CN204128506U - 光栅组微位移传感器 - Google Patents

光栅组微位移传感器 Download PDF

Info

Publication number
CN204128506U
CN204128506U CN201420675174.3U CN201420675174U CN204128506U CN 204128506 U CN204128506 U CN 204128506U CN 201420675174 U CN201420675174 U CN 201420675174U CN 204128506 U CN204128506 U CN 204128506U
Authority
CN
China
Prior art keywords
grating
layer
electric capacity
flat board
photoelectric detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201420675174.3U
Other languages
English (en)
Inventor
王晨
白剑
杨恺伦
汪凯巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201420675174.3U priority Critical patent/CN204128506U/zh
Application granted granted Critical
Publication of CN204128506U publication Critical patent/CN204128506U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

本实用新型公开了一种光栅组微位移传感器,它包括包括光源、分束器、第一光栅层、第二光栅层、增反层、第一红外光电探测器、第二红外光电探测器、第一固定底座、第二固定底座、回形悬臂梁、上层电容平板、下层电容平板、信号处理模块和电流驱动模块。本实用新型依据伍德异常现象,利用两层光栅位移时,反射光产生脉冲式变化的现象,通过在两光栅层制作多组光栅,每组光栅中上下两层光栅初始相对位置的不同设定,使得每组光栅产生脉冲式变化对应的上下两层光栅的微位移量不同,从而对位移信号细分,测量位移。本实用新型实现了传感系统的小型化,精度高,在航空、军事领域都有很广泛的应用前景。

