CN204134695U - Full-scale Dynamic Separation nanometer sand mill - Google Patents

Full-scale Dynamic Separation nanometer sand mill Download PDF

Info

Publication number
CN204134695U
CN204134695U CN201420463487.2U CN201420463487U CN204134695U CN 204134695 U CN204134695 U CN 204134695U CN 201420463487 U CN201420463487 U CN 201420463487U CN 204134695 U CN204134695 U CN 204134695U
Authority
CN
China
Prior art keywords
outer barrel
sand mill
ring
interior bucket
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201420463487.2U
Other languages
Chinese (zh)
Inventor
雷立猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PUHLER (GUANGZHOU) MACHINERY AND EQUIPMENT CO., LTD.
Original Assignee
PUHLER GUANGZHOU MACHINERY AND EQUIPMENT CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PUHLER GUANGZHOU MACHINERY AND EQUIPMENT CO Ltd filed Critical PUHLER GUANGZHOU MACHINERY AND EQUIPMENT CO Ltd
Priority to CN201420463487.2U priority Critical patent/CN204134695U/en
Application granted granted Critical
Publication of CN204134695U publication Critical patent/CN204134695U/en
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The utility model relates to grinding and the sand mill industrial design field of superfine powder slurry, be specifically related to a kind of full-scale Dynamic Separation nanometer sand mill innovating the improvement of wet grinding technology, it comprises an outer barrel and the horizontal spindle by motor-driven rotation, the interior bucket with grinding chamber is provided with in described outer barrel, discharging chamber is formed between outer barrel inwall and interior bucket outer wall, described main shaft penetrates interior bucket side and is connected with the rotor be arranged in grinding chamber, interior bucket opposite side is provided with the charging aperture being communicated with grinding chamber, this grinding chamber is communicated with discharging chamber by the several points of gaps be arranged on interior bucket, outer barrel is opened the discharging opening be communicated with discharging chamber.Bucket separation of material in the utility model adopts, and rotor is directly installed in separator, not only save space, and improve discharging speed, itself and tradition are installed separately separator or are arranged on by separator compared with the sand mill in rotor, provide a kind of brand-new discharge method, greatly improve discharging efficiency.

Description

Full-scale Dynamic Separation nanometer sand mill
Technical field
The utility model relates to grinding and the sand mill industrial design field of superfine powder slurry, is specifically related to a kind of full-scale Dynamic Separation nanometer sand mill innovating the improvement of wet grinding technology.
Background technology
Sand mill owing to can stirring the mixing material of different viscosities, disperseing, dissolving, emulsification, it is widely used in the industrial circles such as coating, paint, rubber, abrasive material, pottery, ore, coal dust, metal dust, carbide alloy, magnetic material, food, daily use chemicals, dyestuff, ink, medicine, magnetic material, soft magnetic ferrite, photographic film.Existing sand mill has the types such as vertical and horizontal, but it generally comprises frame, rack-mounted staving and the main shaft by motor-driven rotation, charging aperture is provided with on the upside of staving, described main shaft drives the grinding rotor be arranged in staving grinding chamber to rotate, make the mill ball of staving clash into material by the rotation of grinding rotor, reach the object of refinement material.
The grinding efficiency of the sand mill of above-mentioned traditional structure is lower, and material degree of refinement is lower.Its operation principle adopts agitation grinding mode, during shaft High Rotation Speed, the abrasive media that drive is called as " sand " and grinding charge (slip) do eddy motion, abrasive media is moved from bottom to top along inner tube wall under the influence of centrifugal force, redrops under the effect of self gravitation when arriving liquid level.In this process, abrasive media motion reciprocating extrusion, grinding, collision powder, play the effect of refinement powder, and abrasive media itself also has attrition.The sand milling endless form of existing " material is taken out in bottom ", by the impact of the problems such as screen bottom sand mill and circulating line blocking, when circulation sand milling, the flow velocity difference of slurry is larger, effect with batch slurry day part sand milling will be variant, the particle size distribution of powder after sand milling can be caused wider, the fluctuation of different batches grinding disposed slurry size distribution is comparatively large, and finally can affect the instability of particulate material power consumption etc., the uniformity between different batches product is poor.
Utility model content
For above-mentioned technical problem, the utility model provides a kind of full-scale Dynamic Separation nanometer sand mill improving product grinding quality and efficiency.
The technical scheme in the invention for solving the above technical problem is: full-scale Dynamic Separation nanometer sand mill (MAxxmilll Largemill), comprise an outer barrel and the horizontal spindle by motor-driven rotation, the interior bucket with grinding chamber is provided with in described outer barrel, discharging chamber is formed between outer barrel inwall and interior bucket outer wall, described main shaft penetrates interior bucket side and is connected with the rotor be arranged in grinding chamber, interior bucket opposite side is provided with the charging aperture being communicated with grinding chamber, this grinding chamber is communicated with discharging chamber by the several points of gaps be arranged on interior bucket, outer barrel is opened the discharging opening be communicated with discharging chamber.
Further, described interior bucket comprises the staving that is made up of several stacked ring plate and is arranged at this staving one end and is positioned at the connecting ring of the described side of bucket, and the inner ring of this several ring plate forms described grinding chamber, and the gap between two adjacent ring plates is described point of gap; Described connecting ring side is connected with outer barrel inner wall sealing, leaves described point gap between opposite side and eseparation ring; Be positioned at the described opposite side of bucket be provided with sealing outer barrel and the gland compressing connecting ring and ring plate at the described staving other end, this gland and adjacent ring plate are tightly connected, and gland have been opened described charging aperture.
Further, on another side described in connecting ring, described in each ring plate a side on be all circumferentially evenly equipped with at least three grooves, the another side of each ring plate circumferentially correspondence is provided with at least three boss, each boss snaps in corresponding groove, and the groove depth of each groove is less than the length of boss.
Further, a side described in connecting ring is circumferentially provided with several shank, outer barrel inwall correspondence has opened several hole, and shank described in each inserts in corresponding hole.
Further, be provided with sealing ring, sealing ring offer several circumference and divide other through hole described in described outer barrel inwall and connecting ring between side, shank described in each inserts in described hole through corresponding through hole.
Further, described gland has been opened an annular groove, when gland compresses described ring plate, the ring plate adjacent with this gland embeds described annular groove, bottom this annular groove and between ring plate side, be provided with sealing gasket.
Further, described rotor comprises and is arranged on disk body on described main shaft and along the axially extended sidewall of disk body perisporium, described wall outer surface is circumferentially provided with several grinding block.
Further, described disk body and sidewall have all opened several material path.
As preferably, described outer barrel outer barrel wall is provided with interlayer, in interlayer, is connected with recirculated cooling water.
As can be known from the above technical solutions, bucket separation of material in the utility model adopts, and rotor is directly installed in separator, not only save space, and improve discharging speed, itself and tradition are installed separately separator or are arranged on by separator compared with the sand mill in rotor, provide a kind of brand-new discharge method, substantially increase discharging efficiency, the grinding of more large discharge, lower temperature material can be applicable to.
Accompanying drawing explanation
Fig. 1 is the structural representation of a kind of preferred embodiment of the utility model;
Fig. 2 is the perspective view of ring plate in the utility model.
Detailed description of the invention
Below in conjunction with Fig. 1, Fig. 2, the utility model is described in further detail:
