触发下,N个长条形高迁移率的砷化镓中将产生M个导电通道(1<M≤N);该多通道砷化镓光电导开关的导通内阻为单通道光电导开关的1/M,可以明显改善光电导开关的导通特性。该多通道砷化镓光电导开关的总发热功率为单通道光电导开关的1/M,每个导电通道的发热功率为单通道光电导开关的1/M2,大幅减少光电导开关的发热和热损伤,提高光电导开关的使用寿命。 The beneficial effects of the utility model are: the multi-channel gallium arsenide photoconductive switch of the utility model is triggered by a suitable bias electric field and an infrared laser, and M conductive channels (1<M≤N); the conduction internal resistance of the multi-channel GaAs photoconductive switch is 1/M of that of the single-channel photoconductive switch, which can significantly improve the conduction characteristics of the photoconductive switch. The total heating power of the multi-channel GaAs photoconductive switch is 1/M of the single-channel photoconductive switch, and the heating power of each conductive channel is 1/M 2 of the single-channel photoconductive switch, which greatly reduces the heat generation of the photoconductive switch And thermal damage, improve the service life of the photoconductive switch.
附图说明 Description of drawings
图1是本实用新型的结构示意图; Fig. 1 is the structural representation of the utility model;
图2是本实用新型的侧视图; Fig. 2 is a side view of the utility model;
图中,1. 绝缘基座 2.砷化镓 3.绝缘介质 4.合金电极。 In the figure, 1. insulating base 2. gallium arsenide 3. insulating medium 4. alloy electrode.
具体实施方式 Detailed ways
下面结合附图对本实用新型进行进一步说明。 Below in conjunction with accompanying drawing, the utility model is further described.
实施例1 Example 1
图1是本实用新型的结构示意图,图2是本实用新型的侧视图。在图1、图2中。 Fig. 1 is a schematic structural view of the utility model, and Fig. 2 is a side view of the utility model. In Figure 1 and Figure 2.
本实用新型的多通道砷化镓光电导开关,包括绝缘基座1、高迁移率的砷化镓2、绝缘介质3、欧姆接触的合金电极4。其连接关系是,在所述绝缘基座1上设置有平行排列的N个长条形的砷化镓2,砷化镓2与绝缘基座1固定连接,相邻的砷化镓2之间的间距相等,相邻的砷化镓2之间在绝缘基座1上构成通道,砷化镓2的两端齐平,所述的绝缘介质3设置在通道中。采用光刻掩模、电子束蒸发或磁控溅射、高温退火等工艺在每个长条形的砷化镓2两端设置欧姆接触的合金电极4,砷化镓2同一端的合金电极相互连接。从而获得多通道砷化镓光电导开关。本实用新型,在合适的偏置电场和红外激光触发下,N个长条形高迁移率的砷化镓中将产生M个导电通道(1<M≤N);本实用新型的导通内阻为单通道光电导开关的1/M,可以明显改善光电导开关的导通特性。本实用新型的总发热功率为单通道光电导开关的1/M,每个导电通道的发热功率为单通道光电导开关的1/M2,大幅减少光电导开关的发热和热损伤,提高光电导开关的使用寿命。 The multi-channel gallium arsenide photoconductive switch of the utility model comprises an insulating base 1, a high-mobility gallium arsenide 2, an insulating medium 3, and an alloy electrode 4 with ohmic contact. The connection relationship is that N elongated gallium arsenide 2 arranged in parallel are arranged on the insulating base 1, the gallium arsenide 2 is fixedly connected with the insulating base 1, and the adjacent gallium arsenide 2 The intervals are equal, and channels are formed between adjacent gallium arsenide 2 on the insulating base 1, the two ends of the gallium arsenide 2 are flush, and the insulating medium 3 is arranged in the channel. Using processes such as photolithographic masking, electron beam evaporation or magnetron sputtering, and high-temperature annealing, an alloy electrode 4 with ohmic contact is arranged at both ends of each elongated gallium arsenide 2, and the alloy electrodes 4 at the same end of the gallium arsenide 2 are connected to each other . Thus a multi-channel gallium arsenide photoconductive switch is obtained. In the utility model, under the triggering of a suitable bias electric field and infrared laser, M conductive channels (1<M≤N) will be generated in N strips of gallium arsenide with high mobility; The resistance is 1/M of the single-channel photoconductive switch, which can obviously improve the conduction characteristics of the photoconductive switch. The total heating power of the utility model is 1/M of the single-channel photoconductive switch, and the heating power of each conductive channel is 1/M 2 of the single-channel photoconductive switch, which greatly reduces the heating and thermal damage of the photoconductive switch and improves the photoelectricity. service life of the switch.