Description

光栅组微位移传感器
技术领域
本实用新型涉及传感器技术领域,特别是涉及一种光栅组微位移传感器。 
背景技术
近年来随着集成电路制造工艺和微机械加工工艺的发展,以这两种制作工艺为基础的微机械传感器的到了快速的发展。微机械传感器以其体积小、重量轻、功耗小、成本低、易集成、过载能力强和可批量生产等特点,迅速占领了各种传感器领域,例如微机械加速度传感器等。目前,随着对微机械位移传感器性能要求的提高,特别是中高精度位移传感应用需求的不断扩展,与光学测量和微光学技术相结合的高精度微光机位移传感器的研究成为了一个重要发展方向。 
在现有的报道中位移传感器主要分为电感式位移传感器,电容式位移传感器,超声波式位移传感器,霍尔式位移传感器。虽然种类繁多,但是现在的位移传感器的位移精度低,而且动态范围较小,因此,对一些需要高精度位移测量方面起了限制的作用。 
发明内容
为了克服上述现有技术的不足,本实用新型提供了一种光栅组微位移传感器。 
本实用新型的目的是通过以下技术方案来实现的:一种光栅组微位移传感器,包括光源、分束器、第一光栅层、第二光栅层、增反层、第一红外光电探测器、第一聚焦透镜组、第二红外光电探测器、第二聚焦透镜组、第一固定底座、第二固定底座、回形悬臂梁、上层电容平板、下层电容平板、信号处理模块和电流驱动模块;所述上层电容平板上刻蚀第一光栅层;上层电容平板的一端通过两个回形悬臂梁与第一固定底座相连,另一端通过两个回形悬臂梁与第二固定底座相连;第一固定底座和第二固定底座均固定在增反层上;上层电容平板通过回形悬臂梁、第一固定底座和第二固定底座与增反层电连接;所述下层电容平板上刻蚀第二光栅层,下层电容平板固定在增反层上。 
所述光源置于上层电容平板的正上方,光源的下方设有分束器,第一红外光电探测器和第二红外光电探测器对称置于光源的两侧,第一聚焦透镜组置于第一红外光电探测器的正下方,第二聚焦透镜组置于第二红外光电探测器的正下方;第一红外光电探测器和第二红外光电探测器与信号处理模块相连;下层电容平板的两侧通过引线相连后接入电流驱动模块;增反层的两侧通过引线相连后接入电流驱动模块;电流驱动模块与信号处理模块相连。 
所述光源为带有准直扩束的红外1530nm光源;所述增反层由800nm的SiN3和600nm的SiO2以及Si基底组成。 
所述第一光栅层和第二光栅层均有34组光栅,厚度均为950-965nm;每组光栅的光栅数为7个,周期T为1400-1500nm,占空比为0.45-0.5;第一光栅层中每组光栅的横向间隔为1560nm;第二光栅层中每组光栅的横向间隔为1575nm;第一光栅层与第二光栅层的空气间隙为300-400nm,上下两层第一组光栅横向初始位置在垂直于光栅方向上的间隔为10%T。 
进一步地,所述每个光栅周期T为1441nm,占空比为0.47,第一光栅层和第二光栅层的厚度均为960nm。 
进一步地,所述的光源1为垂直腔表面发射激光器。 
本实用新型有益的效果是:本实用新型依据伍德异常现象,利用上下两层光栅发生微位移时,使得反射光在光栅的导通模式和泄露模式之间变换,反射光强会产生脉冲式的变化。通过在两光栅层制作多组光栅,每组光栅中上下两层光栅初始相对位置的不同设定,使得每组光栅反射光强产生脉冲式变化对应的上下两层光栅的微位移量不同,从而达到了精确测量微位移的目的。同时,将光源,探测器以及光栅集成在一起,可以大大缩小系统的体积。本实用新型结构紧凑、体积小、质量轻;探测信号信噪比高,能够精确反映微位移变化;具有调节能力,系统灵活;测量精度高,突破了现有的位移传感器的探测精度;引入电容平板,调整并保持脉冲的线宽最小,使得测量精度和稳定性更高;器件和基片易加工制作,成本比同类型的位移传感器低。 
附图说明
图1 为一种光栅组微位移传感器的总体结构示意图; 
图2为上层电容平板的结构示意图;
图3为下层电容平板的结构示意图;
图4为上层电容平板和下层电容平板组合的俯视图;
图5为上层电容平板和下层电容平板组合的立体图;
图6为单组光栅中反射光强随着上下两层光栅相对移动产生的脉冲式变化曲线图;
图7为图6的脉冲局部放大图;
图8为34组光栅反射光强随着上下两层光栅相对移动产生的脉冲式变化曲线图。
具体实施方式
下面结合附图对本实用新型进一步说明。 
当TE偏振的1530nm的红外光源垂直照射到亚波长光栅上时,会在光栅表面以倏逝波的形式传播。当两个光栅在垂直方向距离很近时,光会在两层光栅之间震荡,光通过倏逝场从一个光栅传到另外一个光栅,同时另外一个光栅的倏逝波也会通过倏逝场耦合原来的光栅。当两层光栅发生很小的横向、纵向相对位移时,会导致谐振场发生变化,使得反射光的强度急剧提高,通过探测反射光的光强变化,我们可以精确知道发生的横向、纵向相对位移。 
如图1至图5所示,本实用新型一种光栅组微位移传感器,包括光源1、分束器16、第一光栅层2、第二光栅层3、增反层4、第一红外光电探测器5、第一聚焦透镜组6、第二红外光电探测器7、第二聚焦透镜组8、第一固定底座9、第二固定底座15、回形悬臂梁10、上层电容平板11、下层电容平板12、信号处理模块13和电流驱动模块14;所述上层电容平板11上刻蚀第一光栅层2;上层电容平板11的一端通过两个回形悬臂梁10与第一固定底座9相连,另一端通过两个回形悬臂梁10与第二固定底座15相连;第一固定底座9和第二固定底座15均固定在增反层4上;上层电容平板11通过回形悬臂梁10、第一固定底座9和第二固定底座15与增反层4电连接;所述下层电容平板12上刻蚀第二光栅层3,下层电容平板12固定在增反层4上,与增反层4绝缘。 
所述光源1置于上层电容平板11的正上方,光源1的下方设有分束器16,第一红外光电探测器5和第二红外光电探测器7对称置于光源1的两侧,第一聚焦透镜组6置于第一红外光电探测器5的正下方,第二聚焦透镜组8置于第二红外光电探测器7的正下方;第一红外光电探测器5和第二红外光电探测器7与信号处理模块13相连;下层电容平板12的两侧通过引线相连后接入电流驱动模块14;增反层4的两侧通过引线相连后接入电流驱动模块14;电流驱动模块14与信号处理模块13相连。 
所述光源1为带有准直扩束的红外1530nm光源;所述增反层4由800nm的SiN3和600nm的SiO2以及Si基底组成,起到增强反射光信号的作用。 
所述第一光栅层2和第二光栅层3均有34组光栅,厚度均为950-965nm,使用聚焦离子束制作而成,材料是Si;每组光栅的光栅数为7个,周期T为1400-1500nm,占空比为0.45-0.5;第一光栅层2中每组光栅的横向间隔为1560nm,第二光栅层3中每组光栅的横向间隔为1575nm,根据每组光栅中上下两层光栅初始相对位置的不同设定,使得每组光栅反射光强产生脉冲式变化对应的上下两层光栅的微位移量不同,从而通过一系列的脉冲信号对位移进行了细分,从而达到了测量微位移的目的。 
第一光栅层2与第二光栅层3的空气间隙为300-400nm,形成谐振腔,激发脉冲式光电信号;横向初始位置在垂直于光栅方向上的间隔为10%T。 
所述的光源1优选为垂直腔表面发射激光器,垂直腔表面发射激光器是一种低成本、高性能的特定波长光源,具有测试简单、易耦合以及易形成阵列等独特优势。 
所述的上层电容平板11和下层电容平板12用于控制第一光栅层2相对于第二光栅层3的空气间隔,通过静电力使其保持在能够产生线宽最窄的脉冲式光强的间隔位置。 
所述的第一层光栅2的回形悬臂梁10起到了支撑第一层光栅2的作用,所述的两层光栅之间有相适应的容纳腔,在有外界纵向位移时,容纳腔为第一光栅层2的位移提供了变化的空间。同时回形梁的设计保证了系统拥有较大的弹性系数,从而提高了探测位移的灵敏度,而且也使得光栅移动过程中不会出现垂轴串扰的现象。 
本实用新型的工作过程如下:从光源1发出的光通过分束器16产生两路激光,一路激光照射到上层电容平板11没有光栅的区域后反射,反射光束通过第一聚焦透镜组6照射到第一红外光电探测器5上;另一路激光依次通过上层电容平板11的第一光栅层2、下层电容平板12的第二光栅层3和增反层4后,经过增反层4反射的光束通过第二聚焦透镜组8照射到第二红外光电探测器7上;第一红外光电探测器5和第二红外光电探测器7上接收到的光强信号传送到信号处理模块13进行对比分析,通过差分技术滤除噪声得到脉冲式光强信号;电流驱动模块14输出电流到上层电容平板11和下层电容平板12,通过调整电流的大小来调整两层电容平板的纵向间隔,从而得到线宽不同的脉冲式光强信号,当得到的脉冲式光强信号的线宽最短时,锁定此时的电流,此时上层电容平板11和下层电容平板12发生横向位移产生一系列的脉冲式光强信号,计算此时脉冲式光强信号的脉冲个数,得到第一光栅层2相对于第二光栅层3的横向移动距离;若由于外界震动的原因造成上层电容平板11和下层电容平板12之间的间隔变化,使得脉冲信号消失,电流驱动模块14再次调整输出电流,直到重新出现脉冲式光强信号。 

