CN203745020U - 气力输送过程的固相流量连续测量系统 - Google Patents

气力输送过程的固相流量连续测量系统 Download PDF

Info

Publication number
CN203745020U
CN203745020U CN201420104986.2U CN201420104986U CN203745020U CN 203745020 U CN203745020 U CN 203745020U CN 201420104986 U CN201420104986 U CN 201420104986U CN 203745020 U CN203745020 U CN 203745020U
Authority
CN
China
Prior art keywords
solid phase
pressure
section
venturi tube
pressure transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201420104986.2U
Other languages
English (en)
Inventor
郭晓镭
陆海峰
龚欣
梁钦锋
代正华
刘海峰
许建良
于广锁
王辅臣
王亦飞
陈雪莉
李伟峰
周志杰
王兴军
赵辉
李超
龚岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI YINENG GAS TECHNOLOGY Co Ltd
East China University of Science and Technology
Original Assignee
SHANGHAI YINENG GAS TECHNOLOGY Co Ltd
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI YINENG GAS TECHNOLOGY Co Ltd, East China University of Science and Technology filed Critical SHANGHAI YINENG GAS TECHNOLOGY Co Ltd
Priority to CN201420104986.2U priority Critical patent/CN203745020U/zh
Application granted granted Critical
Publication of CN203745020U publication Critical patent/CN203745020U/zh
Anticipated expiration legal-status Critical
Withdrawn - After Issue legal-status Critical Current

Links

Abstract

本实用新型公开了一种气力输送过程的固相流量连续测量系统。所述的固相流量连续测量系统包括一输入管道、一文丘里管和一输出管道;所述输入管道、所述文丘里管和所述输出管道在一条直线上,所述输入管道和所述输出管道的长度分别独立地为大于或等于80D;所述的文丘里管包括依次连通的一收缩段、一喉段和一扩张段,所述输入管道与所述收缩段相连通,所述扩张段与所述输出管道相连通;所述喉段的长度Lt与所述喉段的直径d之比大于或等于40;所述的固相流量连续测量系统还包括一第一压力测试仪、一第二压力测试仪、一第三压力测试仪和一温度测量仪。本实用新型可以满足从稀相到密相的固相流量的连续测量,偏差仅在±5%以内。

