CN204180086U - 半导体光放大器的可调谐微波信号源的装置 - Google Patents

半导体光放大器的可调谐微波信号源的装置 Download PDF

Info

Publication number
CN204180086U
CN204180086U CN201420280197.4U CN201420280197U CN204180086U CN 204180086 U CN204180086 U CN 204180086U CN 201420280197 U CN201420280197 U CN 201420280197U CN 204180086 U CN204180086 U CN 204180086U
Authority
CN
China
Prior art keywords
microwave signal
semiconductor optical
optical amplifier
coupler
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201420280197.4U
Other languages
English (en)
Inventor
夏菽兰
王吉林
王如刚
陈荣
纪正飚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangcheng Institute of Technology
Yancheng Institute of Technology
Original Assignee
Yangcheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangcheng Institute of Technology filed Critical Yangcheng Institute of Technology
Priority to CN201420280197.4U priority Critical patent/CN204180086U/zh
Application granted granted Critical
Publication of CN204180086U publication Critical patent/CN204180086U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

半导体光放大器的可调谐微波信号源的装置,包括直流源(100)、半导体光放大器(101)、光隔离器(102)、光滤波器(103)、光放大器(104)、马赫曾德尔干涉仪(105)、光纤(111)、光电探测器(112),电放大器(113)和耦合器(114)并依次连接;从马赫曾德尔干涉仪(105)输出信号光经光纤后进入到光电探测器,经光电探测器转换的电信号进入到的电放大器,放大后的电信号经耦合器分出两束信号,一束进入到调制器,另一路信号作为微波信号(115)输出。本实用新型提出的一种半导体光放大器的可调谐微波信号源的装置与方法,使用半导体光放大器获得宽带自发辐射谱,可以获得宽带的高频微波信号。

Description

半导体光放大器的可调谐微波信号源的装置
技术领域
本实用新型涉及一种半导体光放大器的可调谐微波信号源的装置,主要应用于无线传感网、光纤通信及微波光子学等技术领域。 
背景技术
科技的高速发展使得信息的交互量飞速增加,通信的容量剧增,个人或终端对带宽的需求似乎永无满足,接入的灵活、便捷也成为不可缺少的要素。因此,无线与宽带成为通信和信息系统的发展趋势。宽带的要求在有线传输或接入上由光纤给出了优良的解决方案,而灵活性的提升还需依靠无线通信方式的天生优势,与此同时,要尽可能保证通信的容量。为提高无线通信系统的带宽并实现高速通信,必然要采用更高频率且有足够质量保证的高频载波,因此高频载波源或微波源在通信与信息系统中起着至关重要的作用。另外,高频微波信号源在现代多个领域有着重要的应用,例如,雷达系统、超宽带脉冲无线电系统、光电测量、探测以及成像等领域。因此,高质量的可调微波信号在雷达、传感和无线通信等领域有着广阔的应用前景。在光纤系统中,传输的微波信号会受到光纤色散等因素的影响而发生畸变和失真,且微波频率越高受到的影响越大。目前获得微波信号的产生主要集中在光注入,光锁相,外调制器倍频及光电振荡器等方法上,取得了一定的成果。如高士明等提出的发明专利,申请号:CN20081006124.7,采用微波源和电光调制器的方法获得了11GHz的微波信号。有的学者提出了通过布里渊散射,结合光外差法获得微波信号的方案,如傅娇娇等提出的发明专利,申请号:CN200910155858.4,采用布里渊散射与泵浦光的差频获得微波信号,王如刚等人提出的发明专利(公开号:CN102856778A),采用布里渊散射方法获得可调谐微波信号。但是,这些产生微波信号的可调谐范围较小,限制其在雷达等领域的应用,且系统比较复杂,增加了系统的成本,而且系统的体积都比较大,不适用于目前小型化和高集成化的发展趋势。 
实用新型内容
本实用新型目的是:克服现有技术的以上缺点,为了获得高频宽带可调谐的微波信号等问题,本实用新型提供一种半导体光放大器的可调谐微波信号源的装置,提出的装置与方法不仅能够产生高频微波信号,而且能够获得多带宽可调谐的微波信号源。 
本实用新型的目的是这样实现的:半导体光放大器的可调谐微波信号源的装置,其特征是包括直流源100、半导体光放大器101、光隔离器102、光滤波器103、光放大器104、马赫曾德尔干涉仪105、光纤111、光电探测器112,电放大器113和耦合器114并依次连接;马赫曾德尔干涉仪105的构成是,其中第二耦合器106、长度可调光纤延迟线107、 可调衰减器108、第三耦合器109依次连接构成一分臂,调制器110并联第二耦合器106与第三耦合器109两输出端之间构成另一分臂;从马赫曾德尔干涉仪105输出信号光经光纤111后进入到光电探测器112,经光电探测器112转换的电信号进入到的电放大器113,放大后的电信号经耦合器114分出两束信号,一束进入到调制器110,另一路信号作为微波信号115输出。 
所述的光滤波器103是宽带光滤波器,其作用是使半导体光放大器101的自发辐射谱平坦化。 
所述的光源为半导体光放大器101的输出的宽带光谱,也可以是其它结构的宽带光源。 
所述微波信号的可调谐性,通过调节可调光延迟线107的长度来获得可调谐的微波信号。 
所述光电探测器112可以是平衡探测器,也可以是其它种类的光电探测器。 
所述可调光纤延迟线107也可以使用其它具有调节马赫泽德尔干涉仪105臂长的器件。 
所述光纤111可以是普通单模光纤,也可以是其它具有大色散数值的色散位移光纤等中的一种。 
所述调制器110可以是相位调制器、强度调制器或者偏振调制器等的一种。 
所述可调衰减器108的作用是为了平衡马赫泽德尔干涉仪105两个分臂的功率值。 
半导体光放大器的可调谐微波信号源的方法,通过调节可调光延迟线107长度,控制马赫泽德尔干涉仪的两个臂长,从而产生共振频率,输出微波信号的频率是由马赫泽德尔干涉仪两个分臂(两个环形腔)的长度决定,所述微波信号的可调谐性,通过调节可调光延迟线107的长度来获得可调谐的微波信号。具体可以描述为: 
当不考虑反馈,且若调制器110被频率为Ω的微波信号所驱动,那么调制器110输出的光信号强度可以表示为: 
P(t)∝Vbias+VRFcos(Ωt) 
其中,Vbias为加在调制器110上的直流偏压,VRFcos(Ωt)为输入到调制器110的微波信号,可以看出调制器110输出的信号强度正比于驱动的射频信号强度,因此,光电振荡器的响应可以表示为: 
H ( t ) = Σ m = 0 ∞ 0.5 h m δ ( t - mτ 1 ) * Σ n = 0 ∞ 0.5 g n δ ( t - nτ 2 ) = 1 4 H ( t ) Σ m = 0 ∞ Σ n = 0 ∞ h m g n δ [ t - ( mτ 1 + m τ 2 ) ]
τ i = L i × n c ( i = 1,2 )
其中,δ(t)为狄拉克函数,h,g分别为马赫泽德尔干涉仪两个分臂的增益,τi和Li分别为 延迟的时间和两个分臂的长度,n为可调延迟线107的折射率,c为真空中的光速。产生的微波信号强度可以表示为: 
I ( f ) ∝ ξ PV RF { δ [ ( ω - Ω ) t ] + δ [ ( ω + Ω ) t ] } * Σ k = 0 ∞ { ( 2 k + 1 ) × 0.5 2 k exp [ - kjω ( τ 1 + τ 2 ) ] [ 1 - 0.5 exp ( - jω τ 1 ) ] [ 1 - 0.5 exp ( - j ωτ 2 ) ] }
其中,ξ为光电探测器110的响应度,P为光信号的峰值功率。可以看出输出微波信号的频率是由两个环形腔的长度决定,而且微波信号的频率可以通过改变可调延迟线107的长度进行调谐。 
具体而言,半导体光放大器101产生的自发辐射光谱进入到光隔离器102,从光隔离器102输出的信号光经光滤波器103滤波后进入到光放大器104中,经光放大器104放大后的信号光进入马赫曾德尔干涉仪105;从马赫曾德尔干涉仪105输出信号光经光纤111后进入到光电探测器112,经光电探测器112转换的电信号进入到的电放大器113,放大后的电信号经耦合器114分出两束信号,一束进入到调制器110,另一路信号作为微波信号输出;通过调节可调延迟线107的长度,控制马赫泽德尔干涉仪的两个分臂臂长,获得可调谐的微波信号。 
耦合器114的80%信号输出端口进入到相位调制器的射频输入端口进行循环,微波信号经耦合器的20%端口输出。 
所述可调衰减器108用于平衡马赫泽德尔干涉仪105两个分臂的功率值。本实用新型采用马赫泽德尔干涉仪结构,通过控制马赫泽德尔干涉仪的分臂长度可以获得可调谐带宽的微波信号源。 
利用半导体光放大器产生宽带自发辐射谱,得到稳定的微波信号。 
本实用新型的有益效果是:本实用新型提出的一种半导体光放大器的可调谐微波信号源的装置,使用半导体光放大器获得宽带自发辐射谱,可以获得宽带的高频微波信号;本实用新型通过设计出简单的光电振荡器结构,并通过控制马赫泽德尔干涉仪的分臂延迟线的长度,获得可调谐的微波信号源。本实用新型设计出的微波信号的装置与方法不仅能够产生高频微波信号,而且能够获得可调谐微波信号;在本实用新型中不需要电子器件,大大降低了电磁干扰等,且具有成本低廉、结构简单的优点。 
附图说明
图1是本实用新型实施例一的结构示意图。 
图2是本实用新型实施例二的结构示意图。 
图3是本实用新型半导体光放大器的自发辐射谱示意图。 
图4是本实用新型实施例获得的可调微波信号频谱示意图。 
图5是本实用新型的结构示意图。 
具体实施方式
下面结合附图和实施例对本实用新型作进一步详细说明和描述。 
实施例一:本实施例提供一种半导体光放大器的可调谐微波信号源的装置与方法。如图1所示,本实施例包括直流源200,半导体光放大器201,其型号为SOA-S-OEC-1550,中心波长为1532nm,直流源200驱动半导体光放大器201,为了防止输出信号反射回半导体光放大器201,在其信号输出端连接光隔离器202,从光隔离器202输出的信号经滤波器203滤波后进入到掺铒光纤放大器204,其型号为KPS-BT2-C-30-PB-FA,放大后的信号进入到马赫泽德尔干涉仪205,马赫泽德尔干涉仪205包括耦合器206(50:50)、可调光纤延迟线207、可调光衰减器208,型号为Santec、耦合器209(50:50)和相位调制器210,其型号为EOSPACE,从耦合器209(50:50)耦合输出的信号进入到光纤211,光纤211为高非线性光纤,其色散参数为432ps2,光纤211输出的信号经光电探测器212(OCARO1046)转换为电信号,电信号经电放大器213放大后进入到耦合器214(80:20),耦合器214的80%信号输出端口进入到相位调制器210的射频输入端口进行循环,微波信号经耦合器214的20%端口输出,输出信号经安捷伦频谱分析仪215进行测量分析,其型号为Agilent E4440A。测得的半导体光放大器自发辐射谱如图3所示,从图3可以看出其自发辐射谱的中心波长为1532.44nm,带宽为66.96nm,调节可调光纤延迟线207,其调谐范围0.1-20GHz,获得可调微波信号如图4所示。 
实施例二:本实施例提供一种半导体光放大器的可调谐微波信号源的装置与方法。如图2所示,本实施例包括直流源300,半导体光放大器301,其型号为SOA-S-OEC-1550,中心波长为1532nm,直流源300驱动半导体光放大器301,为了防止输出信号反射回半导体光放大器301,在其信号输出端连接光隔离器302,从光隔离器302输出的信号经滤波器303(傅立叶域可编程光处理器)滤波后进入到掺铒光纤放大器304,其型号为KPS-BT2-C-30-PB-FA,放大后的信号进入到马赫泽德尔干涉仪305,马赫泽德尔干涉仪305包括耦合器306(50:50)、可调光纤延迟线307、可调光衰减器308,型号为Santec、耦合器309(50:50)和相位调制器310,其型号为EOSPACE,从耦合器309(50:50)耦合输出的信号进入到光纤311,光纤311为高非线性光纤,光纤311输出的信号经光电探测器312(OCARO1046)转换为电信号,电信号经电放大器313放大后进入到耦合器314(80:20),耦合器314的80%信号输出端口进入到相位调制器310的射频输入端口进行循环,微波信号经耦合器314的20%端口输出,输出信号经安捷伦频谱分析仪315进行测量分析,其型号为AgilentE4440A。 
与图1结构的半导体光放大器的可调谐微波信号源的装置与方法相比,不同之处在于:滤波器303为傅立叶域可编程光处理器,光纤311为高非线性光纤。 
宽带光源,频谱宽:66.96nm或更宽;光滤波器是宽带光滤波器,带宽宽:30nm。 
虽然本实用新型通过具体实施例进行了描述,但具体实施例和附图并非用来限定本实用新型。本领域技术人员可在本实用新型的精神的范围内,做出各种变形和改进,所附的权利要求已包括这些变形和改进。 

Claims (6)

1.半导体光放大器的可调谐微波信号源的装置,其特征是包括直流源(100)、半导体光放大器(101)、光隔离器(102)、光滤波器(103)、光放大器(104)、马赫曾德尔干涉仪(105)、光纤(111)、光电探测器(112),电放大器(113)和耦合器(114)并依次连接;马赫曾德尔干涉仪(105)的构成是,其中第二耦合器(106)、长度可调光纤延迟线(107)、可调衰减器(108)、第三耦合器(109)依次连接构成一分臂,调制器(110)并联第二耦合器(106)与第三耦合器(109)两输出端之间构成另一分臂;从马赫曾德尔干涉仪(105)输出信号光经光纤(111)后进入到光电探测器,经光电探测器转换的电信号进入到的电放大器(113),放大后的电信号经耦合器(114)分出两束信号,一束进入到调制器,另一路信号作为微波信号(115)输出。 
2.根据权利要求1所述的半导体光放大器的可调谐微波信号源的装置,其特征在于:所述的半导体光放大器的输出的是宽带光源。 
3.根据权利要求1所述的半导体光放大器的可调谐微波信号源的装置,其特征在于:所述的光滤波器是宽带光滤波器。 
4.根据权利要求1所述的半导体光放大器的可调谐微波信号源的装置,其特征在于:所述光电探测器(112)是平衡探测器。 
5.根据权利要求1所述的半导体光放大器的可调谐微波信号源的装置,其特征在于:所述光纤(111)是普通单模光纤。 
6.根据权利要求1所述的半导体光放大器的可调谐微波信号源的装置,其特征在于:所述调制器是相位调制器、强度调制器或者偏振调制器的一种。 
CN201420280197.4U 2014-05-28 2014-05-28 半导体光放大器的可调谐微波信号源的装置 Expired - Fee Related CN204180086U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420280197.4U CN204180086U (zh) 2014-05-28 2014-05-28 半导体光放大器的可调谐微波信号源的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420280197.4U CN204180086U (zh) 2014-05-28 2014-05-28 半导体光放大器的可调谐微波信号源的装置

Publications (1)

Publication Number Publication Date
CN204180086U true CN204180086U (zh) 2015-02-25

Family

ID=52568860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420280197.4U Expired - Fee Related CN204180086U (zh) 2014-05-28 2014-05-28 半导体光放大器的可调谐微波信号源的装置

Country Status (1)

Country Link
CN (1) CN204180086U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586798A (zh) * 2018-12-17 2019-04-05 吉林大学 一种可调谐多输出微波信号的光子学产生装置
CN109631963A (zh) * 2019-01-21 2019-04-16 杭州光预科技有限公司 基于微结构光纤干涉微波光子传感方法的多元参量测量系统及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586798A (zh) * 2018-12-17 2019-04-05 吉林大学 一种可调谐多输出微波信号的光子学产生装置
CN109586798B (zh) * 2018-12-17 2021-05-25 吉林大学 一种可调谐多输出微波信号的光子学产生装置
CN109631963A (zh) * 2019-01-21 2019-04-16 杭州光预科技有限公司 基于微结构光纤干涉微波光子传感方法的多元参量测量系统及方法

Similar Documents

Publication Publication Date Title
CN104113378A (zh) 半导体光放大器的可调谐微波信号源的装置与方法
CN107065390B (zh) 基于受激布里渊散射效应和光频梳的微波信号产生方法及装置
Urick et al. Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links
CN103166706B (zh) 基于宽谱光源的频率可调谐的光电振荡装置
CN105910797B (zh) 基于双边带调制与受激布里渊散射效应的光器件光谱响应测量方法及测量装置
CN103324002B (zh) 一种可重构单带通微波光子滤波系统与方法
CN107342816B (zh) 一种基于光电振荡器同时产生多路微波信号的信号发生器
CN102904646B (zh) 基于光梳的偏振复用信道化接收机
CN103278941B (zh) 基于受激布里渊散射动态光栅的微波光子滤波器及其滤波方法
CN101799608A (zh) 基于硅基微环谐振腔的电控宽带光子射频移相器
CN109194410B (zh) 一种基于光电振荡器的射频信号感知装置
CN109586798B (zh) 一种可调谐多输出微波信号的光子学产生装置
CN102856778B (zh) 产生多带宽高频可调谐微波信号的装置与方法
CN108508676B (zh) 基于相位调制和光纤腔孤子的间隔可调光频梳及产生方法
CN104568219A (zh) 一种基于单通带微波光子滤波器的温度测量装置及方法
CN202695962U (zh) 基于受激布里渊散射效应的宽带连续可调谐光电振荡器
CN108614126B (zh) 基于宽带可调谐光电振荡器的角速度测量装置和方法
CN104165756A (zh) 基于受激布里渊散射的高灵敏度光矢量网络分析仪
CN106027153A (zh) 基于新型双边带马赫增德尔调制器产生60GHz毫米波的方法
CN104181748B (zh) 基于光控非线性环形镜的微波脉冲信号产生装置
CN106093598A (zh) 一种电磁信号特性测量系统和方法
CN103401141A (zh) 一种基于直接调制分布反馈式半导体激光器的光电振荡器
CN104092491B (zh) 光电振荡器产生光学频率梳的装置与方法
CN102751644A (zh) 基于受激布里渊散射效应的宽带连续可调谐光电振荡器
CN102544985A (zh) 基于调制不稳定性的光纤型太赫兹波产生装置及方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150225

Termination date: 20160528