CN203803353U - Simulation testing device for co-processing multiple pollutants by adopting active coke process - Google Patents
Simulation testing device for co-processing multiple pollutants by adopting active coke process Download PDFInfo
- Publication number
- CN203803353U CN203803353U CN201420190943.0U CN201420190943U CN203803353U CN 203803353 U CN203803353 U CN 203803353U CN 201420190943 U CN201420190943 U CN 201420190943U CN 203803353 U CN203803353 U CN 203803353U
- Authority
- CN
- China
- Prior art keywords
- reactor
- preheater
- flue gas
- activated coke
- coke
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000571 coke Substances 0.000 title claims abstract description 32
- 239000003344 environmental pollutant Substances 0.000 title claims abstract description 17
- 238000012360 testing method Methods 0.000 title claims abstract description 9
- 238000004088 simulation Methods 0.000 title claims description 8
- 231100000719 pollutant Toxicity 0.000 title claims description 6
- 238000000034 method Methods 0.000 title abstract description 9
- 238000012545 processing Methods 0.000 title description 2
- 239000003546 flue gas Substances 0.000 claims abstract description 28
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000007789 gas Substances 0.000 claims abstract description 17
- 229910052753 mercury Inorganic materials 0.000 claims abstract description 13
- 238000010521 absorption reaction Methods 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 3
- 239000012159 carrier gas Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 238000002309 gasification Methods 0.000 claims 1
- 230000008676 import Effects 0.000 claims 1
- 230000002195 synergetic effect Effects 0.000 abstract description 7
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 abstract description 6
- 238000001179 sorption measurement Methods 0.000 abstract description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 abstract description 4
- 238000006555 catalytic reaction Methods 0.000 abstract description 3
- 229910021529 ammonia Inorganic materials 0.000 abstract description 2
- 238000003795 desorption Methods 0.000 abstract description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract 2
- 125000000524 functional group Chemical group 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 238000006477 desulfuration reaction Methods 0.000 description 3
- 230000023556 desulfurization Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- GFNGCDBZVSLSFT-UHFFFAOYSA-N titanium vanadium Chemical compound [Ti].[V] GFNGCDBZVSLSFT-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Treating Waste Gases (AREA)
Abstract
一种活性焦法多污染物协同处理的模拟试验装置,它包括混合器(1)、水浴恒温器(2)、预热器A(3)、预热器B(4)、反应器A(5)、反应器B(6)、反应器C(7)、水泵(8)、质量流量计(9)、吸收瓶(10)、烟气组分分析仪A(11)和烟气组分分析仪B(12)。工作时各反应器内装入活性焦,控制各气源流量,模拟工业炉窑的烟气组分,控制各预热器和各反应器的温度,气源中SO2、NO、Hg等有害气体流经活性焦时,SO2在活性焦微孔的吸附催化作用下生成硫酸而被脱除,NO在活性焦官能团的选择性催化作用下被喷入的氨还原而被脱除,烟气中的汞被活性焦吸附除去,实现SO2、NO和Hg多污染物得到协同处理。活性焦经过高温和脱附处理,可得以再生和循环使用。
A simulated test device for multi-pollutant synergistic treatment by activated coke method, which includes a mixer (1), a water bath thermostat (2), a preheater A (3), a preheater B (4), a reactor A ( 5), reactor B (6), reactor C (7), water pump (8), mass flow meter (9), absorption bottle (10), flue gas component analyzer A (11) and flue gas component Analyzer B (12). During work, each reactor is loaded with active coke, the flow rate of each gas source is controlled, the flue gas composition of an industrial furnace is simulated, the temperature of each preheater and each reactor is controlled, and harmful gases such as SO 2 , NO, and Hg in the gas source When flowing through the active coke, SO2 is removed by generating sulfuric acid under the adsorption and catalysis of the micropores of the active coke, and NO is removed by being reduced by the injected ammonia under the selective catalysis of the functional groups of the active coke. The mercury is adsorbed and removed by activated coke, and the multi-pollutants of SO 2 , NO and Hg are co-treated. Activated coke can be regenerated and recycled after high temperature and desorption treatment.