Description

气力输送过程的固相流量连续测量系统
技术领域
本实用新型涉及一种气力输送过程的固相流量连续测量系统。
背景技术
气力输送是一项利用气体能量输送固体颗粒的古老而有效的技术,在化工、冶金、食品加工、医药和能源等领域得到了广泛应用。实际应用中,为了满足生产过程中所需的连续测量及自动化控制,达到安全、高效和经济运行的要求,粉体质量流量的在线瞬时测量已成为气力输送系统中亟待解决的关键课题。如果能以一定的置信水平实现对粉体质量流量的在线测量,便可建立起粉体流量的控制调节系统。
但是,由于气力输送系统中气固两相间存在界面效应和相对速度,而且相界面在时间和空间上具有随机性,致使其流动特性及检测方法远比单相流系统复杂。现有的测量方法大多不能满足连续测量和自动化控制的要求。尽管国内外都已做了大量的研究工作,但商品化的多相流流量计为数很少,大部分还处于实验室研究开发阶段。
目前,冶金工业中高炉喷吹煤粉的质量流量是采用电子秤称重的方法来计算一段时间内的平均值,不能实现实时连续测量,直接获得瞬时值。气流床粉煤加压气化工艺采用进口固体质量流量计测量煤粉的质量流量,仪表使用前需要对其进行使用工况下的实物标定,操作复杂,仪器价格昂贵。而且标定结果受输送煤粉性质影响,当煤粉物性发生变化时,测量结果会出现不同程度的偏差。
差压式流量计,尤其是文丘里管由于结构简单、易于安装、便于维护、性能稳定、经济耐用等优点受到研究者和工程技术人员的青睐。Carlson,Farbar等人经过大量实验和理论研究,得出了气体颗粒混合物经过文丘里管产生的差压和颗粒含量有对应关系,即著名的Farbar压差-气固比经验公式ΔPmix/ΔPgas=1+mZ。该公式已经广泛应用于低压、稀相气力输送系统,通过搭配气体流量计或密度计,可满足固相流量的测量要求。对于高压密相气力输送过程,载气密度和固气比的影响均较大。此时,若仍采用Farbar压差-气固比经验公式测量固相流量,则会产生较大的误差。
实用新型内容
本实用新型所要解决的技术问题在于克服了现有的几种测量技术具有局限性的缺陷,而提供了一种气力输送过程的固相流量连续测量系统。本实用新型的测量装置结构简单,无需搭配气体流量计或密度计使用,而且不受输送介质物性变化的影响。
本实用新型是通过下述技术方案来解决上述技术问题:所述的气力输送过程的固相流量连续测量系统包括一输入管道、一文丘里管和一输出管道;所述输入管道、所述文丘里管和所述输出管道在一条直线上,所述输入管道和所述输出管道的长度分别独立地为大于或等于80D,D为所述输入管道和所述输出管道的直径;所述的文丘里管包括依次连通的一收缩段、一喉段和一扩张段,所述输入管道与所述收缩段相连通,所述扩张段与所述输出管道相连通;所述喉段的长度Lt与所述喉段的直径d之比大于或等于40;所述的固相流量连续测量系统还包括一第一压力测试仪、一第二压力测试仪、一第三压力测试仪和一温度测量仪;其中,所述第一压力测试仪安装于所述输入管道上,用于测量所述收缩段的入口处的气相压力P1;所述第二压力测试仪安装于所述喉段上,与所述喉段的入口处的距离为20d~40d,用于测量该处的气相压力P2;所述第三压力测试仪安装于所述喉段上,与所述喉段的入口处的距离为40d~60d,用于测量该处的气相压力P3;所述温度测量仪安装于所述输入管道上,用于测量所述收缩段的入口处的气固相温度T1
所述的收缩段的收缩角θ较佳地为3~25°,更佳地为3~10.5°。所述的扩张段的扩张角α较佳地为1~12°,更佳地为1~8°。所述的文丘里管的节流比d/D较佳地为0.3~0.8,更佳地为0.4~0.7。所述喉段的长度Lt与所述喉段的直径d之比Lt/d(以下简称长径比)较佳地为40~80。
所述输入管道和所述输出管道为本领域常规的用于输送气固相的管道。
较佳地,所述固相流量测量系统还包括一数据采集系统,所述数据采集系统还依次与一A/D转换卡(模数转换卡,用于将模拟信号转换成数字信号)和一计算机连接;所述第一压力测试仪包括一第一压力传感器;所述第二压力测试仪包括一第二压力传感器;所述第三压力测试仪包括一第三压力传感器;所述温度测量仪包括一温度传感器;所述第一压力传感器、所述第二压力传感器、所述第三压力传感器和所述温度传感器分别与所述数据采集系统连接,并将模拟信号输入至所述数据采集系统。
其中,所述的计算机较佳地包括存储模块和计算模块,用于实时输出处理后的固相流量数据。其中,所述的存储模块用于存储输入的压降方程,所述的计算模块用于将采集到的流速、压力和温度数据代入压降方程中进一步求解固相流量。
