CN204177358U - 一种成像系统探测器芯片精密装调设备 - Google Patents
一种成像系统探测器芯片精密装调设备 Download PDFInfo
- Publication number
- CN204177358U CN204177358U CN201420673931.3U CN201420673931U CN204177358U CN 204177358 U CN204177358 U CN 204177358U CN 201420673931 U CN201420673931 U CN 201420673931U CN 204177358 U CN204177358 U CN 204177358U
- Authority
- CN
- China
- Prior art keywords
- translation stage
- control translation
- electronic control
- fixed
- imaging system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 51
- 238000013519 translation Methods 0.000 claims abstract description 102
- 238000004364 calculation method Methods 0.000 claims abstract description 21
- 238000001514 detection method Methods 0.000 claims abstract description 12
- 230000003287 optical effect Effects 0.000 claims description 60
- 239000003795 chemical substances by application Substances 0.000 claims description 31
- 239000011521 glass Substances 0.000 claims description 31
- 239000004606 Fillers/Extenders Substances 0.000 claims description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 239000004411 aluminium Substances 0.000 claims description 10
- 238000004026 adhesive bonding Methods 0.000 claims description 5
- 239000000853 adhesive Substances 0.000 claims description 3
- 230000001070 adhesive effect Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 23
- 238000012360 testing method Methods 0.000 abstract description 15
- 230000000694 effects Effects 0.000 description 12
- 230000000007 visual effect Effects 0.000 description 11
- 238000005259 measurement Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
本实用新型公开了一种成像系统探测器芯片精密装调设备,该装调设备包括运动控制系统、检测系统、附属结构和计算机,其中,运动控制系统由平移台、旋转台和倾斜台组成,负责调整待测器件和检测系统的空间位置,检测系统由自准直仪和远心数字显微成像系统组成,负责测量待测器件的角度和位置偏差,计算机能控制平移台的运动并记录其位置坐标,也能从远心数字显微成像系统获取待测器件的图像并进行分析计算;在装调过程中对角度和位置的测量精度分别达到秒级和微米量级,在装调完成后能保证探测器芯片的角度和位置偏差分别小于1′和0.02mm。
Description
技术领域
本实用新型涉及一种光学装调设备,它能实现光学镜头、探测器芯片及其附属安装结构间的相互对准,由此实现成像系统的高精度装配和测量。
背景技术
成像系统的两大核心部件是光学镜头和探测器芯片。为保证光学镜头和探测器芯片之间的精密装配,通常需要一个附属安装结构,其被称为主体结构。主体结构包含三个互相垂直度的高精度加工面,它们将为成像系统的装配提供机械基准。但是通常为了方便,这些机械基准将被转移到安装在主体结构上的一块各面严格垂直的玻璃立方体上,该玻璃立方体被称为基准镜。
成像系统的实际应用对光学镜头、探测器芯片以及基准镜之间的角度和位置偏差有很高的要求。特别是对于探测器芯片,尽管根据具体任务的不同,各类成像系统探测器芯片的型号各有不同,但它们相对于基准镜和光学镜头的角度和位置关系都是至关重要的。然而,目前还没有专门应用于成像系统各部件之间高精度装配的设备。因此,为达到探测器芯片与基准镜及光学镜头之间高精度装配和测量的目的,需研制一套可以实现常见探测器芯片空间位置装调的设备。
发明内容
本实用新型的目的在于针对现有技术的不足,提供一种成像系统探测器芯片精密装调设备。
对于成像系统探测器芯片的装调,常常以一些角度和位置的偏差来表征其精度,例如:探测器芯片感光面法线指向和基准镜光轴指向的角度偏差、探测器芯片各边和主体结构机械基准的角度偏差、探测器芯片中心和光学镜头光轴的位置偏差等。对于精密装调,一般要求角度偏差在分级及以下,而位置偏差在十微米量级及以下。
另一方面,成像系统探测器芯片的常见安装方式可以归纳为两种。一种安装方式中,芯片本身不具有专用的安装结构,而是直接固定于成像系统的主体结构上,相应的光学镜头将在芯片的装调完成后再分立地安装到主体结构上。另一种安装方式中,芯片本身具有专用的安装结构,芯片通过胶粘或螺丝固定的方式安装于该结构上,并与该结构一起装配到光学镜头后端,再随光学镜头整体安装到成像系统的主体结构上。这两种芯片安装方式的区别在于:前一种安装方式中,芯片和镜头分立安装,芯片在装调过程中保持可见,可以直接测量;而后一种安装方式中,芯片和镜头整体装配到主体结构上,芯片在装调过程中始终被遮挡,需要将其角度和位置信息传递出来。
为精确测量角度和位置参数,并适应不同芯片安装方式的需要,本实用新型的思路如下:
1.角度测量可采用最为常见的自准直仪方案,它成熟、方便、可靠,且能达到秒级的精度,在光学装调中大量使用。
2.位置测量可采用高精度电控平移台配合远心数字显微成像系统实现,高精度电控平移台能够提供精准的位移并记录当前的位置坐标,远心数字显微成像系统能够实时显示图形图像,两者都能连接计算机,易于在计算机中实时地读取测试数据并进行处理,最后方便地得到测试结果。
3.本实用新型提出了一种光学基准传递思想:如果某表面在装配过程中被遮挡而无法直接测量,则可在装配前将该表面的角度和位置信息传递到与其刚性连接的延伸结构表面,装配完成后即可通过测量延伸结构的表面来反推被测表面的信息。
4.光学基准传递思想也适用于这样的情况:在装调过程中,如果作为基准的某个平面的镜面反射不够强(反射率太小或反射面积太小),无法在自准直仪上看到反射光标,则可在该表面上粘贴一块标定好的校准玻璃片(可镀反射膜),将被测表面的指向信息传递到玻璃片上。
为使用上述思路解决探测器芯片的装调问题,本实用新型构建了一套专用的装调设备。该设备包括运动控制系统、检测系统、附属结构和计算机;
所述运动控制系统固定于光学平台上,分为三个区域:下方待测区域、上方检测区域和侧向检测区域,三个区域分别用来控制下方待测器件、上方检测设备以及侧向检测设备的运动并调整其空间位置;所述下方待测区域由双轴高精度电控平移台、手动旋转台和手动倾斜台组成,其中,双轴高精度电控平移台由两台相同的平移台正交连接构成,固定于光学平台上;手动旋转台通过转接件固定于双轴高精度电控平移台上;手动倾斜台通过转接件连接到手动旋转台上;所述上方检测区域由铝型材支架、水平电控平移台、垂直电控平移台、垂直电控平移台转接结构和配重组成;其中,铝型材支架搭建成龙门结构,固定于光学平台上;水平电控平移台固定于铝型材支架上;垂直电控平移台通过垂直电控平移台转接结构和水平电控平移台相连;配重可固定于垂直电控平移台转接结构上,平衡垂直电控平移台转接结构两边的力矩;所述侧向检测区域由一台电控升降台构成,电控升降台固定在光学平台上;
所述检测系统分布在运动控制系统的上方检测区域和侧向检测区域,包括远心数字显微成像系统、上方自准直仪和侧向自准直仪;所述远心数字显微成像系统固定在垂直电控平移台上;所述上方自准直仪固定在垂直电控平移台上;所述侧向自准直仪固定在电控升降台上;侧向自准直仪包含水平调节板,水平调节板能对侧向自准直仪的俯仰角进行微调;
所述附属结构包括转接板、夹具、二维调节架、刻线玻璃片和成像系统转接部件,所述转接板固定在手动倾斜台上,所述夹具具有一延伸结构,二维调节架固定在该延伸结构上,刻线玻璃片胶粘在二维调节架上;夹具和芯片安装法兰之间可装卸;
所述双轴高精度电控平移台、水平电控平移台、垂直电控平移台、电控升降台和远心数字显微成像系统均与计算机相连。
进一步地,所述检测系统还包括第一辅助定位激光器和第二辅助定位激光器,所述第一辅助定位激光器固定在垂直电控平移台上,所述第二辅助定位激光器固定在电控升降台上。
本实用新型的有益效果是能够实现成像系统探测器芯片的精密装调,具体地说,能够实现如下目标:
1.测量基准镜各表面和主体结构机械基准的角度偏差,测量精度达到秒级,并保证在装调完成后该角度偏差的值不大于1′;
2.测量探测器芯片感光面法线指向和基准镜光轴指向的角度偏差,测量精度达到秒级,并保证在装调完成后该角度偏差的值不大于1′;
3.测量探测器芯片各边和主体结构机械基准的角度偏差,测量精度达到秒级,并保证在装调完成后该角度偏差的值不大于1′;
4.测量探测器芯片中心和光学镜头光轴的位置偏差,测量精度达到微米量级,并保证在装调完成后该位置偏差的值不大于0.02mm。
附图说明
图1是装调设备整体的结构示意图;
图2是基准镜装调过程的器件装配示意图;
图3是探测器芯片信息传递过程的器件装配示意图;
图4是探测器芯片位置信息传递的数学模型示意图;
图5是探测器芯片装调过程的器件装配示意图;
图6是探测器芯片位置装调的数学模型示意图;