Sand mill of the present utility model comprises an outer barrel 1 and the horizontal spindle 2 by motor-driven rotation, the interior bucket 3 with grinding chamber 31 is provided with in described outer barrel, discharging chamber 4 is formed between outer barrel inwall and interior bucket outer wall, described main shaft penetrates interior bucket side and is connected with the rotor 5 be arranged in grinding chamber, interior bucket opposite side is provided with the charging aperture 6 being communicated with grinding chamber, this grinding chamber is communicated with discharging chamber by the several points of gaps 7 be arranged on interior bucket, and outer barrel is opened the discharging opening 8 be communicated with discharging chamber.In implementation process, be provided with interlayer 10 in outer barrel 1, in interlayer, be connected with recirculated cooling water, to reduce grinding temperature, take away heat energy, to convert kinetic energy to.When after bucket in material to be ground flows into from charging aperture, point gap that material through grinding passes interior bucket enters discharging chamber, then flows out from discharging through discharging opening, and result design of the present utility model is ingenious, save the grinding space of installing separately separator, be applicable to large discharge grinding process flow.
Specifically, described interior bucket 3 comprises the staving 33 that is made up of several stacked ring plate 32 and is arranged at this staving one end and is positioned at the connecting ring 34 of the described side of bucket, the inner ring of this several ring plate forms described grinding chamber, and the gap between two adjacent ring plates is described point of gap; Described connecting ring side is connected with outer barrel inner wall sealing, leaves described point gap between opposite side and eseparation ring; Be positioned at the described opposite side of bucket be provided with sealing outer barrel and the gland 9 compressing connecting ring and ring plate at the described staving other end, this gland and adjacent ring plate are tightly connected, and gland have been opened described charging aperture, also can open the opening adding abrasive media.After material grinds in grinding chamber, under the effect of feed pressure and centrifugal force, flow into a discharging chamber from point gap.
Further, on another side described in connecting ring 34, described in each ring plate a side on be all circumferentially evenly equipped with at least three grooves 35, the another side of each ring plate circumferentially correspondence is provided with at least three boss 36, each boss snaps in corresponding groove, the groove depth of each groove is less than the length of boss, thus makes to leave gap between adjacent two ring plates; A side described in connecting ring is circumferentially provided with several shank 37, outer barrel inwall correspondence has opened several hole 11, and shank described in each inserts in corresponding hole, can ensure that separator is stablized and gap uniformity like this, abrasive media is avoided to flow out from gap location, contaminated material.When mounted, first by corresponding for connecting rod patchhole, then the boss of the ring plate of slices is snapped in groove, finally compress with gland.This structure need not without the need to using extra connection fastener, and the gap between ring plate is by the length adjustment of boss, can reach the object of collecting and specifying fineness product.In implementation process, no matter boss adopts three, four or five etc., all should keep being distributed in ring plate, the pressure bearing gland so is when mounted comparatively even, and then ensure the uniformity in gap, to improve the uniformity of product granularity, abrasive media is avoided to flow out from gap location, contaminated material.
Alternatively, only boss need be set in ring plate, without the need to opening groove, the length of boss is the width of point gap, so also realizes separation object of the present utility model, when adopting in this way, preferably each ring plate is fixedly connected with, to keep the stability of interior bucket.
In the utility model, be provided with sealing ring 12, sealing ring offer several circumference and divide other through hole 13 described in described outer barrel 1 inwall and connecting ring between side, shank described in each inserts in described hole through corresponding through hole, the sealing property of bucket in improving; Described gland has been opened an annular groove 91, when gland compresses described ring plate, the ring plate adjacent with this gland embeds described annular groove, bottom this annular groove and between ring plate side, be provided with sealing gasket 92, the sealing property of bucket in improving further.
In implementation process, described rotor 5 comprises and is arranged on disk body 51 on described main shaft and along the axially extended sidewall 52 of disk body perisporium, also can installs armature accelerator, and described wall outer surface is circumferentially provided with a grinding block 53, and material is fully ground; Described disk body and sidewall are all opened several material path 54, has improved discharging efficiency; Described outer barrel axial length and its diameter ratio are about 13:9, short/thick type grinding cavity of this ratio and turbine rotor accelerator DSE-Accelerator design element, allow body reach best linear velocity and the input of high-energy-density energy; Meanwhile, the abrasive media scope of application of this sand mill is for reaching 0.05 ~ 1.0mm.
As can be known from the above technical solutions, the utility model adopts bucket separation of material in brand new ideas structure, and turbine rotor accelerator is directly installed in separator, not only saves space, and improves discharging speed.Meanwhile, traditional sand mill and the outer barrel axial length of this sand mill are with the ratio of its diameter dimension because cylindrical shell is elongated, and its volume is comparatively large, so abrasive media loading is more, easily cause material heating in process of lapping, and the abrasive media of lost motion are also many; Tradition sand mill is only just installing discharging separator mesh near barrel discharge hole place, and make the area ratio rate of screen separators area and cylinder inboard wall too small, overcurrent efficiency is low; And this sand mill provides a kind of brand-new discharge method, can realize full-scale discharging, substantially increase discharging efficiency, reduce temperature of charge faster, be kinetic energy by thermal power transfer.
Above-mentioned embodiment is only for illustration of the utility model, and be not to restriction of the present utility model, the those of ordinary skill of relevant technical field, when not departing from the utility model spirit and scope, can also make various change and modification, therefore all equivalent technical schemes also should belong to category of the present utility model.

Claims (9)

1. full-scale Dynamic Separation nanometer sand mill, comprise an outer barrel and the horizontal spindle by motor-driven rotation, it is characterized in that: in described outer barrel, be provided with the interior bucket with grinding chamber, discharging chamber is formed between outer barrel inwall and interior bucket outer wall, described main shaft penetrates interior bucket side and is connected with the rotor be arranged in grinding chamber, interior bucket opposite side is provided with the charging aperture being communicated with grinding chamber, this grinding chamber is communicated with discharging chamber by the several points of gaps be arranged on interior bucket, and outer barrel is opened the discharging opening be communicated with discharging chamber.
2. sand mill according to claim 1, it is characterized in that: described interior bucket comprises the staving that is made up of several stacked ring plate and is arranged at this staving one end and is positioned at the connecting ring of the described side of bucket, the inner ring of this several ring plate forms described grinding chamber, and the gap between two adjacent ring plates is described point of gap; Described connecting ring side is connected with outer barrel inner wall sealing, leaves described point gap between opposite side and eseparation ring; Be positioned at the described opposite side of bucket be provided with sealing outer barrel and the gland compressing connecting ring and ring plate at the described staving other end, this gland and adjacent ring plate are tightly connected, and gland have been opened described charging aperture.
3. sand mill according to claim 2, it is characterized in that: on another side described in connecting ring, described in each ring plate a side on be all circumferentially evenly equipped with at least three grooves, the another side of each ring plate circumferentially correspondence is provided with at least three boss, each boss snaps in corresponding groove, and the groove depth of each groove is less than the length of boss.
4. the sand mill according to Claims 2 or 3, is characterized in that: a side described in connecting ring is circumferentially provided with several shank, and outer barrel inwall correspondence has opened several hole, and shank described in each inserts in corresponding hole.
5. sand mill according to claim 4, it is characterized in that: described in described outer barrel inwall and connecting ring, between side, be provided with sealing ring, sealing ring offers several circumference and divide other through hole, shank described in each inserts in described hole through corresponding through hole.
6. sand mill according to claim 2, is characterized in that: described gland has been opened an annular groove, and when gland compresses described ring plate, the ring plate adjacent with this gland embeds described annular groove, bottom this annular groove and between ring plate side, be provided with sealing gasket.
7. sand mill according to claim 2, is characterized in that: described rotor comprises and is arranged on disk body on described main shaft and along the axially extended sidewall of disk body perisporium, described wall outer surface is circumferentially provided with several grinding block.
8. sand mill according to claim 7, is characterized in that: on described disk body and sidewall, all opened several material path.
9. sand mill according to claim 1, is characterized in that: described outer barrel wall is provided with interlayer, is connected with recirculated cooling water in interlayer.
CN201420463487.2U 2014-08-15 2014-08-15 Full-scale Dynamic Separation nanometer sand mill Withdrawn - After Issue CN204134695U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420463487.2U CN204134695U (en) 2014-08-15 2014-08-15 Full-scale Dynamic Separation nanometer sand mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420463487.2U CN204134695U (en) 2014-08-15 2014-08-15 Full-scale Dynamic Separation nanometer sand mill

Publications (1)

Publication Number Publication Date
CN204134695U true CN204134695U (en) 2015-02-04

Family

ID=52411413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420463487.2U Withdrawn - After Issue CN204134695U (en) 2014-08-15 2014-08-15 Full-scale Dynamic Separation nanometer sand mill

Country Status (1)

Country Link
CN (1) CN204134695U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104226426A (en) * 2014-08-15 2014-12-24 广州派勒机械设备有限公司 Full-sized dynamic separation nano sand mill
CN105396650A (en) * 2015-09-22 2016-03-16 广州派勒机械设备有限公司 Screen-free type intelligent nanometer grinding system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104226426A (en) * 2014-08-15 2014-12-24 广州派勒机械设备有限公司 Full-sized dynamic separation nano sand mill
CN105396650A (en) * 2015-09-22 2016-03-16 广州派勒机械设备有限公司 Screen-free type intelligent nanometer grinding system

Similar Documents

Publication Publication Date Title
WO2017000757A1 (en) Advanced ball mill having dual separation system
CN103480463B (en) Centrifugation type separation mesh-free material and bead separation medium stirring mill
CN206082697U (en) Horizontal stirring mill suitable for mining production
CN102935397A (en) Dual-rotation conical-drum-type horizontal sand mill
KR101310130B1 (en) Grinding and dispersing apparatus for processing of minute particle of materials
CN102284328B (en) Cyclic type high-speed multi-impeller superfine powder grinder
CN105396650A (en) Screen-free type intelligent nanometer grinding system
CN203525793U (en) Multi-section type paint particle separation sand mill
CN204816705U (en) Super sand mill with double dissociation system
CN205340935U (en) A sand mill for paint produce
CN104226426A (en) Full-sized dynamic separation nano sand mill
CN204134695U (en) Full-scale Dynamic Separation nanometer sand mill
CN202570277U (en) Environmental-friendly ball mill for producing aluminum paste
CN106140407B (en) The vertical closing of one kind is without mechanical sealing medium Ball-stirring mill
CN202555346U (en) Centrifugal bead mill
CN203750625U (en) Novel nano bead mill
CN204996494U (en) No screen cloth formula intelligence nanometer system of grinding
CN105214790B (en) Intelligent nano dynamic centrifugal rotating separation device
CN203874845U (en) Vertical type sand mill
CN204134696U (en) The super flow nanometer sand mill of high-performance
CN203508117U (en) Grinding disk for wet ultrafine grinding machine and wet ultrafine grinding machine
CN203750624U (en) Fine powder ball mill
CN201783351U (en) Improved centrifugal type nano bead mill
CN204953022U (en) Rotatory separator of intelligence nanometer developments centrifugation
CN205797366U (en) A kind of quick sand mill for coating material production

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: 511495 Guangzhou, Panyu District, Zhong Cun street, the source of the road on the 1st

Patentee after: PUHLER (GUANGZHOU) MACHINERY AND EQUIPMENT CO., LTD.

Address before: Four 510000 Guangdong village Shek Pik cliff street Panyu District city of Guangzhou province Xie Shi Road No. 88

Patentee before: Puhler Guangzhou Machinery and Equipment Co., Ltd.

AV01 Patent right actively abandoned

Granted publication date: 20150204

Effective date of abandoning: 20170620

AV01 Patent right actively abandoned