其中,所述第一压力传感器较佳地为第一膜片式压力传感器,且通过一第一引压孔安装于所述输入管道上;在沿所述文丘里管的延伸方向上,所述第一引压孔与所述收缩段的入口处的距离为本领域常规,较佳地在20D以内,更佳地在5D以内。所述第二压力传感器较佳地为第二膜片式压力传感器,
且通过一第二引压孔安装于所述文丘里管的喉段上。所述第三压力传感器较佳地为第三膜片式压力传感器,且通过一第三引压孔安装于所述文丘里管的喉段上。
其中,所述温度传感器较佳地通过一测温孔安装在所述输入管道上;所述测温孔与所述收缩段的入口处的距离为本领域常规,较佳地在20D以内,更佳地在5D以内。
本实用新型的固相流量连续测量系统的使用方法为:
(1)将气固两相流通入上述固相流量连续测量系统,并启动所述固相流量连续测量系统,测量参数P1、P2、P3和T1
(2)将步骤(1)测得的参数P1、P2、P3和T1代入文丘里管压降方程组①:
P 1 - P 2 ( 1 - β 4 ) 2 C 2 β 4 · P 1 M RT 1 V g 1 2 = ( 1 + mZ ) / ( 1 + MP 1 RT 1 ρ s Z ) P 1 - P 3 ( 1 - β 4 ) 2 ( C ′ ) 2 β 4 · P 1 M RT 1 V g 1 2 = ( 1 + m ′ Z ) / ( 1 + MP 1 RT 1 ρ s Z )
即可计算出收缩段入口处的气体速度Vg1(单位为m/s)和固气质量比Z,然后根据公式计算得气相流量Mg,然后根据公式②:
Ms=ZMg   ②
进一步计算得固相流量Ms(单位为Kg/s);
方程组①中,ρs为固相密度(单位为Kg/m3),M为气相的气体分子的摩尔质量(单位为g/mol),R为摩尔气体常数,β为文丘里管节流比,是所述文丘里管的喉径d和所述输入管道的直径D之比;
方程组①中,C、C’为流出系数,它们都是雷诺数Re的函数,C与Re的函数关系可表示为公式③:
C=f(Re)=aReb   ③
公式③中,雷诺数Re按照如下公式计算:Re=DVg1ρg1g1,ρg1、μg1分别是所述文丘里管的入口处的气体密度(单位为Kg/m3)、气体粘度(单位为Pa/s),ρg1、μg1分别按照如下公式进行计算:ρg1=P1M/RT1其中dg是气体分子直径(单位为m),查表可获得;
公式③中,系数a、b按照如下方法确定:采用所述的固相流量连续测量系统采集两组不同工况下纯气相流的测试数据,分别记为工况一和工况二,并在所述的固相流量连续测量系统的输入管道上加设一气体流量计,用于测量气体的质量流量Mg,按照方程④
M g = CA 2 2 ρ g Δ P gas 1 - β 4
分别计算出工况一和工况二下的流出系数C1、C2,并计算对应的雷诺数Re1、Re2,代入公式③中计算得到系数a、b;方程④中,ΔPgas=P1-P2(压力单位为Pa),ρg为气相密度(单位为Kg/m3),A2为文丘里管喉段处的横截面积,A2=β2A1,其中A1为文丘里管收缩段入口处的横截面积(单位为m2);Mg由所述气体流量计测得(单位为Kg/s);
同理,对C’也存在函数关系式⑤:
C’=f'(Re)=a'Reb'   ⑤
系数a’、b’的确定方法同上,不同的是按照方程④计算时,ΔPgas=P1-P3
方程组①中,m、m’为灵敏度系数,它们都是修正斯托克斯数St的函数,函数关系为公式⑥:
m=f(St)=cStd   ⑥
公式⑥中,修正斯托克斯数St按照如下公式计算:其中,ds是颗粒直径(单位为m),μg1是文丘里管入口气体粘度(单位为Pa·s-1),Lc和Lt分别是所述文丘里管的收缩段和喉段的长度(单位为m);
公式⑥中,系数c、d按照如下方法确定:采用所述的固相流量连续测量系统采集所述工况一、所述工况二下气固混合流的测试数据,并在所述的固相流量测量系统的输入管道上加设一气体流量计和一重量测量装置,按照公式⑦得一个m与Z的方程:
Δ P mix Δ P gas = ( 1 + mZ ) / ( 1 + ρ g ρ s Z )
公式⑦中,ΔPgas值(压力单位为Pa)同公式④,ΔPmix值(压力单位为Pa)的计算方法同公式④;按照公式②计算得质量比Z,其中Mg值由所述气体流量计测得,Ms值由所述重量测量装置测得,在公式⑦中,计算出两组m值,并按照修正斯托克斯数St的计算公式,计算出两组St值,再代入公式⑥,即可计算出系数c、d;
同理,对m’也存在函数关系式⑧:
m'=f'(St)=c'Std'   ⑧
系数c’、d’的确定方法同上,不同的是按照方程⑦计算时,ΔPmix=P1-P3
本实用新型提供的流量测量系统较佳地适用于不同压力不同浓度下的气力输送体系,所述的气力输送体系的输送介质较佳地为粉体物料,更佳地为煤粉、石油焦粉或生物质粉料;所述的气力输送体系的气体介质较佳地为压缩空气、氮气或二氧化碳。