Description
技术领域 technical field
本实用新型属于环境工程大气污染控制技术领域,是一种活性焦法多污染物协同处理的模拟试验装置。 The utility model belongs to the technical field of air pollution control of environmental engineering, and is a simulation test device for coordinated treatment of multiple pollutants by active coke method. the
背景技术 Background technique
活性焦是以煤炭为原料的一种吸附材料,生产工艺相对简单,成本远低于活性炭,且综合强度(耐压、耐磨损、耐冲击)比活性炭高。活性焦的比表面积为150-250 m2/g,硫容为60-120 mg/g,均小于活性炭。但是因其活化时间短、具有丰富的含氮/含氧官能团,因而具有更好的脱硫、脱硝性能。加热再生过程中对活性焦进行再次活化,其脱硫、脱硝性能还会有所增加。活性焦多污染物协同控制工艺基本不耗水,仅消耗以煤为原料的活性焦,特别适合我国富煤缺水的北方和西部地区。脱除温度区间在100-200℃,适用于没有300-400℃温度窗口的、不适合使用钒钛基催化剂脱硝的、成分复杂的工业炉窑烟气。在我国大气灰霾污染日趋严重的背景下,加强工业炉窑烟气多污染物协同减排迫在眉睫。 Activated coke is a kind of adsorption material with coal as raw material. The production process is relatively simple, the cost is much lower than that of activated carbon, and its comprehensive strength (pressure resistance, wear resistance, impact resistance) is higher than that of activated carbon. The specific surface area of activated coke is 150-250 m 2 /g, and the sulfur capacity is 60-120 mg/g, both of which are smaller than activated carbon. However, because of its short activation time and abundant nitrogen/oxygen functional groups, it has better desulfurization and denitrification performance. During the heating and regeneration process, the activated coke is reactivated, and its desulfurization and denitrification performance will increase. The activated coke multi-pollutant synergistic control process basically does not consume water, and only consumes activated coke with coal as raw material, which is especially suitable for the northern and western regions of my country where coal is rich and water is scarce. The removal temperature range is 100-200°C, which is suitable for industrial furnace flue gas with complex components that do not have a temperature window of 300-400°C and are not suitable for denitrification using vanadium-titanium-based catalysts. In the context of the increasingly serious air haze pollution in my country, it is imminent to strengthen the coordinated emission reduction of multi-pollutants in industrial furnace flue gas.
本实用新型模拟工业炉窑烟气多组分污染物,通过活性焦的吸附与催化作用,脱除烟气中的SO2、NO、Hg有害气体,实现多污染物协同处理。另外,吸附饱和的活性焦可以进行在线再生,使活性焦循环使用。本实用新型为活性焦多污染物协同控制技术的开发和推广应用奠定了前期工作基础,将为降低工业炉窑烟气SO2/SO3、NOx和细粒子PM2.5等灰霾关键前体污染物的排放量,促进我国大气灰霾污染问题的解决提供技术支撑。 The utility model simulates multi-component pollutants in industrial furnace flue gas, and removes SO 2 , NO, and Hg harmful gases in the flue gas through the adsorption and catalysis of active coke, and realizes multi-pollutant synergistic treatment. In addition, the activated coke saturated with adsorption can be regenerated online so that the activated coke can be recycled. The utility model lays the foundation for the development and promotion of active coke multi-pollutant synergistic control technology, and will reduce the key precursor pollution of industrial furnace flue gas SO 2 /SO 3 , NOx and fine particle PM 2.5 To provide technical support for solving the problem of atmospheric haze pollution in China.