本实施例中,所述的高迁移率的砷化镓2的数量为五十个。 In this embodiment, the number of high-mobility GaAs 2 is fifty.
实施例2 Example 2
本实施例与实施例1的结构相同,不同之处是,所述的高迁移率的砷化镓的数量为二个。 The structure of this embodiment is the same as that of Embodiment 1, except that the number of high-mobility gallium arsenide is two.
实施例3 Example 3
本实施例与实施例1的结构相同,不同之处是,所述的绝缘介质用间隙替代。 The structure of this embodiment is the same as that of Embodiment 1, except that the insulating medium is replaced by gaps.
实施例4 Example 4
本实施例与实施例1的结构相同,不同之处是,在欧姆接触的合金电极4上,通过焊接工艺,焊接金属引线,构成带引线的多通道砷化镓光电导开关。 The structure of this embodiment is the same as that of Embodiment 1, except that, on the alloy electrode 4 in ohmic contact, metal leads are welded through a welding process to form a multi-channel GaAs photoconductive switch with leads.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520001528.0U CN204332989U (en) | 2015-01-05 | 2015-01-05 | Multi-Channel Gallium Arsenide Photoconductive Switch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520001528.0U CN204332989U (en) | 2015-01-05 | 2015-01-05 | Multi-Channel Gallium Arsenide Photoconductive Switch |
Publications (1)
Publication Number | Publication Date |
---|---|
CN204332989U true CN204332989U (en) | 2015-05-13 |
Family
ID=53169312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201520001528.0U Expired - Lifetime CN204332989U (en) | 2015-01-05 | 2015-01-05 | Multi-Channel Gallium Arsenide Photoconductive Switch |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN204332989U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104538479A (en) * | 2015-01-05 | 2015-04-22 | 中国工程物理研究院流体物理研究所 | Multi-channel gallium arsenide photoconductive switch |
-
2015
- 2015-01-05 CN CN201520001528.0U patent/CN204332989U/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104538479A (en) * | 2015-01-05 | 2015-04-22 | 中国工程物理研究院流体物理研究所 | Multi-channel gallium arsenide photoconductive switch |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104538479A (en) | Multi-channel gallium arsenide photoconductive switch | |
CN109560141B (en) | Thin film transistor, light emitting device and method of manufacturing the same | |
US20070023077A1 (en) | Dual gap thermo-tunneling apparatus and methods | |
CN100553130C (en) | Ultrafast pulse power switching device and self-excited picosecond power pulse generator | |
CN204332989U (en) | Multi-Channel Gallium Arsenide Photoconductive Switch | |
CN103996704B (en) | IGBT with precise detection function and manufacturing method thereof | |
JP6513476B2 (en) | Thermoelectric conversion element, power generation device | |
CN104969320B (en) | Arc-chutes in electrical switchgear for arc extinguishing configure | |
CN105405545A (en) | Insulator and method for improving surface electric strength of insulator | |
CN105470089B (en) | Gas discharge tube and metallized electrode used for same | |
CN109994568B (en) | Laser-triggered high-power semi-insulating AlGaN/GaN switch with stack structure | |
US2087327A (en) | Electron discharge device | |
CN118969864A (en) | Cascade structure photoconductive switch | |
JP3228043B2 (en) | Parallel connection structure of flat semiconductor switches | |
JPH07118361B2 (en) | Molybdenum arrester | |
CN115347061B (en) | A high-voltage silicon carbide photoconductive switch with opposite circular electrodes | |
JP2017143011A (en) | Electron emitting element | |
CN105826422B (en) | Large power semi-insulating AlGaAs/GaAs light guide switch with quantum well structure and manufacturing method | |
US1632135A (en) | Electrode structure for electron-discharge devices | |
CN114267749A (en) | Photoconductive semiconductor switch based on graphene film | |
CN222966067U (en) | Gas discharge tube | |
JP7617519B2 (en) | Thermoelectric conversion module | |
CN204481326U (en) | A kind of vacuum spark relay | |
US12218490B2 (en) | Lightning-protection spark gap | |
CN114360945A (en) | Contact structure of high current reed switch and application structure of high current reed switch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20150513 |