当所述的气力输送体系的输送介质为煤粉时,所述的流量测量系统较佳地适用于压力范围0~10MPa、浓度范围0~500Kg/m3的情况。
本实用新型中,所述的入口处、出口处均是相对于气固相流依次通过所述输入管道、所述文丘里管和所述输出管道的顺序而言的。
本实用新型中,所述的文丘里管通过螺纹或法兰方式与所述输入管道、所述输出管道连接。
本实用新型中,所述的D、d均是指管道的内径(单位为m)。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本实用新型各较佳实例。
本实用新型的积极进步效果在于:本实用新型提供的流量测量系统结构简单,无需搭配气体流量计或密度计,性能稳定、经济耐用且不受输送介质物性变化的影响。
附图说明
图1为本实用新型的固相流量连续测量系统的结构示意图。
图2为本实用新型的长喉颈文丘里管的结构示意图。
具体实施方式
下面举几个较佳实施例,并结合附图来更清楚完整地说明本实用新型。
实施例1
图1为本实用新型的气力输送过程的固相流量连续测量系统的结构示意图。所述的固相流量连续测量系统包括一输入管道1、一文丘里管2和一输出管道3;所述输入管道1、所述文丘里管2和所述输出管道3在一条直线上,所述输入管道1和所述输出管道3的长度为100D,D为所述输入管道1和所述输出管道3的直径。图2为该系统中的文丘里管2的结构示意图,所述的文丘里管2包括依次连通的一收缩段201、一喉段202和一扩张段203,所述输入管道1与所述收缩段201相连通,所述扩张段203与所述输出管道3相连通;所述喉段202的长度Lt与所述喉段202的直径d之比为45;所述的固相流量连续测量系统还包括一第一压力测试仪4、一第二压力测试仪5、一第三压力测试仪6和一温度测量仪7;其中,所述第一压力测试仪4安装于所述输入管道1上,与所述收缩段201的入口处的距离为5D,用于测量所述收缩段201的入口处的气相压力P1;所述第二压力测试仪5安装于所述喉段202上,与所述喉段202的入口处的距离为22d,用于测量该处的气相压力P2;所述第三压力测试仪6安装于所述喉段202上,与所述喉段202的入口处的距离为40d,用于测量该处的气相压力P3;所述温度测量仪7安装于所述输入管道1上,与所述收缩段201的入口处的距离为5D,用于测量所述收缩段201的入口处的气固相温度T1
图2中,θ为所述收缩段201的收缩角,α为所述扩张段203的扩张角,Lc、Lt、Ld分别为收缩段201、喉段202和扩张段203的长度。本实施例中,收缩角θ为5°,扩张角α为8°,收缩段长度Lc为50mm,喉段长度Lt为270mm,扩张段长度Ld为30mm。
本实施例中,图1的固相流量测量系统还包括一数据采集系统8,所述数据采集系统还依次与一A/D转换卡9(模数转换卡,用于将模拟信号转换成数字信号)和一计算机10连接;所述第一压力测试仪4包括一第一压力传感器;所述第二压力测试仪5包括一第二压力传感器;所述第三压力测试仪6包括一第三压力传感器;所述温度测量仪7包括一温度传感器;所述第一压力传感器、所述第二压力传感器、所述第三压力传感器和所述温度传感器分别与所述数据采集系统8连接,并将模拟信号输入至所述数据采集系统8。
其中,所述的计算机10还包括存储模块和计算模块,用于实时输出处理后的固相流量数据。其中,所述的存储模块用于存储输入的压降方程,所述的计算模块用于将采集到的流速、压力和温度数据代入压降方程中进一步求解固相流量。
实施例2
本实施例中的固相流量连续测量系统的结构示意图如图1和图2所示。利用该测试系统进行固相流量测试的方法如下:
(1)建立气固两相流通过文丘里管的压降比方程
对于图1所示的文丘里管,对气固两相流建立总能量方程:
m g [ P 1 - P 2 ρ g + ( H 1 - H 2 ) g + v g 1 2 - v g 2 2 2 - ( K g + K s ) V g 2 2 2 + M g [ P 1 - P 2 ρ s + ( H 1 - H 2 ) g + V s 1 2 - V s 2 2 2 ] = 0 - - - ( 1 )
其中,Mg、Ms分别为气相和固相的质量流量(Kg/s),P1、P2分别为文丘里管的收缩段入口和喉段处的压力(N/m2),H1、H2分别为文丘里管的收缩段入口和喉段处的高度(m),ρg为气相密度(Kg/m3),ρs为固相密度(Kg/m3),Vg1、Vs1分别为文丘里管的收缩段入口的气相、固相的平均速度(m/s),Vg2、Vs2分别为文丘里管的喉段处的气相、固相的平均速度(m/s),Kg、Ks分别为气相和固相的摩擦系数(无量纲)。