Claims (3)

1.一种光栅组微位移传感器,其特征在于:包括光源(1)、分束器(16)、第一光栅层(2)、第二光栅层(3)、增反层(4)、第一红外光电探测器(5)、第一聚焦透镜组(6)、第二红外光电探测器(7)、第二聚焦透镜组(8)、第一固定底座(9)、第二固定底座(15)、回形悬臂梁(10)、上层电容平板(11)、下层电容平板(12)、信号处理模块(13)和电流驱动模块(14);所述上层电容平板(11)上刻蚀第一光栅层(2);上层电容平板(11)的一端通过两个回形悬臂梁(10)与第一固定底座(9)相连,另一端通过两个回形悬臂梁(10)与第二固定底座(15)相连;第一固定底座(9)和第二固定底座(15)均固定在增反层(4)上;上层电容平板(11)通过回形悬臂梁(10)、第一固定底座(9)和第二固定底座(15)与增反层(4)电连接;所述下层电容平板(12)上刻蚀第二光栅层(3),下层电容平板(12)固定在增反层(4)上;
所述光源(1)置于上层电容平板(11)的正上方,光源(1)的下方设有分束器(16),第一红外光电探测器(5)和第二红外光电探测器(7)对称置于光源(1)的两侧,第一聚焦透镜组(6)置于第一红外光电探测器(5)的正下方,第二聚焦透镜组(8)置于第二红外光电探测器(7)的正下方;第一红外光电探测器(5)和第二红外光电探测器(7)与信号处理模块(13)相连;下层电容平板(12)的两侧通过引线相连后接入电流驱动模块(14);增反层(4)的两侧通过引线相连后接入电流驱动模块(14);电流驱动模块(14)与信号处理模块(13)相连;
所述光源(1)为带有准直扩束的红外1530nm光源;所述增反层(4)由800nm的SiN3和600nm的SiO2以及Si基底从上至下依次排布组成;
所述第一光栅层(2)和第二光栅层(3)均有34组光栅,厚度均为950-965nm;每组光栅的光栅数为7个,周期T为1400-1500nm,占空比为0.45-0.5;第一光栅层(2)中每组光栅的横向间隔为1560nm;第二光栅层(3)中每组光栅的横向间隔为1575nm;第一光栅层(2)与第二光栅层(3)的空气间隙为300-400nm,横向初始位置在垂直于光栅方向上的间隔为10%T。
2.根据权利要求1所述一种光栅组微位移传感器,其特征在于:所述的光源(1)为垂直腔表面发射激光器。
3.根据权利要求1所述一种光栅组微位移传感器,其特征在于:所述每个光栅周期T为1441nm,占空比为0.47,第一光栅层(2)和第二光栅层(3)的厚度均为960nm。
CN201420675174.3U 2014-11-13 2014-11-13 光栅组微位移传感器 Active CN204128506U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420675174.3U CN204128506U (zh) 2014-11-13 2014-11-13 光栅组微位移传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420675174.3U CN204128506U (zh) 2014-11-13 2014-11-13 光栅组微位移传感器