发明内容 Contents of the invention
本实用新型的目的在于提供一种活性焦法多污染物协同处理的模拟试验装置,用于工业炉窑排放烟气二氧化硫、氮氧化物以及汞污染一体化脱除的模拟实验。 The purpose of the utility model is to provide a simulation test device for multi-pollutant synergistic treatment by the activated coke method, which is used for the simulation experiment of the integrated removal of sulfur dioxide, nitrogen oxide and mercury pollution from industrial furnaces and kilns. the
本实用新型的目的是这样实现的: The purpose of this utility model is achieved in that:
一种活性焦法多污染物协同处理的模拟试验装置,它包括混合器(1)、水浴恒温器(2)、预热器A(3)、预热器B(4)、反应器A(5)、反应器B(6)、反应器C(7)、水泵(8)、质量流量计(9)、吸收瓶(10)、烟气组分分析仪A(11)和烟气组分分析仪B(12)。考虑到防腐需要,混合器(1)、预热器A(3)和预热器B(4)材质采用00Cr17Ni14Mo2,反应器A(5)、反应器B(6)和反应器C(7)材质采用25Cr20Ni耐热不锈钢。 A simulated test device for multi-pollutant synergistic treatment by activated coke method, which includes a mixer (1), a water bath thermostat (2), a preheater A (3), a preheater B (4), a reactor A ( 5), reactor B (6), reactor C (7), water pump (8), mass flow meter (9), absorption bottle (10), flue gas component analyzer A (11) and flue gas component Analyzer B (12). Considering the need of anti-corrosion, the material of mixer (1), preheater A (3) and preheater B (4) is 00Cr17Ni14Mo2, reactor A (5), reactor B (6) and reactor C (7) The material is 25Cr20Ni heat-resistant stainless steel.
6个质量流量计(9)分别与SO2、CO2、O2、N2、NO、NH3气源连接,SO2、CO2、O2、N2、NO、Hg气源并联布置进入混合器(1),NH3气源进入预热器B(4)、反应器B(6)和反应器C(7)。预热器A(3)和预热器B(4)并联布置于混合器(1)的下游,反应器A(5)和反应器B(6)串联布置于预热器A(3)的下游,反应器B(6)与反应器C(7)并列布置,水泵出口分别与预热器A(3)和预热器B(4)进口连接,三个吸收瓶串联连接,并与反应器B(6)和反应器C(7)的出口连接。烟气组分分析仪A(11)的检测探头连接在反应器A(5)、反应器C(7)进口,烟气组分分析仪B(12)的检测探头连接在反应器B(6)、反应器C(7)出口。SO2、CO2、O2、N2、NO、Hg气源和水泵(8)可以实现模拟烟气组分的需要,NH3作为脱除NO的还原剂。水浴恒温器(2)可以使汞源(液态Hg)通过水浴恒温器(2)稳定气化,并由N2载气调整气态Hg的浓度。两台烟气组分分析仪能显示与记录反应器进出口烟气组分的实时数值,从而得到脱硫、脱硝、脱汞的效率。 6 mass flow meters (9) are respectively connected to SO 2 , CO 2 , O 2 , N 2 , NO, NH 3 gas sources, and SO 2 , CO 2 , O 2 , N 2 , NO, Hg gas sources are arranged in parallel to enter Mixer (1), NH gas source enters preheater B (4), reactor B (6) and reactor C (7). Preheater A (3) and preheater B (4) are arranged in parallel downstream of mixer (1), and reactor A (5) and reactor B (6) are arranged in series at the end of preheater A (3). Downstream, reactor B (6) and reactor C (7) are arranged side by side, the outlet of the water pump is connected to the inlet of preheater A (3) and preheater B (4) respectively, three absorption bottles are connected in series, and connected to the reaction The outlet of device B (6) and reactor C (7) is connected. The detection probe of flue gas composition analyzer A (11) is connected to the inlet of reactor A (5) and reactor C (7), and the detection probe of flue gas composition analyzer B (12) is connected to reactor B (6 ), reactor C (7) outlet. SO 2 , CO 2 , O 2 , N 2 , NO, Hg gas source and water pump (8) can meet the needs of simulating flue gas components, and NH 3 is used as a reducing agent for removing NO. The water bath thermostat (2) can stably gasify the mercury source (liquid Hg) through the water bath thermostat (2), and adjust the concentration of the gaseous Hg by the N2 carrier gas. Two flue gas component analyzers can display and record the real-time values of the flue gas components at the inlet and outlet of the reactor, so as to obtain the efficiency of desulfurization, denitrification and mercury removal.