设文丘里管节流比为β=d/D,文丘里管压降ΔP=P1-P2,方程(1)可简化并转变成如下形式:
ΔP ( 1 + M s ρ g M g ρ s ) = M g 2 2 A 1 2 β 4 ρ g ( 1 + K g + s - β 4 ) + M g 2 A 1 2 ρ g ( V s 2 2 β 4 V g 2 2 - V s 1 2 V g 1 2 ) M S - - - ( 2 )
对于纯气相介质,式(2)有如下形式:
ΔP = M g 2 2 A 1 2 β 4 ρ g ( 1 + K g + s - β 4 ) - - - ( 3 )
以式(2)除以式(3),设质量固气比为Ms/Mg=Z,则可得:
Δ P mix Δ P gas = ( 1 + mZ ) / ( 1 + ρ g ρ s Z ) - - - ( 4 )
其中,ΔPmix为气固混合物流经文丘里管时在收缩段入口和喉段所产生的压降,ΔPgas为纯气相介质流经文丘里管产生的压降。m代表文丘里管压降对固相流量的灵敏程度,称之为灵敏度系数。方程(4)考虑了压力和固气比影响,可应用于不同压力的粉体密相气力输送系统。
(2)建立文丘里管纯气相压降方程
纯气相流经文丘里管,其质量流量与压差存在如下关系:
M g = CA 2 2 ρ g Δ P gas 1 - β 4 - - - ( 5 )
其中,A2为文丘里管喉段处的截面积。进一步转化得到纯气相流经文丘里管的压降方程:
Δ P gas = ( 1 - β 4 ) 2 C 2 β 4 · P 1 M RT 1 V g 1 2 - - - ( 6 )
式中,M为气体分子质量,T1为气体的热力学温度(单位为K),R为摩尔气体常数,C为流出系数。
(3)建立双压差文丘里管压降方程组
气固两相通过文丘里管的纯气相和混合物压降方程分别为(6)和(4)。研究发现,流出系数C与雷诺数Re具有较好的函数关系,C=f(Re);灵敏度系数m与斯托克斯数St具有较好的函数关系,m=f(St)。
将方程(6)以及文丘里管流出系数和灵敏度系数的函数关系式C=f(Re)和m=f(St)带入到方程(4),
P 1 - P 2 ( 1 - β 4 ) 2 f ( Re ) 2 β 4 · P 1 M RT V g 1 2 = ( 1 + f ( St ) Z ) / ( 1 + MP 1 RT 1 ρ s Z ) - - - ( 7 )
对于长喉颈文丘里管,如附图2,可分别测量文丘里管入口压力P1,喉段压力P2、P3,从而形成方程(8)的双压差文丘里管压降方程组:
P 1 - P 2 ( 1 - β 4 ) 2 f ( Re ) 2 β 4 · P 1 M RT 1 = ( 1 + f ( St ) Z ) / ( 1 + MP 1 R T 1 ρ s Z ) P 1 - P 3 ( 1 - β 4 ) 2 f ′ ( Re ) 2 β 4 · P 1 M RT 1 V g 1 2 = ( 1 + f ′ ( St ) Z ) / ( 1 + MP 1 RT 1 ρ s Z ) - - - ( 8 )
式中f(Re)、f'(Re)、f(St)和f'(St)是表征流出系数C和灵敏度系数m的函数式,根据具体的应用系统确定。
(4)通过长喉颈文丘里的双压差固相流量测量装置测量固相流量。
再通过实施例1的固相流量连续测量系统进行测试,并通过计算机的计算模块对颗粒速度和压力数据进行实时处理,求解压降方程组获得并输出固相流量。
实施例3
本实施例中的固相流量连续测量系统的结构示意图如图1和图2所示,下面以本实用新型在粉煤加压密相气力输送工艺中的具体应用为实施例进行较为详细的描述。
本实施例中,所述包含有长喉颈文丘里管的双压差固相流量连续测量系统被安装在密相气力输送系统的输送管路上,输送管道直径D为15mm,与所述文丘里管相连的输入管道和输出管道的长度为100D。
文丘里管的结构参数:收缩角θ为5°,扩张角α为8°,喉径d为6mm,喉段长度Lt为45d;温度传感器距离文丘里管入口5D;压力传感器P1距离文丘里管入口5D,P2和P3分别距离文丘里管喉段入口22d和40d。
输送介质煤粉的平均粒径约为42μm,颗粒密度约为1400Kg/m3
本实施例获得的高压粉煤密相气固两相流的流出系数和灵敏度系数的函数关系式的具体过程如下:
公式C=f(Re)=aReb中,雷诺数Re按照如下公式计算:Re=DVg1ρg1g1,ρg1、μg1分别是所述文丘里管的入口处的气体密度(单位为Kg/m3)、气体粘度(单位为Pa/s),ρg1、μg1分别按照如下公式进行计算:ρg1=P1M/RT1其中dg是气体分子直径,查表可获得。其中,系数a、b按照如下方法确定:采用所述的固相流量连续测量系统采集两组不同工况下纯气相流的测试数据,分别记为工况一、工况二,并在所述的固相流量连续测量系统的输入管道上加设一气体流量计,按照方程计算出流出系数C1、C2,其中,ΔPgas=P1-P2,ρg为气相密度(单位为Kg/m3),A2为文丘里管喉段处的横截面积,A2=β2A1,其中A1为文丘里管收缩段入口处的横截面积;Mg由所述气体流量计测得;并计算对应的雷诺数Re1、Re2,代入公式C=f(Re)=aReb中计算得到系数a、b。
同理,对C’也存在函数关系式C’=f'(Re)=a'Reb',其中系数a’、b’的确定方法同上,不同的是按照方程计算时,ΔPgas=P1-P3
m、m’为灵敏度系数,它们都是修正斯托克斯数St的函数,函数关系为公式:m=f(St)=cStd,其中,修正斯托克斯数St按照如下公式计算:其中,ds是颗粒直径(单位为m),μg1是文丘里管入口气体粘度(Pa·s-1),Lc和Lt分别是所述文丘里管的收缩段和喉段的长度(单位为m);
其中,系数c、d按照如下方法确定:采用所述的固相流量连续测量系统采集所述工况一、所述工况二下气固混合流的测试数据,并在所述的固相流量测量系统的输入管道上加设一气体流量计和一重量测量装置,按照公式得一个m与Z的方程。其中,ΔPgas值同公式ΔPmix的计算方法同上;按照Ms=ZMg计算得质量比Z,其中Mg值由所述气体流量计测得,Ms值由所述重量测量装置测得,在公式中,计算出两组m值,并按照修正斯托克斯数St的计算公式,计算出两组St值,再代入公式m=f(St)=cStd,即可计算出系数c、d;
同理,对m’也存在函数关系式:m'=f'(St)=c'Std'。系数c’、d’的确定方法同上,不同的是按照方程计算时,ΔPmix=P1-P3
最终,本实用新型获得的长喉颈文丘里的双压差固相流量连续测量系统的流出系数和灵敏度系数的函数关系式分别为C=f(Re)=14.07Re-0.185,m=f(St)=2.0St-1.29;C'=f'(Re)=194.72Re-0.36,m'=f'(St)=1.3St-1.74。在输送压力921KPa,浓度为326Kg/m3条件下,固相流量测量系统测得的参数值:P1=747KPa,P2=405KPa,P3=276KPa,T=293K,代入方程(8)可计算出固相流量Ms为936Kg/h。通过称重传感器测量出实际固相流量为938Kg/h,表明该固相流量测量系统获得的流量偏差为-0.22%,能够较好应用于粉煤加压密相气力输送工艺。
实施例4
本实施例中,所述的粉煤加压密相气力输送工艺如实施例3所示。所述的粉煤的浓度为60Kg/m3,其余测试条件和方法同实施例3。结果表明,采用本实用新型测定的固相流量测量与实际固相流量的偏差为5.88%。说明本实用新型同样适用于稀相输送过程的固相流量测量。
效果实施例1
本效果实施例中,所述的粉煤加压密相气力输送工艺如实施例3所示。输送介质煤粉的平均粒径约为42μm,颗粒密度约为1400Kg/m3。固相流量连续测量系统的流出系数和灵敏度系数的函数关系式分别为
C=f(Re)=14.07Re-0.185,m=f(St)=2.0St-1.29;C'=f'(Re)=194.72Re-0.36,m'=f'(St)=1.3St-1.74
固相流量连续测量系统被安装在气力输送系统的输送管路上,输送管道直径D为15mm。固相流量连续测量系统中,输入和输出管道发长度为100D;文丘里管收缩角θ为5°,扩张角α为8°,喉径d为6mm,喉段长度Lt为45d;温度传感器距离文丘里管入口5D;压力传感器P1距离文丘里管入口5D,P2和P3分别距离文丘里管喉段入口22d和40d。
本实用新型的固相流量连续测量系统在粉煤加压密相气力输送工艺中的应用效果如表1所示。本实用新型可以较好地应用于测量浓度由低到高的气力输送固相流量,流量偏差大多仅在±5%以内,满足工程应用要求。与电子秤称重的方法相比,本实用新型能够实现实时连续测量,直接获得瞬时值;与进口固体质量流量计的方法相比,本实用新型具有结构简单、易于安装、便于维护、性能稳定、经济耐用等优点。
表1效果实施例1的测量结果
虽然以上描述了本实用新型的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,本实用新型的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本实用新型的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本实用新型的保护范围。