Publications (1)

Publication Number Publication Date
CN204128506U true CN204128506U (zh) 2015-01-28

Family

ID=52384855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420675174.3U Active CN204128506U (zh) 2014-11-13 2014-11-13 光栅组微位移传感器

Country Status (1)

Country Link
CN (1) CN204128506U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104406525A (zh) * 2014-11-13 2015-03-11 浙江大学 光栅组微位移传感器及其测量位移的方法
CN108801438A (zh) * 2018-06-15 2018-11-13 山东理工大学 一种基于光学干涉的振动位移测量装置
CN109211122A (zh) * 2018-10-30 2019-01-15 清华大学 基于光神经网络的超精密位移测量系统及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104406525A (zh) * 2014-11-13 2015-03-11 浙江大学 光栅组微位移传感器及其测量位移的方法
CN104406525B (zh) * 2014-11-13 2017-02-15 浙江大学 光栅组微位移传感器及其测量位移的方法
CN108801438A (zh) * 2018-06-15 2018-11-13 山东理工大学 一种基于光学干涉的振动位移测量装置
CN109211122A (zh) * 2018-10-30 2019-01-15 清华大学 基于光神经网络的超精密位移测量系统及方法
CN109211122B (zh) * 2018-10-30 2020-05-15 清华大学 基于光神经网络的超精密位移测量系统及方法

Similar Documents

Publication Publication Date Title
CN101403650B (zh) 差动共焦组合超长焦距测量方法与装置
CN101960252B (zh) 采用导模谐振的角传感器、系统
CN101788570B (zh) 三明治式光学微机械加速度传感器
CN101408478B (zh) 共焦组合超长焦距测量方法与装置
CN103175991A (zh) 集成光栅压电调制闭环高精度微加速度传感器
CN204128506U (zh) 光栅组微位移传感器
CN102589446A (zh) 一种高精度微位移测量装置及方法
CN104406525B (zh) 光栅组微位移传感器及其测量位移的方法
CN204479607U (zh) 光栅组微机械加速度传感器
CN101788267B (zh) 基于两组亚波长光栅的光学微位移传感器
JPH1130503A (ja) 媒体までの距離および/または媒体の物理的特性を測定するためのセンサ並びに方法
CN104406526B (zh) 脉冲微位移传感器及其测量位移的方法
CN101871950B (zh) 基于集成输入输出端的光学谐振腔微加速度计
CN107449415A (zh) 纳米光栅微机械陀螺
CN103075966A (zh) 位移测量系统
CN204269076U (zh) 脉冲微位移传感器
CN204269077U (zh) 组合光栅微位移传感器
CN204479608U (zh) 组合光栅微机械加速度传感器
CN104569489A (zh) 光栅组微机械加速度传感器及其测量加速度的方法
CN204479609U (zh) 脉冲微机械加速度传感器
CN207197535U (zh) 纳米光栅微机械陀螺
CN104406524A (zh) 组合光栅微位移传感器及其测量位移的方法
CN100501319C (zh) 采用psd的光电倾角测量装置
CN104614550A (zh) 脉冲微机械加速度传感器及其测量加速度的方法
CN203286986U (zh) 一种基于复合二维光子晶体的微位移传感装置

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant