CN101799608A - 基于硅基微环谐振腔的电控宽带光子射频移相器 - Google Patents

基于硅基微环谐振腔的电控宽带光子射频移相器 Download PDF

Info

Publication number
CN101799608A
CN101799608A CN 201010138139 CN201010138139A CN101799608A CN 101799608 A CN101799608 A CN 101799608A CN 201010138139 CN201010138139 CN 201010138139 CN 201010138139 A CN201010138139 A CN 201010138139A CN 101799608 A CN101799608 A CN 101799608A
Authority
CN
China
Prior art keywords
silicon
based micro
ring resonator
micro ring
links
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201010138139
Other languages
English (en)
Inventor
吴艳志
叶通
张亮
苏翼凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN 201010138139 priority Critical patent/CN101799608A/zh
Publication of CN101799608A publication Critical patent/CN101799608A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种光纤通信技术领域的基于硅基微环谐振腔的电控宽带光子射频移相器,包括:载波抑制光双边带产生系统、硅基微环谐振腔系统、电压源和测量系统,所述的载波抑制光双边带产生系统包括:可调激光器、射频信号发生器、马赫曾德调制器和光放大器;所述的硅基微环谐振腔系统包括:硅基微环谐振腔和微波探针,其中的硅基微环谐振腔包括:电极、半径相等的两个硅基微环和直波导,所述的测量系统包括:光放大器、可调窄带滤波器、光检测器和示波器。本发明所用器件体积小、结构简单、易于集成,移相范围接近4π,移相范围大,反应速度快,且操作简单,成本低。

Description

基于硅基微环谐振腔的电控宽带光子射频移相器
技术领域
本发明涉及的是一种光纤通信技术领域的装置,具体是一种基于硅基微环谐振腔的电控宽带光子射频移相器。
背景技术
射频移相器在相控阵雷达系统和波束形成网络中有着重要的应用价值。传统的射频移相器主要采用开关线以及微波集成电路等技术,具有工作频率低、体积大、相移调节慢,以及复杂度高等缺点。近来利用光纤和其它低成本的光学器件,在光域对射频信号进行相位控制,设计光子射频移相器则得到了越来越广泛的重视。相比较于传统的电子方案,光子射频移相器具有信号处理速度快、带宽大、精度高、相移范围大、不受电磁干扰、移相的数值精确、传输损耗低等优点,而且由于器件的体积和重量与微波器件相比可以大大减小,可用于多天线阵列的相位控制系统中。因此,可调光子宽带射频移相器是未来快速移相器发展的方向,受到越来越多的重视与研究。但现有的光子射频移相器一般面临着器件体积大、难于集成、结构复杂、移相范围小、反应速度慢等问题。
经对现有的技术文献检索发现,《IEEE Photonics technology letter》(《IEEE光技术快报》)2006年第18卷的文章“Broad-band RF photonic phase shifter based on stimulatedBrillouin scattering and single-sideband modulation(基于受激布里渊散射和单边带调制的宽带射频光子移相器)”一文中,提出了一种采用受激布里渊散射效应设计光子射频移相器的产生装置。该装置通过激光器连接单边带调制器,再连接5.4公里长的色散位移光纤来实现。但这个装置需要应用多个分离的器件,移相器结构复杂,且需要5.4公里长的光纤实现受激布里渊散射效应,不利于系统的集成化,因此限制了它的应用。
又经检索发现,《IEEE Photonics technology letter》(《IEEE光技术快报》)2009年第21卷的文章“A Tunable Broadband Photonic RF Phase Shifter Based on a Silicon MicroringResonator(基于硅基微环谐振腔的可调宽带光子射频移相器)”一文中,提出了一种利用硅基微环的非线性热效应实现射频信号移相的装置。该装置通过激光器连接调制器,再连接硅基微环谐振腔系统,同时需要另一个激光器连接硅基微环谐振腔系统,通过该激光器输入光强来控制移相范围。但该移相器移相范围小于360度,同时由于采用泵浦光功率控制移相,因此需要额外的激光器提供泵浦光,花费大,反应速度慢,不易于监测控制。
发明内容
本发明的目的在于克服现有技术的上述不足,提出了一种基于硅基微环谐振腔的电控宽带光子射频移相器。本发明通过外加电压注入载流子,移动硅基微环谐振腔的谐振峰,从而可以灵活地实现射频信号的相移,具有器件体积小、结构简单、易于集成,移相范围大,宽带可操作,电压移相反应速度快,易于监测控制及成本低廉等优点。
本发明是通过以下技术方案实现的:
本发明包括:载波抑制光双边带产生系统、硅基微环谐振腔系统、电压源和测量系统,其中:载波抑制光双边带系统与硅基微环谐振腔系统的光输入端相连传输载波抑制光双边带信号,电压源与硅基微环谐振腔系统的电输入端相连传输连续可调的控制电压信号,硅基微环谐振腔系统的光输出端与测量系统的输入端相连传输经过移相后的光双边带信号。
所述的载波抑制光双边带产生系统包括:一个可调激光器、一个射频信号发生器、一个马赫曾德调制器和一个光放大器,其中:可调激光器的输出端与马赫曾德调制器的光输入端口相连传输连续的激光,射频信号发生器的输出端口与马赫曾德调制器的射频输入端口相连传输高频电信号,马赫曾德调制器的光输出端口与光放大器的输入端口相连传输产生的载波抑制光双边带信号,光放大器的输出端口与硅基微环谐振腔系统相连传输经过放大的载波抑制光双边带信号。
所述的硅基微环谐振腔系统包括:硅基微环谐振腔和微波探针,其中:微波探针的输入端与电压源的输出端口相连传输控制电信号,微波探针的输出端与硅基微环谐振腔相连以改变硅基微环谐振腔的谐振波长,硅基微环谐振腔与载波抑制光双边带产生系统相连传输载波抑制光双边带信号。
所述的硅基微环谐振腔包括:电极、硅基双环和直波导,其中:电极设置在硅基双环的p+掺杂区域和n+掺杂区域以加载正负电压,硅基双环和直波导之间的空气间隔为几十纳米至几百纳米。
所述的硅基双环包括:两个半径相同的硅基微环,其中:这两个硅基微环之间的空气间隔为几十至几百纳米。
所述的硅基微环谐振腔的作用:一是要保证硅基双环之间的耦合系数足够大,以满足谐振峰不分裂的条件,这样硅基微环谐振腔在谐振处附件只有一个谷点,且谷点两侧具有约为4π的相位差,二是要满足谐振峰深度不要过深,一般不超过5dB,以使移相过程中信号幅度不会变化过大。
所述的测量系统包括:一个光放大器,一个可调窄带滤波器,一个光检测器(PD)和一个示波器,其中:硅基微环谐振腔系统的输出端与光放大器的输入端相连传输经过移相的载波抑制光双边带信号,光放大器的输出端与可调窄带滤波器的输入端相连传输放大后的经过移相的载波抑制光双边带信号,可调窄带滤波器的输出端与光检测器的光输入端相连传输滤波后的载波抑制光双边带信号,光检测器的输出端与示波器的输入端口相连传输检测数据。
所述的可调窄带滤波器的3dB带宽在0.3nm-0.8nm的范围内,其用于滤除光放大器引入的噪声。
所述的光检测器的带宽大于双边带之间的频率间隔,其用于对双边带进行拍频,产生射频信号。
所述的电压源用于产生连续可调的电压,其输出通过微波探针加载到硅基双环上,从而移动硅基微环谐振腔的谐振峰进行调相。
所述的马赫曾德调制器偏置在传输曲线的最低点,进行载波抑制调制,得到载波抑制光双边带信号,调节激光器波长,使得右边带波长位于硅基微环谐振腔的一个谐振峰左侧。
本发明的工作原理:硅基微环谐振腔的传输光谱与它的相位具有相关性的特点,硅基双环的传输光谱在谐振峰两侧具有4π的相位差,且在谐振峰处相位为2π,电极注入的载流子会改变硅的折射率,使得谐振峰发生蓝移,导致双边带信号的相位差发生改变,使得双边带信号拍频后产生的射频信号的相位改变,实现了移相的功能。
与现有技术相比,本发明的有益效果是:本发明使用的硅基微环谐振腔体积小,结构简单,硅基微环的半径只有几十微米,易于集成,更有利于未来大规模相控阵系统的应用。同时本移相器移相范围可以达到接近4π,移相范围大,电压操作移相简单,反应速度快,且适合宽带操作。
附图说明
图1为本发明装置的组成示意图。
图2为硅基微环谐振腔的组成结构示意图。
图3为硅基微环谐振腔传输谱及相移曲线。
图4为实施例仿真结果图;
其中:图(a)为马赫曾德调制器的输出光谱;图(b)为不加电压时的原始信号波形及所加电压为6V时发生最大相移后的波形;图(c)为输入电压变化时,测得的信号相移变化曲线。
具体实施方式
下面结合附图对本发明的实施例做详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例
如图1所示,本实施例包括:载波抑制光双边带产生系统、硅基微环谐振腔系统、一个电压源和测量系统,其中:载波抑制光双边带系统与硅基微环谐振腔系统的光输入端相连传输载波抑制光双边带信号,电压源与硅基微环谐振腔系统的电输入端相连传输连续可调的控制电压信号,硅基微环谐振腔系统的光输出端与测量系统的输入端相连传输经过移相后的光双边带信号。
所述的载波抑制光双边带产生系统包括:一个可调激光器、一个射频信号发生器、一个马赫曾德调制器和一个光放大器,其中:可调激光器的输出端与马赫曾德调制器的光输入端口相连传输连续光,射频信号发生器的输出端口与马赫曾德调制器的射频输入端口相连传输高频电信号,马赫曾德调制器的光输出端口与光放大器的输入端口相连,光放大器的输出进入硅基微环谐振腔系统。
所述的可调激光器的型号是TSL-210F,其用于输出连续激光,该连续激光输入到马赫曾德调制器进行载波抑制调制以后产生双边带,其右边带波长位于硅基微环谐振腔的一个谐振峰左侧。
所述的射频信号发生器采用Agilent E8257D PSG,其用于输出高速射频正弦信号,其输出端口与马赫曾德调制器的射频输入端口相连,用于进行载波抑制调制,得到双边带信号,该双边带信号的两个边带频率间隔为射频信号频率的两倍。
所述的马赫曾德调制器的型号是JDS-10G-MZM:21023816,其偏置在传输曲线的最低点,进行载波抑制调制,得到载波抑制光双边带信号。
所述的光放大器的型号为0FA-MW,其用于对马赫曾德调制器输出的载波抑制光双边带信号进行放大。
所述硅基微环谐振腔系统包括:硅基微环谐振腔和微波探针,其中:微波探针的输入端与电压源的输出端口相连传输控制电信号,微波探针的输出端与硅基微环谐振腔相连以改变硅基微环谐振腔的谐振波长,硅基微环谐振腔与载波抑制光双边带产生系统相连传输载波抑制光双边带信号。
如图2所示,所述的硅基微环谐振腔包括:电极、硅基双环和直波导,其中:电极分别设置在硅基双环的p+掺杂区域和n+掺杂区域,直波导位于硅基双环下方且与硅基双环的空气间隔为90纳米,硅基双环的周长是150微米。
所述的硅基双环包括两个半径相同的硅基微环,且两个硅基微环之间的空气间隔为80纳米。
硅基微环谐振腔中的光在直波导中传输,外加电压通过微波探针加载到电极上,通过注入载流子,载流子色散效应使得硅基微环谐振腔的谐振峰移动,硅基微环谐振腔相应的传输谱及相移曲线如图3所示,由图3可知在谐振峰两侧有4π的相位差。
所述的硅基微环谐振腔的谱特性是周期性的带阻滤波特性,在谐振波长上透射率为0或接近为0。
所述的测量系统包括:一个光放大器、一个可调窄带滤波器、一个光检测器和一个示波器,其中:硅基微环谐振腔的输出端与光放大器的输入端相连,光放大器的输出端与可调窄带滤波器相连,可调窄带滤波器的输出端与光检测器的光输入端相连,光检测器的输出端与示波器的输入端口相连进行检测。
所述的光放大器的型号为0FA-MW,其用于对移相后的载波抑制光双边带信号进行放大。
所述的可调窄带滤波器采用紫珊-S0TMTF-FC/PC,带宽为0.8nm,用于滤除放大噪声。
所述的光检测器的型号是u2t-xpdv2150r,带宽为50GHz,其用于对双边带信号进行拍频,得到移相后的射频信号。
所述的示波器型号为TDS620A,其用于记录波形。
所述的电压源的型号是TDR 3005-3,用于产生电信号,其信号幅度可调,其输出加载到硅基微环谐振腔上。
本实施例的工作过程:可调激光器产生波长为1545nm的连续光且输出到马赫曾德调制器的光输入端口;马赫曾德调制器的偏置端口连接电压源,电压源输出为6V,此值为马赫曾德调制器的传输曲线最低点;射频信号发生器连接到马赫曾德调制器的射频输入端口,产生频率为30GHz的射频信号,峰峰值为2V;马赫曾德调制器的光输出端口与光放大器的光输入端口相连传输载波抑制光双边带信号;光放大器的输出端与硅基微环谐振腔系统的输入端相连用于对输入光进行放大,光放大器传输放大后的载波抑制光双边带信号;硅基微环谐振腔的一个谐振波长为1545.45nm,3dB带宽为0.12nm。电压源的输出端与微波探针的输入端相连,微波探针加载到硅基微环谐振腔的电极上传输控制电信号,通过电极注入的载流子会改变硅的折射率,使得谐振峰发生蓝移,导致双边带信号的相位差发生改变,使得双边带信号拍频后产生的射频信号的相位改变,实现了移相得功能。硅基微环谐振腔系统的输出端与光放大器的输入端相连,传输移相后的载波抑制光双边带信号;放大器的输出端与可调窄带滤波器的输入端相连,可调窄带滤波器带宽为0.8nm,用于滤除放大噪声;可调窄带滤波器的输出端连接光检测器,光检测器带宽为50GHz,光检测器用于对双边带信号进行拍频,得到移相后的射频信号;光检测器的输出端连接到示波器的输入端,示波器用于记录波形。缓慢的改变电压源的输出电压,测量输出信号的相移及波形。
本实施例仿真结果示意图如图4所示,其中:图4(a)为马赫曾德调制器的输出光谱,可以看到两个一阶边带信号,间隔为60GHz,其余边带被抑制大于40dB;图4(b)为不加电压时的原始信号波形及所加电压为6V时发生最大相移后的波形,可以看出信号发生了3.6π弧度的相移,且波形没有发生失真;图4(c)为输入电压变化时,测得的信号相移变化曲线,从图中可以看出在电压为6V时,获得最大相移3.6π。
本实施例所用的硅基微环谐振腔只有微米量级,易于系统集成,且移相范围可达3.6π,移相范围大,电压调节移相,监测和控制容易。

Claims (6)

1.一种基于硅基微环谐振腔的电控宽带光子射频移相器,其特征在于,包括:载波抑制光双边带产生系统、硅基微环谐振腔系统、电压源和测量系统,其中:载波抑制光双边带系统与硅基微环谐振腔系统的光输入端相连传输载波抑制光双边带信号,电压源与硅基微环谐振腔系统的电输入端相连传输连续可调的控制电压信号,硅基微环谐振腔系统的光输出端与测量系统的输入端相连传输经过移相后的光双边带信号。
2.根据权利要求1所述的基于硅基微环谐振腔的电控宽带光子射频移相器,其特征是,所述的载波抑制光双边带产生系统包括:一个可调激光器、一个射频信号发生器、一个马赫曾德调制器和一个光放大器,其中:可调激光器的输出端与马赫曾德调制器的光输入端口相连传输连续的激光,射频信号发生器的输出端口与马赫曾德调制器的射频输入端口相连传输高频电信号,马赫曾德调制器的光输出端口与光放大器的输入端口相连传输产生的载波抑制光双边带信号,光放大器的输出端口与硅基微环谐振腔系统相连传输经过放大的载波抑制光双边带信号。
3.根据权利要求1所述的基于硅基微环谐振腔的电控宽带光子射频移相器,其特征是,所述的硅基微环谐振腔系统包括:硅基微环谐振腔和微波探针,其中:微波探针的输入端与电压源的输出端口相连传输控制电信号,微波探针的输出端与硅基微环谐振腔相连以改变硅基微环谐振腔的谐振波长,硅基微环谐振腔与载波抑制光双边带产生系统相连传输载波抑制光双边带信号。
4.根据权利要求3所述的基于硅基微环谐振腔的电控宽带光子射频移相器,其特征是,所述的硅基微环谐振腔包括:电极、硅基双环和直波导,其中:电极设置在硅基双环的p+掺杂区域和n+掺杂区域以加载正负电压,硅基双环和直波导之间的空气间隔为几十纳米至几百纳米。
5.根据权利要求4所述的基于硅基微环谐振腔的电控宽带光子射频移相器,其特征是,所述的硅基双环包括:两个半径相同的硅基微环,其中:这两个硅基微环之间的空气间隔为几十至几百纳米。
6.根据权利要求1所述的基于硅基微环谐振腔的电控宽带光子射频移相器,其特征是,所述的测量系统包括:一个光放大器,一个可调窄带滤波器,一个光检测器和一个示波器,其中:硅基微环谐振腔系统的输出端与光放大器的输入端相连传输经过移相的载波抑制光双边带信号,光放大器的输出端与可调窄带滤波器的输入端相连传输放大后的经过移相的载波抑制光双边带信号,可调窄带滤波器的输出端与光检测器的光输入端相连传输滤波后的载波抑制光双边带信号,光检测器的输出端与示波器的输入端口相连传输检测数据。
CN 201010138139 2010-04-02 2010-04-02 基于硅基微环谐振腔的电控宽带光子射频移相器 Pending CN101799608A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010138139 CN101799608A (zh) 2010-04-02 2010-04-02 基于硅基微环谐振腔的电控宽带光子射频移相器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010138139 CN101799608A (zh) 2010-04-02 2010-04-02 基于硅基微环谐振腔的电控宽带光子射频移相器

Publications (1)

Publication Number Publication Date
CN101799608A true CN101799608A (zh) 2010-08-11

Family

ID=42595348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010138139 Pending CN101799608A (zh) 2010-04-02 2010-04-02 基于硅基微环谐振腔的电控宽带光子射频移相器

Country Status (1)

Country Link
CN (1) CN101799608A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941519A (zh) * 2014-05-15 2014-07-23 上海交通大学 基于硅基自耦合光波导的高速高阶光微分器
CN104466620A (zh) * 2014-12-25 2015-03-25 武汉邮电科学研究院 一种基于光学微腔的频率稳定型光生微波信号源
CN104991395A (zh) * 2015-07-06 2015-10-21 上海交通大学 基于硅基微盘谐振腔的光子射频移相器
CN106257636A (zh) * 2015-06-19 2016-12-28 中兴通讯股份有限公司 一种硅基调制器偏置点控制装置
CN107046221A (zh) * 2017-02-24 2017-08-15 南京邮电大学 一种基于高圆度三维旋转对称微腔的单频窄带光纤激光器
CN108696318A (zh) * 2017-04-06 2018-10-23 上海交通大学 载波抑制的单边带电光调制装置
CN108732426A (zh) * 2017-04-20 2018-11-02 富士通株式会社 相移器的相移特性的估计装置、方法以及测试设备
CN110233678A (zh) * 2019-05-15 2019-09-13 上海交通大学 基于硅基集成微波光子接收处理芯片
CN110308573A (zh) * 2019-07-16 2019-10-08 东南大学 一种基于硅/plzt混合波导的马赫曾德尔电光调制器
CN111736370A (zh) * 2020-06-12 2020-10-02 南京中电芯谷高频器件产业技术研究院有限公司 一种薄膜铌酸锂基集成芯片及制备方法
CN114485746A (zh) * 2021-12-24 2022-05-13 中山大学 基于时分复用多载波探测光干涉型传感器的光声成像系统
CN115037379A (zh) * 2022-08-10 2022-09-09 之江实验室 基于硅基微环调制器的光子rf倍频芯片及其控制方法
CN116540362A (zh) * 2023-03-27 2023-08-04 北京信息科技大学 一种微环谐振器权重高精度校准系统及校准方法
WO2024119575A1 (zh) * 2022-12-07 2024-06-13 赛丽科技(苏州)有限公司 谐振器系统、可调谐激光器及谐振器系统的控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008024513A2 (en) * 2006-08-24 2008-02-28 Cornell Research Foundation, Inc. Electro-optical modulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008024513A2 (en) * 2006-08-24 2008-02-28 Cornell Research Foundation, Inc. Electro-optical modulator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《IEEE PHOTONICS TECHNOLOGY LETTERS》 20090131 Qingjiang Chang etc A tunable broadband photonic RF phase shifter based on a silicon microring resonator EXPERIMENTAL SETUP AND RESULTS,附图3 1-6 第21卷, 第1期 2 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941519A (zh) * 2014-05-15 2014-07-23 上海交通大学 基于硅基自耦合光波导的高速高阶光微分器
CN104466620A (zh) * 2014-12-25 2015-03-25 武汉邮电科学研究院 一种基于光学微腔的频率稳定型光生微波信号源
CN106257636A (zh) * 2015-06-19 2016-12-28 中兴通讯股份有限公司 一种硅基调制器偏置点控制装置
CN106257636B (zh) * 2015-06-19 2020-08-07 南京中兴新软件有限责任公司 一种硅基调制器偏置点控制装置
CN104991395A (zh) * 2015-07-06 2015-10-21 上海交通大学 基于硅基微盘谐振腔的光子射频移相器
CN107046221A (zh) * 2017-02-24 2017-08-15 南京邮电大学 一种基于高圆度三维旋转对称微腔的单频窄带光纤激光器
CN108696318B (zh) * 2017-04-06 2023-11-03 上海交通大学 载波抑制的单边带电光调制装置
CN108696318A (zh) * 2017-04-06 2018-10-23 上海交通大学 载波抑制的单边带电光调制装置
CN108732426A (zh) * 2017-04-20 2018-11-02 富士通株式会社 相移器的相移特性的估计装置、方法以及测试设备
CN110233678A (zh) * 2019-05-15 2019-09-13 上海交通大学 基于硅基集成微波光子接收处理芯片
CN110233678B (zh) * 2019-05-15 2022-03-08 上海交通大学 基于硅基集成微波光子接收处理芯片
CN110308573A (zh) * 2019-07-16 2019-10-08 东南大学 一种基于硅/plzt混合波导的马赫曾德尔电光调制器
CN111736370A (zh) * 2020-06-12 2020-10-02 南京中电芯谷高频器件产业技术研究院有限公司 一种薄膜铌酸锂基集成芯片及制备方法
CN114485746B (zh) * 2021-12-24 2023-10-31 中山大学 基于时分复用多载波探测光干涉型传感器的光声成像系统
CN114485746A (zh) * 2021-12-24 2022-05-13 中山大学 基于时分复用多载波探测光干涉型传感器的光声成像系统
CN115037379A (zh) * 2022-08-10 2022-09-09 之江实验室 基于硅基微环调制器的光子rf倍频芯片及其控制方法
CN115037379B (zh) * 2022-08-10 2022-11-25 之江实验室 基于硅基微环调制器的光子rf倍频芯片及其控制方法
WO2024119575A1 (zh) * 2022-12-07 2024-06-13 赛丽科技(苏州)有限公司 谐振器系统、可调谐激光器及谐振器系统的控制方法
CN116540362A (zh) * 2023-03-27 2023-08-04 北京信息科技大学 一种微环谐振器权重高精度校准系统及校准方法
CN116540362B (zh) * 2023-03-27 2024-03-15 北京信息科技大学 一种微环谐振器权重高精度校准系统及校准方法

Similar Documents

Publication Publication Date Title
CN101799608A (zh) 基于硅基微环谐振腔的电控宽带光子射频移相器
CN101833221B (zh) 基于硅基微环谐振腔的全光单边带上变频产生装置
CN107065390B (zh) 基于受激布里渊散射效应和光频梳的微波信号产生方法及装置
CN103166706B (zh) 基于宽谱光源的频率可调谐的光电振荡装置
CN101848011B (zh) 双极性超宽带单周期脉冲的产生装置
CN103091932B (zh) 一种超宽调谐范围的单带通微波光子滤波器
CN103219632B (zh) 一种倍频光电振荡器
CN101834669B (zh) 基于硅基微环谐振腔的频移键控光调制信号产生装置
CN104113378A (zh) 半导体光放大器的可调谐微波信号源的装置与方法
CN102856778B (zh) 产生多带宽高频可调谐微波信号的装置与方法
CN204374553U (zh) 一种基于声光滤波器的光载波边带比可调谐装置
CN102751644A (zh) 基于受激布里渊散射效应的宽带连续可调谐光电振荡器
CN109193318B (zh) 基于锁模激光器的上下变频系统
CN106785812A (zh) 基于受激布里渊散射放大效应的光电振荡器及调节方法
Wang et al. Millimeter-wave signal generation with tunable frequency multiplication factor by employing UFBG-based acousto-optic tunable filter
Heni et al. Plasmonic PICs—Terabit Modulation on the Micrometer Scale
Liu et al. Ultra-low V pp and high-modulation-depth InP-based electro–optic microring modulator
CN104269732A (zh) 基于布里渊放大多波长激光器的微波信号产生的方法与装置
CN101320188B (zh) 基于硅基环形谐振腔的光子可调宽带射频移相器
CN206673311U (zh) 基于受激布里渊散射放大效应的光电振荡器
CN113625502A (zh) 基于石墨烯复合微纳光纤的高转换效率2μm波长转换器
CN204464744U (zh) 一种微波信号产生装置
CN109361136B (zh) 一种高速更新微波任意波形的发生系统
CN202586962U (zh) 超宽带高阶高斯脉冲光学发生装置
CN102098108A (zh) 光生微波信号源及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20100811