图中:光学平台001、双轴高精度电控平移台101、手动旋转台102、手动倾斜台103、铝型材支架104、水平电控平移台105、垂直电控平移台106、垂直电控平移台转接结构107、配重108、电控升降台109、远心数字显微成像系统201、上方自准直仪202、第一辅助定位激光器203、侧向自准直仪204、第二辅助定位激光器205、转接板301、主体结构302、基准镜座303、基准镜304、探测器芯片305、芯片安装法兰306、夹具307、二维调节架308、刻线玻璃片309、光学镜头310、成像系统转接部件311。
具体实施方式
下面将结合附图详细说明本实用新型的具体实施。
本实用新型待装调的成像系统包括主体结构302、基准镜座303、基准镜304、探测器芯片305、芯片安装法兰306和光学镜头310,所述基准镜304胶粘于基准镜座303上,基准镜座303和光学镜头310均安装在主体结构302上,探测器芯片305通过芯片安装法兰306安装在光学镜头310后端。
如图1所示,本实用新型成像系统探测器芯片精密装调设备,包括运动控制系统、检测系统、附属结构和计算机。
所述运动控制系统固定于光学平台001上,划分为三个区域:下方待测区域、上方检测区域和侧向检测区域,三个区域分别用来控制下方待测器件、上方检测设备以及侧向检测设备的运动并调整其空间位置。
所述下方待测区域由双轴高精度电控平移台101、手动旋转台102和手动倾斜台103组成,其中,双轴高精度电控平移台101由两台相同的平移台正交连接构成,固定于光学平台001上,它的作用是为待测器件提供精确的二维位移;手动旋转台102通过转接件固定于双轴高精度电控平移台101上,它的作用是调整待测器件的水平偏角;手动倾斜台103通过转接件连接到手动旋转台102上,它的作用是调整待测器件的俯仰角。
所述上方检测区域由铝型材支架104、水平电控平移台105、垂直电控平移台106、垂直电控平移台转接结构107和配重108组成。其中,铝型材支架104搭建成龙门结构,固定于光学平台001上,它主要为上方检测区域提供强有力的支撑,并保证该区域的整体形变远小于位置测量的精度要求;水平电控平移台105固定于铝型材支架104上,能够为上方检测设备提供横向位移;垂直电控平移台106通过垂直电控平移台转接结构107和水平电控平移台105相连,能够为上方检测设备提供竖向位移以满足检测设备的工作距离要求,所述垂直电控平移台转接结构107经过特别设计,用以进一步保证上方检测区域的整体形变远小于位置测量的精度要求;配重108可固定于垂直电控平移台转接结构107上,它的作用是平衡转接结构107两边的力矩,从而减小上方检测设备在位置改变前后的相对形变。
所述侧向检测区域由一台电控升降台109构成,电控升降台109固定在光学平台001上,它能够为侧向检测设备提供升降,以保证侧向检测设备能够对准待测器件。
所述检测系统分布在运动控制系统的上方检测区域和侧向检测区域,包括远心数字显微成像系统201、上方自准直仪202、第一辅助定位激光器203、侧向自准直仪204和第二辅助定位激光器205。
所述远心数字显微成像系统201通过连接件固定在垂直电控平移台106上,它的作用是将待测器件成像到相机,并通过USB数据线将图像传输到计算机上。
所述上方自准直仪202及第一辅助定位激光器203通过各自的连接件固定在垂直电控平移台106上,上方自准直仪202用于测量两个平面的平行度,第一辅助定位激光器203用于帮助上方自准直仪202快速地找到反射光标,测量前应使用标准的反射平面将第一辅助定位激光器203的出射光束调整到和上方自准直仪202的出射光束平行。
所述侧向自准直仪204及第二辅助定位激光器205通过各自的转接件固定在电控升降台109上,它们的作用和上方自准直仪202及第一辅助定位激光器203相同,只是测量对象从上表面变成了侧表面。另外,侧向自准直仪204包含水平调节板,水平调节板能对侧向自准直仪204的俯仰角进行微调。
所述附属结构包括转接板301、夹具307、二维调节架308、刻线玻璃片309和成像系统转接部件311,所述转接板301固定在手动倾斜台103上,所述夹具307具有一延伸结构,二维调节架308固定在该延伸结构上,刻线玻璃片309胶粘在二维调节架308上;夹具307和芯片安装法兰306之间可装卸。
所述双轴高精度电控平移台101、水平电控平移台105、垂直电控平移台106、电控升降台109和远心数字显微成像系统201均与计算机相连。所述计算机用于实现电控平移台位置坐标的实时控制和显示、成像系统返回图像的数据提取和处理以及其它在测试过程中需要使用的功能。在运动控制系统中,手动操作的部件不需要计算机参与控制,双轴高精度电控平移台101、水平电控平移台105、垂直电控平移台106和电控升降台109配备有专门的控制箱,该控制箱可通过USB数据线等与计算机连接,因此可通过计算机来控制平移台和升降台的运动并记录它们的位置坐标。而在检测系统中,上方自准直仪202和侧向自准直仪204不通过计算机而通过目视和数显盒读取数据,而远心数字显微成像系统201通过相机的USB接口与计算机连接,从而可在计算机上进行图像的读取和分析。
计算机主要需完成以下功能:
1.控制双轴高精度电控平移台101、水平电控平移台105、垂直电控平移台106和电控升降台109的运动,显示它们的当前位置坐标并能够使它们移动到任意需要的位置坐标(在行程和分辨率范围内)。
2.读取待测器件的图像并显示,记录图像中每一点的位置坐标。
3.对图像数据进行处理和分析,例如:通过在圆周上取点,能够利用最小二乘的算法拟合出圆心;通过在直线附近取点,能够利用最小二乘的算法拟合出直线方程;通过拟合平行四边形各边所在直线的方程,能够解出平行四边形的四个顶点及中心。
该装置的具体装调步骤如下:
(1)基准镜304的装调
基准镜304是表面镀反射膜且相邻表面互相垂直的玻璃立方体,它通常被胶粘于专门配备的基准镜座303上,然后再随基准镜座303一起被安装到主体结构302上。主体结构302为基准镜座303提供了专门的基准镜座安装面,该表面经过高精度机械加工,能保证基准镜304与主体结构302建立高度的形位关系。主体结构302包含三个互相垂直的加工面,它们为整个成像系统的装配提供机械基准,基准镜304的装调就是要把这些机械基准全部转移到基准镜304上。为实现这个目标,至少需进行两次角度测量,以保证基准镜304的上表面和侧表面分别与主体结构302的上表面和侧表面平行。在装调过程中,主体结构302通过专门设计的转接板301连接到运动控制系统的手动倾斜台103上,该转接板301能承担后续所有装调过程中器件的转接任务。
基准镜装调所需的两次角度测量均可使用上方自准直仪202和侧向自准直仪204完成。由于上方自准直仪202和侧向自准直仪204的视场很小,因此要找到反射光标不仅费时而且费力。利用第一辅助定位激光器203和第二辅助定位激光器205能有效改善这个问题。第一辅助定位激光器203和第二辅助定位激光器205被固定在二维调节架上,因此它的出射光束角度能被调节,利用这一点,在事先将第一辅助定位激光器203和上方自准直仪202、第二辅助定位激光器205和侧向自准直仪204的出射光束调整到平行,就能在测试时以第一辅助定位激光器203和第二辅助定位激光器205的出射光束方向来代表上方自准直仪202和侧向自准直仪204的出射光束方向。第一辅助定位激光器203和第二辅助定位激光器205的出射光束为可见细光束,其自准直过程方便快捷,因此该方法能大大提高上方自准直仪202和侧向自准直仪204的使用效率。下面凡是用到自准直仪的操作,均可用辅助激光器定位。
下面是基准镜304装调的具体步骤:
(1.1)如图2所示,将主体结构302通过转接板301连接到运动控制系统的手动倾斜台103上;
(1.2)基准镜304上表面的角度偏差测量
(1.2.1)调整运动控制系统,使上方自准直仪202对准主体结构302的基准镜座安装面,调节手动旋转台102和手动倾斜台103改变基准镜座安装面的角度,使上方自准直仪202的反射光标在其视场里居中;如果基准镜座安装面镜面反射效果较差,则在其上粘贴一块反射效果较好的校准玻璃片,将其表面指向信息传递到该校准玻璃片上;校准玻璃片前后表面的平行度经干涉仪标定,误差低于5″;
(1.2.2)将基准镜304胶粘到基准镜座303上,再将基准镜座303安装到主体结构302的基准镜座安装面上;
(1.2.3)保持手动旋转台102和手动倾斜台103固定,调整双轴高精度电控平移台101和水平电控平移台105,使上方自准直仪202对准基准镜304的上表面,检查反射光标在上方自准直仪202视场中的位置,如在允许误差范围内,则无需调整;如偏离允许误差,则检查基准镜座303和基准镜304的加工精度或使用调整垫片对基准镜座303的角度进行微调;
(1.3)基准镜304侧表面的角度偏差测量
(1.3.1)调整运动控制系统,使侧向自准直仪204对准选定的主体结构302侧表面,调节手动旋转台102和侧向自准直仪204的水平调节板,使侧向自准直仪204的反射光标在其视场里居中;如果选定的主体结构302侧表面镜面反射效果较差或面积太小,则将该表面的指向信息传递到一块反射效果较好的校准玻璃片上;
(1.3.2)保持手动旋转台102和手动倾斜台103固定,调整电控升降台109使侧向自准直仪204对准相应的基准镜304侧表面,检查反射光标在侧向自准直仪204视场中的位置,如在允许误差范围内,则无需调整;如偏离允许误差,则在基准镜304和基准镜座303间的粘胶固化前对该侧表面的角度进行微调;
(2)探测器芯片305的信息传递
探测器芯片305固定在芯片安装法兰306上,探测器芯片305在安装到主体结构302上后不再可见,因此根据光学基准传递思想,需事先将探测器芯片305的角度和位置信息传递出来。探测器芯片305的角度信息包括探测器芯片305感光面的法线指向信息和探测器芯片305感光面各边所在直线的方向信息,探测器芯片305的位置信息由探测器芯片305感光面中心的位置来表征。其中,探测器芯片305感光面各边所在直线可由探测器芯片305感光面的四个顶点来确定,故其对应的角度信息可以转化为其四个顶点的位置信息。综上所述,需事先传递出来的探测器芯片305的信息包括其感光面的法线指向信息以及四个顶点和中心的位置信息。为实现探测器芯片305的信息传递,需要使用一夹具307,芯片安装法兰306通过该夹具307固定到转接板301上。该夹具307还有一个延伸结构,该延伸结构与一个二维调节架308相连,二维调节架308上胶粘了一块刻有十字线的刻线玻璃片309,由于二维调节架308带有圆孔,因此刻线玻璃片309上的十字刻线可从正反两面观察到。如果刻线玻璃片309的表面反射率不够,同时要保证十字刻线两面可见,可以在刻线玻璃片309上镀半透半反膜。探测器芯片305的信息传递过程,就是将其信息传递到刻线玻璃片309及其十字刻线上的过程。
下面是探测器芯片305信息传递的具体步骤:
(2.1)如图3所示,将夹具307夹紧芯片安装法兰306后固定到转接板301上;
(2.2)探测器芯片305感光面的法线指向信息传递
(2.2.1)调整运动控制系统,使上方自准直仪202对准探测器芯片305感光面,调节手动旋转台102和手动倾斜台103改变探测器芯片305感光面的角度,使上方自准直仪202的反射光标在其视场里居中;如果探测器芯片305感光面镜面反射效果较差或面积太小,则将该表面的指向信息传递到一块反射效果较好的校准玻璃片上;
(2.2.2)保持手动旋转台102和手动倾斜台103固定,调整双轴高精度电控平移台101和水平电控平移台105使上方自准直仪202对准刻线玻璃片309的上表面,利用二维调节架308调整刻线玻璃片309的角度,使反射光标重新在自准直仪视场里居中;此时,探测器芯片305感光面的法向和刻线玻璃片309上表面的法向平行,即探测器芯片305感光面的法线指向信息传递到了刻线玻璃片309上;
(2.3)探测器芯片305感光面四个顶点和中心的位置信息传递
(2.3.1)保持手动旋转台102和手动倾斜台103固定,调整双轴高精度电控平移台101和水平电控平移台105,使远心数字显微成像系统201对准刻线玻璃片309上表面,在计算机的图像显示窗口可以看到十字刻线的像;调节垂直电控平移台106的高度,使十字刻线的像足够清晰,如果该像超过了图像显示的范围,可以调整双轴高精度电控平移台101和水平电控平移台105改变图像显示的部位;记录十字刻线四个端点的位置坐标R1(a1,b1)、R2(a2,b2)、R3(a3,b3)、R4(a4,b4);
(2.3.2)调整双轴高精度电控平移台101和水平电控平移台105使远心数字显微成像系统201对准探测器芯片305感光面,在计算机的图像显示窗口可以看到探测器芯片305感光面的像;调节垂直电控平移台106的高度,使探测器芯片305感光面的像足够清晰,如果该像超过了图像显示的范围,可以调整双轴高精度电控平移台101和水平电控平移台105改变图像显示的部位;在探测器芯片305感光面的四条边线上分别读取三个点,再用直线拟合的算法得到四条边线的直线方程,最后求出四条直线各自的交点即为探测器芯片305感光面的四个顶点A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4);
(2.3.3)计算并记录A(x1,y1)和R1(a1,b1)、R2(a2,b2)、R3(a3,b3)、R4(a4,b4)的距离或角度,它们不会随探测器芯片305的位置改变而改变,因而为常量;如果使用距离量,那么R1(a1,b1)、R2(a2,b2)、R3(a3,b3)、R4(a4,b4)可做四个圆,A(x1,y1)可通过这四个圆的公共交点来表示;如果使用角度量,那么R1(a1,b1)、R2(a2,b2)、R3(a3,b3)、R4(a4,b4)到A(x1,y1)可做四条直线,A(x1,y1)可通过这四条直线的公共交点来表示;对B(x2,y2)、C(x3,y3)、D(x4,y4)的处理同上;探测器芯片305感光面的中心E(x5,y5)则可由A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4)导出;因此,探测器芯片305感光面四个顶点和中心的位置信息传递到了十字刻线的端点上;如图4所示,以点A(x1,y1)和距离量为例,具体说明位置信息的传递原理:点A(x1,y1)可分别与十字刻线的四个端点R1(a1,b1)、R2(a2,b2)、R3(a3,b3)、R4(a4,b4)建立联系,即可分别计算A(x1,y1)和R1(a1,b1)、R2(a2,b2)、R3(a3,b3)、R4(a4,b4)的距离d1、d2、d3、d4。在探测器芯片305装调时,由于受到遮挡,A点坐标将变为未知量,但十字刻线的四个端点坐标仍然可测,并且d1、d2、d3、d4是固定的常量,故可根据这些已知量重新导出A点坐标,具体算法是利用最小二乘法求出四圆相交的最佳交点。
(3)探测器芯片305的装调
探测器芯片305的装调主要包含三个内容:
一是测量探测器芯片305感光面法线指向和基准镜304光轴指向的角度偏差。由于基准镜304的光轴指向就是其上表面的法线指向,因此,这一步就是要保证芯片感光面305和基准镜304上表面的法线指向互相平行。
二是测量探测器芯片305各边和主体结构302机械基准的角度偏差。由于主体结构302机械基准已经在基准镜304的装调完成后转移到了基准镜304上,因此,这一步就是要保证探测器芯片305感光面和基准镜304上表面的各边分别对应平行。
三是测量探测器芯片305中心和光学镜头310光轴的位置偏差。光学镜头310的光轴通常是很难确定的,为了方便起见,在光学镜头310的装配过程中通常会进行光轴一致性装调,即在定心仪的监视下,在精密机床上将光学镜头310的光轴调整到与精密机床的回转轴重合,再以该回转轴为基准车削镜框。由此可知,光学镜头310的光轴可以用镜框外圆的中心来表征,因此,这一步就是要保证探测器芯片305感光面和镜框外圆的中心重合。