Claims (10)

1.一种气力输送过程的固相流量连续测量系统,其特征在于,其包括一输入管道、一文丘里管和一输出管道;所述输入管道、所述文丘里管和所述输出管道在一条直线上,所述输入管道和所述输出管道的长度分别独立地为大于或等于80D,D为所述输入管道和所述输出管道的直径;所述的文丘里管包括依次连通的一收缩段、一喉段和一扩张段,所述输入管道与所述收缩段相连通,所述扩张段与所述输出管道相连通;所述喉段的长度Lt与所述喉段的直径d之比大于或等于40;所述的固相流量连续测量系统还包括一第一压力测试仪、一第二压力测试仪、一第三压力测试仪和一温度测量仪;其中,所述第一压力测试仪安装于所述输入管道上,用于测量所述收缩段的入口处的气相压力P1;所述第二压力测试仪安装于所述喉段上,与所述喉段的入口处的距离为20d~40d,用于测量该处的气相压力P2;所述第三压力测试仪安装于所述喉段上,与所述喉段的入口处的距离为40d~60d,用于测量该处的气相压力P3;所述温度测量仪安装于所述输入管道上,用于测量所述收缩段的入口处的气固相温度T1
2.如权利要求1所述的固相流量连续测量系统,其特征在于,所述的收缩段的收缩角θ为3~25°;所述的扩张段的扩张角α为1~12°;所述的文丘里管的节流比d/D为0.3~0.8;所述喉段的长度Lt与所述喉段的直径d之比Lt/d为40~80。
3.如权利要求2所述的固相流量连续测量系统,其特征在于,所述的收缩段的收缩角θ为3~10.5°;所述的扩张段的扩张角α为1~8°;所述的文丘里管的节流比d/D为0.4~0.7。
4.如权利要求1所述的固相流量连续测量系统,其特征在于,所述固相流量测量系统还包括一数据采集系统,所述数据采集系统还依次与一A/D转换卡和一计算机连接;所述第一压力测试仪包括一第一压力传感器;所述第二压力测试仪包括一第二压力传感器;所述第三压力测试仪包括一第三压力传感器;所述温度测量仪包括一温度传感器;所述第一压力传感器、所述第二压力传感器、所述第三压力传感器和所述温度传感器分别与所述数据采集系统连接,并将模拟信号输入至所述数据采集系统。
5.如权利要求4所述的固相流量连续测量系统,其特征在于,所述第一压力传感器为第一膜片式压力传感器,且通过一第一引压孔安装于所述输入管道上;在沿所述文丘里管的延伸方向上,所述第一引压孔与所述收缩段的入口处的距离为20D以内。
6.如权利要求5所述的固相流量连续测量系统,其特征在于,在沿所述文丘里管的延伸方向上,所述第一引压孔与所述收缩段的入口处的距离在5D以内。
7.如权利要求4所述的固相流量连续测量系统,其特征在于,所述第二压力传感器为第二膜片式压力传感器,且通过一第二引压孔安装于所述文丘里管的喉段上。
8.如权利要求4所述的固相流量连续测量系统,其特征在于,所述第三压力传感器为第三膜片式压力传感器,且通过一第三引压孔安装于所述文丘里管的喉段上。
9.如权利要求4所述的固相流量连续测量系统,其特征在于,所述温度传感器通过一测温孔安装在所述输入管道上;所述测温孔与所述收缩段的入口处的距离为20D以内。
10.如权利要求9所述的固相流量连续测量系统,其特征在于,所述测温孔与所述收缩段的入口处的距离为5D以内。
CN201420104986.2U 2014-03-07 2014-03-07 气力输送过程的固相流量连续测量系统 Withdrawn - After Issue CN203745020U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420104986.2U CN203745020U (zh) 2014-03-07 2014-03-07 气力输送过程的固相流量连续测量系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420104986.2U CN203745020U (zh) 2014-03-07 2014-03-07 气力输送过程的固相流量连续测量系统

Publications (1)

Publication Number Publication Date
CN203745020U true CN203745020U (zh) 2014-07-30

Family

ID=51344807

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420104986.2U Withdrawn - After Issue CN203745020U (zh) 2014-03-07 2014-03-07 气力输送过程的固相流量连续测量系统

Country Status (1)

Country Link
CN (1) CN203745020U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897221A (zh) * 2014-03-07 2015-09-09 华东理工大学 气力输送过程的固相流量连续测量系统与测量方法
CN105545281A (zh) * 2015-11-30 2016-05-04 中国石油天然气股份有限公司 一种气体节流模拟装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897221A (zh) * 2014-03-07 2015-09-09 华东理工大学 气力输送过程的固相流量连续测量系统与测量方法
CN104897221B (zh) * 2014-03-07 2018-03-09 华东理工大学 气力输送过程的固相流量连续测量系统与测量方法
CN105545281A (zh) * 2015-11-30 2016-05-04 中国石油天然气股份有限公司 一种气体节流模拟装置

Similar Documents

Publication Publication Date Title
CN104897221B (zh) 气力输送过程的固相流量连续测量系统与测量方法
CN104897222B (zh) 密相气力输送过程的固相流量测量系统与测量方法
CN106197588B (zh) 一种评估密相气力输送系统固相质量流量的方法
CN102759383B (zh) 基于单节流元件的气液两相流气相流量在线测量方法及装置
CN103884616B (zh) Scr催化剂磨损强度测试装置
WO2013102312A1 (zh) 一种蒸汽流量计量装置及计量方法
CN107843297B (zh) 基于v锥的低含气率气液两相流液相流量在线测量装置及方法
CN205538547U (zh) 一种发动机排气部分流颗粒物测量装置
CN203745020U (zh) 气力输送过程的固相流量连续测量系统
CN101187660A (zh) 双槽式孔板型混输计量装置
CN104266702A (zh) 多相湿气流流量与相含率在线测量方法及装置
CN107290008A (zh) 一种孔板涡街气液计量装置及其计算方法
CN109506729A (zh) 一种气液两相流参数在线检测方法及装置
CN104406646A (zh) 煤粉质量流量计测量装置
Li et al. Online monitoring and characterization of dense phase pneumatically conveyed coal particles on a pilot gasifier by electrostatic-capacitance-integrated instrumentation system
CN203745019U (zh) 密相气力输送过程的固相流量测量系统
CN102346058B (zh) 科氏质量流量计测量夹气液体流量的模型法
CN110455363A (zh) 气体质量流量计以及气体质量流量测量方法
CN1699996A (zh) 一种液体、气体燃料燃烧完全度和燃气流量的确定方法
CN106643945A (zh) 一种同质气液混合介质质量流量测试装置及方法
CN205958041U (zh) 一种密相气力输送过程固相质量流量的测量系统
CN205861140U (zh) 一种气液两相质量流量计
CN204086056U (zh) Scr催化剂磨损强度测试装置
CN103868558B (zh) 一种粉体流量在线检测系统及方法
CN114486661B (zh) 基于压差法的两相流浓度测量方法与装置

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned

Granted publication date: 20140730

Effective date of abandoning: 20180309