装置工作时,反应器A(5)、反应器B(6)、反应器C(7)内装入活性焦,通过控制各气源流量,模拟工业炉窑排放的烟气组分及温度,模拟烟气在混合器(1)经过充分混合后,进入预热器(3)预热,然后通入反应器A(5)时SO2被脱除;流经反应器B(6)时,喷入氨使得NO被NH3还原为N2和H2O;烟气中的汞被活性焦吸附除去,实现SO2、NO和Hg多污染物得到协同处理。吸附饱和的活性焦置于反应器C(7),经过高温脱附处理,得以再生循环使用。 When the device is working, reactor A (5), reactor B (6), and reactor C (7) are filled with activated coke, and by controlling the flow rate of each gas source, the composition and temperature of the flue gas emitted by the industrial furnace are simulated, and the simulated After the flue gas is fully mixed in the mixer (1), it enters the preheater (3) for preheating, and then when it passes into the reactor A (5), SO 2 is removed; when it flows through the reactor B (6), the spray Ammonia is added so that NO is reduced to N 2 and H 2 O by NH 3 ; mercury in flue gas is adsorbed and removed by activated coke, so that SO 2 , NO and Hg multi-pollutants can be co-treated. The activated coke saturated with adsorption is placed in reactor C (7), and after high-temperature desorption treatment, it can be regenerated and recycled.
附图说明 Description of drawings
图1是一种活性焦法多污染物协同处理的模拟试验装置的结构示意图。 Fig. 1 is a schematic structural diagram of a simulation test device for multi-pollutant synergistic treatment by activated coke method. the
附图标注说明: Notes on attached drawings:
1—混合器; 1 - mixer;
2—水浴恒温器; 2—water bath thermostat;
3—预热器A; 3—preheater A;
4—预热器B; 4—preheater B;
5—反应器A; 5—reactor A;
6—反应器B; 6—reactor B;
7—反应器C; 7—reactor C;
8—水泵; 8—water pump;
9—质量流量计; 9—mass flow meter;
10—吸收瓶; 10—absorption bottle;
11—烟气组分分析仪A; 11—flue gas component analyzer A;
12—烟气组分分析仪B。 12—Flue gas component analyzer B.
具体实施方式 Detailed ways
下面以说明书附图为本实施例,对本实用新型进一步说明: Below is this embodiment with accompanying drawing of description, the utility model is further described:
1、检查所述的混合器(1)、水浴恒温器(2)、预热器A(3)、预热器B(4)、反应器A(5)、反应器B(6)、反应器C(7)、水泵(8)、智能质量流量计(9)、吸收瓶(10)、烟气组分分析仪A(11)和烟气组分分析仪B(12)的相对位置安装正确,吸收瓶(10)装入配制好的吸收液至二分之一高度; 1. Check the mixer (1), water bath thermostat (2), preheater A (3), preheater B (4), reactor A (5), reactor B (6), reaction The relative positions of device C (7), water pump (8), intelligent mass flow meter (9), absorption bottle (10), flue gas composition analyzer A (11) and flue gas composition analyzer B (12) are installed Correct, the absorption bottle (10) is filled with the prepared absorption solution to 1/2 height;
2、打开所述的反应器A(5)、反应器B(6)和反应器C(7)的加料孔,装入适量的活性焦; 2. Open the feeding holes of the reactor A (5), reactor B (6) and reactor C (7), and load an appropriate amount of active coke;
3、接通各仪表电源; 3. Turn on the power of each instrument;
4、对所述的质量流量计(9)进行设定,使各气体流量符合实验条件要求,开启各质量流量计(9)进出口阀门; 4. Set the mass flowmeters (9) so that each gas flow meets the requirements of the experimental conditions, and open the inlet and outlet valves of each mass flowmeter (9);
5、对所述的水浴恒温器(2)腔体内外分别加入汞渗透管和去离子水,设定水浴恒温器(2)的温度符合实验要求; 5. Add mercury permeation tube and deionized water respectively inside and outside the cavity of the water bath thermostat (2), and set the temperature of the water bath thermostat (2) to meet the experimental requirements;
6、接通所述的水泵(8)的供水水源; 6. Connect the water supply source of the water pump (8);
7、开启本实用新型的各阀门; 7. Open each valve of the utility model;
8、按照实验的条件要求,设定所述的预热器A(3)、预热器B(4)、反应器A(5)、反应器B(6)的温度升速率和温度目标值; 8. Set the temperature rise rate and temperature target value of the preheater A (3), preheater B (4), reactor A (5), and reactor B (6) according to the experimental conditions ;
9、打开所述的预热器A(3)、预热器B(4)、反应器A(5)、反应器B(6)的加热电源; 9. Turn on the heating power of the preheater A (3), preheater B (4), reactor A (5), and reactor B (6);
10、 打开所述的6个质量流量计(9),SO2、CO2、O2、N2、NO气流按预定流量进入混合器(1),NH3气源按预定流量分别进入预热器B(4)和反应器B(6); 10. Turn on the 6 mass flow meters (9), the SO 2 , CO 2 , O 2 , N 2 , NO gas flow enters the mixer (1) according to the predetermined flow rate, and the NH 3 gas source enters the preheating according to the predetermined flow rate Device B (4) and reactor B (6);
11、 启动所述的水泵(8),预定水量进入预热器A(3)并得到汽化; 11. Start the water pump (8), and the predetermined amount of water enters the preheater A (3) and is vaporized;
12、 投入所述的水浴恒温器(2)加热电源,使注入的液态Hg成为气态状进入预热器A(3); 12. Put into the water bath thermostat (2) to heat the power supply, so that the injected liquid Hg becomes a gaseous state and enters the preheater A (3);
13、 待所述的预热器A(3)、反应器A(5)、反应器B(6)的温度升至设定目标值,多污染物协同处理的实验正式开始; 13. After the temperature of the preheater A (3), reactor A (5), and reactor B (6) rises to the set target value, the multi-pollutant co-processing experiment officially begins;
14、 采集所述的烟气组分分析仪A(11)和烟气组分分析仪B(12)数据; 14. Collect the data of the flue gas component analyzer A (11) and the flue gas component analyzer B (12);
15、 待正式实验至预定时间后,实验结束; 15. After the official experiment reaches the scheduled time, the experiment ends;
16、 活性焦再生: 16. Active coke regeneration:
(1) 除了N2气源开启外,关闭其余气源; (1) Except for the N2 gas source, turn off the other gas sources;
(2) 对所述的质量流量计(9)进行设定,令N2流量至预定值; (2) set the mass flow meter (9) to make the N flow to a predetermined value;
(3) 打开所述的反应器C(7),装入待再生的吸附饱和的活性焦; (3) Open the described reactor C (7), and load the activated coke that is saturated with adsorption to be regenerated;
(4) 设定所述的预热器B(4)、反应器C(7)的温度升速率和目标值; (4) Set the temperature rise rate and target value of the preheater B (4) and reactor C (7);
(3) 打开所述的预热器B(4)、反应器C(7)的加热电源,活性焦再生开始; (3) Turn on the heating power of the preheater B (4) and reactor C (7), and the regeneration of active coke begins;
(4) 活性焦再生至预定时间,采集所述的烟气组分分析仪A(11)和烟气组分分析仪B(12)数据,再生结束。 (4) The active coke is regenerated until the predetermined time, and the data of the flue gas component analyzer A (11) and the flue gas component analyzer B (12) are collected, and the regeneration ends.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420190943.0U CN203803353U (en) | 2014-04-21 | 2014-04-21 | Simulation testing device for co-processing multiple pollutants by adopting active coke process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420190943.0U CN203803353U (en) | 2014-04-21 | 2014-04-21 | Simulation testing device for co-processing multiple pollutants by adopting active coke process |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203803353U true CN203803353U (en) | 2014-09-03 |
Family
ID=51442165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201420190943.0U Expired - Lifetime CN203803353U (en) | 2014-04-21 | 2014-04-21 | Simulation testing device for co-processing multiple pollutants by adopting active coke process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203803353U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104974931A (en) * | 2015-05-27 | 2015-10-14 | 上海理工大学 | Testing apparatus for CO2 in microalgae organism immobilization combustion flue gas |
CN107308807A (en) * | 2017-05-03 | 2017-11-03 | 辽宁石油化工大学 | A kind of experimental provision for simulating industrial smoke dry desulfurization |
CN108744960A (en) * | 2018-06-14 | 2018-11-06 | 华北电力大学(保定) | A kind of flue gas and desulfurizing and denitrifying demercuration and recycling unit and method |
-
2014
- 2014-04-21 CN CN201420190943.0U patent/CN203803353U/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104974931A (en) * | 2015-05-27 | 2015-10-14 | 上海理工大学 | Testing apparatus for CO2 in microalgae organism immobilization combustion flue gas |
CN107308807A (en) * | 2017-05-03 | 2017-11-03 | 辽宁石油化工大学 | A kind of experimental provision for simulating industrial smoke dry desulfurization |
CN108744960A (en) * | 2018-06-14 | 2018-11-06 | 华北电力大学(保定) | A kind of flue gas and desulfurizing and denitrifying demercuration and recycling unit and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102103047B (en) | Method and device for detecting fume denitration catalyst activity | |
CN105485664B (en) | A kind of method and device of composite denitration | |
CN203874666U (en) | Microwave induced catalytic reduction desulfurization and denitrification treatment system | |
CN202383117U (en) | Device for evaluating activity of SCR (Selective Catalytic Reduction) denitration catalyst in coal-fired power plant | |
CN104965021A (en) | Performance evaluation device and performance evaluation method of coal-fired flue gas denitration catalyst | |
CN103913548B (en) | A kind of experimental provision and experimental technique studying SNCR performance in New Type Dry-process Cement Production dore furnace | |
CN203803353U (en) | Simulation testing device for co-processing multiple pollutants by adopting active coke process | |
CN107308807A (en) | A kind of experimental provision for simulating industrial smoke dry desulfurization | |
CN203816509U (en) | Desulfuration and denitration system for low temperature coke oven exhaust | |
CN105521709A (en) | SCR (selective catalytic reduction) reaction based low-temperature denitration reactor and method | |
CN112403232A (en) | Process method and device for cooperatively purifying multiple pollutants in flue gas | |
CN204933192U (en) | A kind of organic exhaust gas adsorption integral system | |
CN202583152U (en) | Device for evaluating flue gas pollutant adsorbent | |
CN204008584U (en) | Denitrating catalyst demercuration performance testing device | |
CN205517260U (en) | Low temperature denitration reactor based on SCR reaction | |
CN104076123A (en) | Experiment system for researching release characteristic of mercury in mixed combustion smoke of sludge and coal | |
CN206950974U (en) | A kind of experimental provision for simulating industrial smoke dry desulfurization | |
CN206424791U (en) | A kind of device of desulfurization and dedusting denitration for low-temperature flue gas | |
CN104360007A (en) | Novel SCR catalyst testing device | |
CN204107347U (en) | The anti-NH of constant temperature 3the SCR method distributing instrument of corrosion | |
CN207899231U (en) | A kind of reaction unit of photo-thermal concerted catalysis removing nitrogen oxides | |
CN208066118U (en) | A kind of coke oven flue gas desulphurization denitration dedusting comprehensive treatment device | |
CN110292847A (en) | A kind of activated coke desulfurization denitrification integral processing system | |
CN110261546A (en) | The experimental rig and method of active coke desulphurizing and denitration performance can be tested simultaneously | |
CN104307364A (en) | Desulfurization and denitrification integrated flue gas cleaning system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20140903 |
|
CX01 | Expiry of patent term |