下面是探测器芯片305装调的具体步骤:
(3.1)如图5所示,探测器芯片305的信息传递完成后,将它和夹具307、二维调节架308以及刻线玻璃片309一起装配到光学镜头310后端,再将光学镜头310安装到主体结构302上,然后将整个成像系统通过成像系统转接部件311连接到转接板301上;
(3.2)探测器芯片305感光面法线指向和基准镜304光轴指向的角度偏差测量
(3.2.1)调整运动控制系统,使上方自准直仪202对准基准镜304的上表面,调节手动倾斜台103改变基准镜304的俯仰角,使上方自准直仪202的反射光标在其视场里居中;
(3.2.2)保持手动旋转台102和手动倾斜台103固定,调整双轴高精度电控平移台101和水平电控平移台105使上方自准直仪202对准刻线玻璃片309上表面;如果此时在上方自准直仪202的视场中没有反射光标,则说明基准镜304和刻线玻璃片309上表面的法线指向偏差太大,需重新装配探测器芯片305;如果有反射光标,则需转动上方自准直仪202目镜上的测微鼓轮,使上方自准直仪202视场中的测量线对准反射光标的中心,然后从上方自准直仪202的数显盒上读取反射光标在前后两个位置的角度偏差,也即探测器芯片305感光面法线指向和基准镜304光轴指向的角度偏差;
(3.3)探测器芯片305感光面各边和主体结构302机械基准的角度偏差测量
(3.3.1)保持手动旋转台102和手动倾斜台103固定,调整双轴高精度电控平移台101和水平电控平移台105使远心数字显微成像系统201对准刻线玻璃片309上表面,在计算机的图像显示窗口可以看到十字刻线的像;调节垂直电控平移台106的高度,使十字刻线的像足够清晰,如果该像超过了图像显示的范围,可以调整双轴高精度电控平移台101和水平电控平移台105改变图像显示的部位;记录十字刻线四个端点的位置坐标R′1(a′1,b′1)、R′2(a′2,b′2)、R′3(a′3,b′3)、R′4(a′4,b′4);
(3.3.2)如图6所示,通过步骤(3.3.1)得到十字刻线四个端点的位置坐标,再结合探测器芯片305位置信息传递过程中得到的距离常量,就可以计算出探测器芯片305感光面四个顶点的坐标A′(x′1,y′1)、B′(x′2,y′2)、C′(x′3,y′3)、D′(x′4,y′4)。十字刻线的四个端点到探测器芯片305感光面的某个顶点可做四个圆,该顶点可通过四个圆的公共交点来表示,实际情况下,任意两圆交点会存在一定偏差,通过最小二乘法算得最优解作为最终的顶点坐标。
(3.3.3)调整双轴高精度电控平移台101和水平电控平移台105使远心数字显微成像系统201对准基准镜304的上表面,在计算机的图像显示窗口可以看到基准镜304上表面的像;调节垂直电控平移台106的高度,使基准镜304上表面的像足够清晰,如果该像超过了图像显示的范围,可以调整双轴高精度电控平移台101和水平电控平移台105改变图像显示的部位;在基准镜304上表面的四条边线上分别读取三个点,再用直线拟合的算法得到四条边线的直线方程,最后求出四条直线各自的交点即为基准镜304上表面的四个顶点K(x6,y6)、L(x7,y7)、M(x8,y8)、N(x9,y9);
(3.3.4)分别利用探测器芯片305感光面的四个顶点坐标A′(x′1,y′1)、B′(x′2,y′2)、C′(x′3,y′3)、D′(x′4,y′4)和基准镜304上表面的四个顶点坐标K(x6,y6)、L(x7,y7)、M(x8,y8)、N(x9,y9)计算每条边线的倾斜角:
每一对α和β的差值均代表了探测器芯片305相对于基准镜304的角度偏差;如果探测器芯片305感光面和基准镜304上表面都是严格的矩形,那么每一对α和β的差值应相同;但在实际情况下,每一对α和β的差值略有不同,因此将四个差值做一平均
Δθ=[(β1-α1)+(β2-α2)+(β3-α3)+(β4-α4)]/4
Δθ即为探测器芯片305相对于基准镜304的角度偏差,也即探测器芯片305各边和主体结构302机械基准的角度偏差;
(3.4)探测器芯片305感光面中心和光学镜头310光轴的位置偏差测量
(3.4.1)保持手动旋转台102和手动倾斜台103固定,调整双轴高精度电控平移台101和水平电控平移台105使远心数字显微成像系统201对准光学镜头310,在计算机的图像显示窗口可以看到镜框端面的像;调节垂直电控平移台106的高度,使镜框端面的像足够清晰,如果该像超过了图像显示的范围,可以调整双轴高精度电控平移台101和水平电控平移台105改变图像显示的部位;在镜框端面的外圆圆周上读取十个点,再用最小二乘的算法拟合出圆心坐标P(x0,y0),该圆心坐标即代表了光学镜头310光轴的位置;
(3.4.2)如图6所示,由于成像系统未发生任何转动,因此探测器芯片305感光面中心的坐标不会产生变化,可以直接沿用步骤(3.3.2)中计算得到的探测器芯片305感光面四个顶点的坐标A′(x′1,y′1)、B′(x′2,y′2)、C′(x′3,y′3)、D′(x′4,y′4)来表示探测器芯片305感光面中心的坐标E′(x′5,y′5),即
比较P(x0,y0)和E′(x′5,y′5),计算这个两个点之间的距离
Δd即为探测器芯片305感光面中心和光学镜头310光轴的位置偏差。
(3.5)从芯片安装法兰306上拆除夹具307,将成像系统和成像系统转接部件311以及转接板301分离,最终完成整个成像系统探测器芯片的装调。
Claims (2)
1.一种成像系统探测器芯片精密装调设备,所述成像系统包括主体结构(302)、基准镜座(303)、基准镜(304)、探测器芯片(305)、芯片安装法兰(306)和光学镜头(310),所述基准镜(304)胶粘于基准镜座(303)上,基准镜座(303)和光学镜头(310)均安装在主体结构(302)上,探测器芯片(305)通过芯片安装法兰(306)安装在光学镜头(310)后端,其特征在于,该设备包括运动控制系统、检测系统、附属结构和计算机;
所述运动控制系统固定于光学平台(001)上,分为三个区域:下方待测区域、上方检测区域和侧向检测区域;所述下方待测区域由双轴高精度电控平移台(101)、手动旋转台(102)和手动倾斜台(103)组成,其中,双轴高精度电控平移台(101)由两台相同的平移台正交连接构成,固定于光学平台(001)上;手动旋转台(102)通过转接件固定于双轴高精度电控平移台(101)上;手动倾斜台(103)通过转接件连接到手动旋转台(102)上;所述上方检测区域由铝型材支架(104)、水平电控平移台(105)、垂直电控平移台(106)、垂直电控平移台转接结构(107)和配重(108)组成;其中,铝型材支架(104)搭建成龙门结构,固定于光学平台(001)上;水平电控平移台(105)固定于铝型材支架(104)上;垂直电控平移台(106)通过垂直电控平移台转接结构(107)和水平电控平移台(105)相连;配重(108)固定于垂直电控平移台转接结构(107)上;所述侧向检测区域由一台电控升降台(109)构成,电控升降台(109)固定在光学平台(001)上;
所述检测系统分布在运动控制系统的上方检测区域和侧向检测区域,包括远心数字显微成像系统(201)、上方自准直仪(202)和侧向自准直仪(204);所述远心数字显微成像系统(201)固定在垂直电控平移台(106)上;所述上方自准直仪(202)固定在垂直电控平移台(106)上;所述侧向自准直仪(204)固定在电控升降台(109)上;侧向自准直仪(204)包含水平调节板;
所述附属结构包括转接板(301)、夹具(307)、二维调节架(308)、刻线玻璃片(309)和成像系统转接部件(311),所述转接板(301)固定在手动倾斜台(103)上,所述夹具(307)具有一延伸结构,二维调节架(308)固定在该延伸结构上,刻线玻璃片(309)胶粘在二维调节架(308)上;夹具(307)和芯片安装法兰(306)之间可装卸;
所述双轴高精度电控平移台(101)、水平电控平移台(105)、垂直电控平移台(106)、电控升降台(109)和远心数字显微成像系统(201)均与计算机相连。
2.根据权利要求1所述一种成像系统探测器芯片精密装调设备,其特征在于,所述检测系统还包括第一辅助定位激光器(203)和第二辅助定位激光器(205),所述第一辅助定位激光器(203)固定在垂直电控平移台(106)上,所述第二辅助定位激光器(205)固定在电控升降台(109)上。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420673931.3U CN204177358U (zh) | 2014-11-12 | 2014-11-12 | 一种成像系统探测器芯片精密装调设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420673931.3U CN204177358U (zh) | 2014-11-12 | 2014-11-12 | 一种成像系统探测器芯片精密装调设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN204177358U true CN204177358U (zh) | 2015-02-25 |
Family
ID=52566164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201420673931.3U Active CN204177358U (zh) | 2014-11-12 | 2014-11-12 | 一种成像系统探测器芯片精密装调设备 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN204177358U (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108534674A (zh) * | 2018-04-18 | 2018-09-14 | 哈尔滨工业大学 | 一种icf靶装配参数测量多自由度精密运动平台装置 |
CN109521582A (zh) * | 2018-12-05 | 2019-03-26 | 北京控制工程研究所 | 一种光学镜头光轴表征方法、系统以及成像组件对准方法 |
CN110487220A (zh) * | 2019-08-30 | 2019-11-22 | 长春理工大学 | 一种用于空间激光通信终端光轴一致性装调检测装置及方法 |
CN110749279A (zh) * | 2018-07-23 | 2020-02-04 | 北京铂阳顶荣光伏科技有限公司 | 测量机构 |
CN114623772A (zh) * | 2022-03-01 | 2022-06-14 | 长春财经学院 | 机械加工零部件四轴在线检测柔性平台及检测方法 |
US11499992B2 (en) * | 2018-11-27 | 2022-11-15 | Tokyo Electron Limited | Inspection system |
-
2014
- 2014-11-12 CN CN201420673931.3U patent/CN204177358U/zh active Active
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108534674A (zh) * | 2018-04-18 | 2018-09-14 | 哈尔滨工业大学 | 一种icf靶装配参数测量多自由度精密运动平台装置 |
CN108534674B (zh) * | 2018-04-18 | 2019-05-24 | 哈尔滨工业大学 | 一种icf靶装配参数测量多自由度精密运动平台装置 |
CN110749279A (zh) * | 2018-07-23 | 2020-02-04 | 北京铂阳顶荣光伏科技有限公司 | 测量机构 |
CN110749279B (zh) * | 2018-07-23 | 2021-10-26 | 鸿翌科技有限公司 | 测量机构 |
US11499992B2 (en) * | 2018-11-27 | 2022-11-15 | Tokyo Electron Limited | Inspection system |
CN109521582A (zh) * | 2018-12-05 | 2019-03-26 | 北京控制工程研究所 | 一种光学镜头光轴表征方法、系统以及成像组件对准方法 |
CN109521582B (zh) * | 2018-12-05 | 2021-04-13 | 北京控制工程研究所 | 一种光学镜头光轴表征方法、系统以及成像组件对准方法 |
CN110487220A (zh) * | 2019-08-30 | 2019-11-22 | 长春理工大学 | 一种用于空间激光通信终端光轴一致性装调检测装置及方法 |
CN110487220B (zh) * | 2019-08-30 | 2021-01-26 | 长春理工大学 | 一种用于空间激光通信终端光轴一致性装调检测装置及方法 |
CN114623772A (zh) * | 2022-03-01 | 2022-06-14 | 长春财经学院 | 机械加工零部件四轴在线检测柔性平台及检测方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104406541A (zh) | 一种成像系统探测器芯片精密装调设备及装调方法 | |
CN204177358U (zh) | 一种成像系统探测器芯片精密装调设备 | |
CN2884141Y (zh) | 一种激光六自由度同时测量装置 | |
CN106767540B (zh) | 一种交会测量相机光轴与反射镜夹角误差标定方法 | |
CN204007645U (zh) | 一种星敏感器基准立方镜安装误差的标定装置 | |
CN101726257B (zh) | 多目大范围激光扫描测量方法 | |
CN102749068B (zh) | 平面阵列天线面的安装精度检测方法 | |
CN103308281B (zh) | 楔形透镜的检测装置和检测方法 | |
CN112596258B (zh) | 一种二维转台折转光学组件的调试方法 | |
CN100455985C (zh) | 横向剪切干涉仪的胶合检测方法 | |
CN103630073A (zh) | 楔形透镜的检测及校正方法 | |
CN110806571A (zh) | 一种多结构光传感器空间姿态标定件及其标定方法 | |
CN107588929B (zh) | 球幕投影/跟踪系统标定方法及标定器 | |
CN104501715A (zh) | 一种激光对中仪接收系统及方法 | |
JPS63292005A (ja) | 走り誤差補正をなした移動量検出装置 | |
JPH0140290B2 (zh) | ||
CN109974579A (zh) | 光学旋转抛物面基准件阵列中心距离的标定装置 | |
CN113091653B (zh) | 基于五棱镜测量直线导轨角自由度误差的装置及方法 | |
CN206356747U (zh) | 用于激光加工的正交双摆轴标定装置 | |
CN209706766U (zh) | 逆哈特曼光路晶圆表面粗糙度测量装置 | |
CN215727694U (zh) | 一种镜面反射率测量装置 | |
CN112344867B (zh) | 一种齿轮齿侧间隙检测装置及间隙计算方法 | |
CN205580406U (zh) | 一种自准直仪 | |
CN110375708B (zh) | 一种三维角度测量系统 | |
CN110057288A (zh) | 光学旋转抛物面基准件阵列中心距离的标定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |