CN203536530U - 采用锂离子电池构成的通用型充电电池 - Google Patents

采用锂离子电池构成的通用型充电电池 Download PDF

Info

Publication number
CN203536530U
CN203536530U CN201320588983.6U CN201320588983U CN203536530U CN 203536530 U CN203536530 U CN 203536530U CN 201320588983 U CN201320588983 U CN 201320588983U CN 203536530 U CN203536530 U CN 203536530U
Authority
CN
China
Prior art keywords
lithium ion
voltage
integrated
ion battery
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN201320588983.6U
Other languages
English (en)
Inventor
李松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Maigesong Electrical Technology Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201320588983.6U priority Critical patent/CN203536530U/zh
Application granted granted Critical
Publication of CN203536530U publication Critical patent/CN203536530U/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本实用新型提供一种采用锂离子电池构成的通用型充电电池,包括:外封装壳体,以及该外封装壳体内依次压合组装的充放电控制器、正极焊接片、锂离子电池、及负极端盖;所述充放电控制器包括:充放电控制器壳体,以及设于充放电控制器壳体内的充放电控制电路焊装体、充放电控制器支架,所述充放电控制电路焊装体焊装有锂离子电池充放电控制电路,该锂离子电池充放电控制电路包括:焊装在电路板上且分别与锂离子电池、正极端盖、及通过充放电控制器壳体和外封装壳体与负极端盖电性连接的锂离子电池充电控制电路、锂离子电池检测及控制电路、及DC-DC降压型稳压放电电路。

Description

采用锂离子电池构成的通用型充电电池
技术领域
本实用新型涉及二次电池或电子电源技术领域,尤其涉及一种采用锂离子电池构成的通用型充电电池。
背景技术
锂离子二次电池(以下简称为锂离子电池)具有比能量大、可快速充放电、循环寿命长、自放电小、无公害、无记忆效应等优点,是目前替代通用型一次电池和镍氢充电电池较理想的二次电池。但现有的锂离子电池的输出电压较高,其输出电压随采用正极体系不同而有所差异,目前已商品化的锂离子电池,其标称电压为3.2V~3.8V,且随着锂离子电池技术的发展,锂离子电池的标称电压还会提高,显然锂离子电池不能直接用来替代标称电压为1.5V的通用型电池和标称电压为1.2V的镍氢充电电池。
锂离子电池虽然具有较好的充放电性能,但存在着过充电和过放电耐受性能差、充电过热及放电过热耐受性能差等问题,若控制失当轻则造成锂离子电池快速老化和损坏,重则会产生燃烧甚至爆炸,因而必须严格按照锂离子电池的充放电技术条件控制其充放电工作。
目前已成熟的锂离子电池结构封装工艺主要有四种类型:其一,采取负极集流体与外壳体连接构成的外壳负极封装锂离子电池(通常采用钢质外壳封装);其二,采取正极集流体与外壳体连接构成的外壳正极封装锂离子电池(通常采用铝质外壳封装);其三,采用软包封装的外壳准绝缘封装锂离子电池(通常采用铝塑复合膜材料封装);其四,外壳体采用绝缘封装材料构成的外壳绝缘封装锂离子电池(通常采用聚丙烯及聚乙烯外壳封装)。
由于通用型一次电池和镍氢充电电池的应用历史较长且已标准化,在许多通用电池应用领域,已形成了以电池输出电压检测其低电量的方法,例如:数码相机、MP3、MP4、电子智能锁具、电子仪器仪表等电子装置,均采用检测电池实时输出电压的方法来实现对电池低电量状态的判定。
另,目前个人计算机、平板电脑和手机等产品的普及程度已很高,充电电池采用计算机USB接口、通用型锂离子电池充电适配器作为充电电源,即可降低购置成本又可节约社会资源。
针对上述问题,中国专利局公开了一篇专利申请号为201110219892.0(采用锂离子电池构成的充电电池及控制方法)的专利申请,该申请采取将锂离子电池与放电控制电路封装为一体,构成的通用型充电电池。其存在下列几方面的功能及性能不足问题:
第一、充电电池内部不具有锂离子电池充电控制及充电过热保护
由于充电电池内部未设置锂离子电池充电控制及过热保护电路,因而在充电时必需采取接入二极管来隔离充电及放电电路,并采用带有锂离子电池充电控制电路和温度传感电路的专用外置充电装置进行充电。因而存在下列技术性能缺陷,其一:充电时二极管的正向导通压降会随工作电流和温度的不同而变化,降低了充电控制电路对锂离子电池的检测和充电控制精度,在二极管正向导通压降较高时会产生锂离子电池不能充满的问题,在二极管正向导通压降较低时易产生锂离子电池过充电问题,降低了锂离子电池的充电性能和安全性;其二:由于充电回路接入了隔离二极管,因而抬升了充电电池的充电输入电压,由于现有钴锂体系锂离子电池的充电上限电压已达4.35V且未来还会提高,若采用标称电压为5V±0.25V的现有通用型锂离子电池充电适配器或计算机USB接口给充电电池充电,即使采用正向导通压降较低的肖特基器件,在充电输入电压下限和隔离二极管导通压降上限状态下,仍存在锂离子电池不能完全充满的问题,虽然可以在外置充电装置内采用升压电路解决此问题,但会造成充电装置成本上升、效率及可靠性降低等问题;其三:外置温度传感电路只能通过充电电池的外封装壳体或电极间接检测锂离子电池的温度,降低了锂离子电池充电温度检测精度,使充电电池存在锂离子电池充电过热而降低循环寿命和安全性的问题。
第二、充电电池不具有锂离子电池放电过热保护
在充电电池内部未装置锂离子电池温度传感及控制电路,使得充电电池不具有锂离子电池放电过程的过热保护功能,从而使充电电池在高温环境下高倍率放电时,存在锂离子电池温度超过上限工作温度的风险,因而存在降低锂离子电池循环寿命和安全性的问题。
第三、充放电控制器结构及装配工艺复杂
充放电控制器的负电极与充电电池封装壳体间的电路连接,采用了径向弹性压紧连接结构设计,在充电电池装配时,必须将弹性负电极径向下压到位后,才能将充放电控制器推入充电电池的封装壳体内。此外,弹性负电极为活动部件,其结构占用了较大的充放电控制器内部空间,并使充放电控制器难以实现密封。造成充放电控制器体积较大、制装工艺复杂且难度较高、不利于自动化量产装配、不能实现防水密封,因而存在充电电池的蓄电容量较低、生产成本较高、受潮及浸水后易产生电路失效的问题。
第四、充放电控制器与锂离子电池正极连接可靠性差
R20充电电池及R14充电电池配用的充放电控制器与锂离子电池正极连接采用了弹性压接方式连接,由于电极间的接触面受空间限制,在充电电池大电流充放电时,容易产生触点烧蚀现象。触点烧蚀氧化会造成充电电池系统内阻上升、充放电时产生的热量使充电电池工作温度升高,严重时会产生断路使充电电池失效问题。
实用新型内容
本实用新型的目的在于提供一种采用锂离子电池构成的通用型充电电池,充放电控制器结构及装配工艺简单,有利于自动化量产装配,利用控制器壳体作为锂离子电池负极接入锂离子电池充放电控制电路的电极结构,节省了较大的充放电控制器内部空间,消除了阻碍充放电控制器密封的活动部件,可将充电控制电路和锂离子电池温度传感及控制电路安装在充放电控制器内,且可实现充放电控制器的防水密封,防止受潮及浸水后电路失效问题,同时有利于提高通用型充电电池的蓄电容量,降低生产成本;采用焊接在充放电控制器的正极焊接片与锂离子电池正极焊接方式,建立锂离子电池正极与锂离子电池充放电控制电路的焊接方式电性连接,防止在大电流充放电时产生触点烧蚀问题;采取控制器支架导光结构显示通用型充电电池的充电工作状态,实现了在通用型充电电池外部可观测到通用型充电电池的充电工作状态。
为实现上述目的,本实用新型提供一种采用锂离子电池构成的通用型充电电池,包括:外封装壳体,以及该外封装壳体内依次压合组装的充放电控制器、正极焊接片、锂离子电池、及负极端盖;所述充放电控制器包括:充放电控制器壳体,以及设于充放电控制器壳体内的充放电控制电路焊装体、充放电控制器支架,所述充放电控制电路焊装体焊装有锂离子电池充放电控制电路,该锂离子电池充放电控制电路包括:焊装在电路板上且分别与锂离子电池、正极端盖、及通过充放电控制器壳体和外封装壳体与负极端盖电性连接的锂离子电池充电控制电路、锂离子电池检测及控制电路、及DC-DC降压型稳压放电电路。
本实用新型的有益效果:本实用新型的采用锂离子电池构成的通用型充电电池,充放电控制器结构及装配工艺简单,有利于自动化量产装配,利用控制器壳体构成锂离子电池负极接入锂离子电池充放电控制电路的电极结构,节省了较大的充放电控制器内部空间、消除了阻碍充放电控制器密封的活动部件,可将充电控制电路和锂离子电池温度传感及控制电路安装在充放电控制器内,且可实现充放电控制器的防水密封,防止受潮及浸水后电路失效问题,同时有利于提高通用型充电电池的蓄电容量,降低生产成本;采取正极焊接片将锂离子电池正极与锂离子电池充放电控制电路焊接方式建立电性连接,防止在大电流充放电时产生触点烧蚀问题;采取控制器支架导光结构显示通用型充电电池的充电工作状态,实现在通用型充电电池外部可观测到通用型充电电池的充电工作状态。
为了能更进一步了解本实用新型的特征以及技术内容,请参阅以下有关本实用新型的详细说明与附图,然而附图及实施例所标示的参数仅提供参考与说明用,并非用来对本实用新型加以限制。
附图说明
下面结合附图,通过对本实用新型的具体实施方式详细描述,将使本实用新型的技术方案及其它有益效果显而易见。
附图中,
图1为采用锂离子电池构成的R20充电电池装配后的充电电池正极一端的结构示意图;
图2为采用锂离子电池构成的R20充电电池装配后的充电电池负极一端的结构示意图;
图3为采用锂离子电池构成的R20充电电池配用的外壳负极封装单体锂离子电池的正极一端结构示意图;
图4为采用锂离子电池构成的R20充电电池配用的外壳负极封装单体锂离子电池的负极一端结构示意图;
图5为采用外壳负极封装单体锂离子电池构成的R20充电电池装配后,外封装壳体沿轴线剖视的内部装配结构示意图;
图6为采用外壳负极封装单体锂离子电池构成的R20充电电池装配后的爆炸结构示意图;
图7为采用多个锂离子电池并联构成的R20充电电池配用的外壳正极封装单体锂离子电池的正极一端结构示意图;
图8为采用多个锂离子电池并联构成的R20充电电池配用的外壳正极封装单体锂离子电池的负极一端结构示意图;
图9为采用多个锂离子电池并联构成的R20充电电池配用的外壳正极封装单体锂离子电池并联装配体的负极一端结构示意图;
图10为采用多个锂离子电池并联构成的R20充电电池配用的外壳正极封装单体锂离子电池并联装配体的爆炸结构示意图;
图11为采用多个外壳正极封装单体锂离子电池构成的R20充电电池装配后,外封装壳体沿轴线剖视的内部装配结构示意图;
图12为采用多个外壳正极封装单体锂离子电池构成的R20充电电池装配后的爆炸结构示意图;
图13为采用多个锂离子电池并联构成的R20充电电池配用的软包封装单体锂离子电池的正极一端结构示意图;
图14为采用多个锂离子电池并联构成的R20充电电池配用的软包封装单体锂离子电池并联装配体的正极一端结构示意图;
图15为采用多个锂离子电池并联构成的R20充电电池配用的软包封装单体锂离子电池并联装配体装配后的爆炸结构示意图;
图16为采用多个软包封装单体锂离子电池构成的R20充电电池装配后,外封装壳体沿轴线剖视的内部装配结构示意图;
图17为采用多个软包封装单体锂离子电池构成的R20充电电池装配后的爆炸结构示意图;
图18为R20充电电池配用充放电控制器的正电极端盖一端结构示意图;
图19为R20充电电池配用充放电控制器的锂离子电池正极接入一端的结构示意图;
图20为R20充电电池配用充放电控制器装配后,充放电控制器壳体、充放电控制器支架和正电极端盖沿轴线剖视的内部装配结构示意图;
图21为R20充电电池配用充放电控制器装配后的爆炸结构示意图;
图22为R20充电电池配用充放电控制器中PCB焊装体正电极端盖一端的结构示意图;
图23为R20充电电池配用充放电控制器中PCB焊装体锂离子电池正极接入一端的结构示意图;
图24为R20充电电池配用充放电控制器中PCB焊装体爆炸结构示意图;
图25为采用锂离子电池构成的R14充电电池装配后充电电池正极一端的结构示意图;
图26为采用锂离子电池构成的R14充电电池装配后充电电池负极一端的结构示意图;
图27为采用锂离子电池构成的R14充电电池配用的外壳正极封装单体锂离子电池的正极一端结构示意图;
图28为采用锂离子电池构成的R14充电电池配用的外壳正极封装单体锂离子电池的负极一端结构示意图;
图29为采用外壳正极封装单体锂离子电池构成的R14充电电池装配后,外封装壳体沿轴线剖视的内部装配结构示意图;
图30为采用外壳正极封装单体锂离子电池构成的R14充电电池装配后的爆炸结构示意图;
图31为采用多个锂离子电池构成的R14充电电池配用的外壳负极封装单体锂离子电池的正极一端结构示意图;
图32为采用多个锂离子电池构成的R14充电电池配用的外壳负极封装单体锂离子电池的负极一端结构示意图;
图33为采用多个锂离子电池构成的R14充电电池配用的外壳负极封装单体锂离子电池并联装配体的正极一端结构示意图;
图34为采用多个锂离子电池构成的R14充电电池配用的外壳负极封装单体锂离子电池并联装配体的爆炸结构示意图;
图35为采用多个外壳负极封装单体锂离子电池构成的R14充电电池装配后,外封装壳体沿轴线剖视的内部装配结构示意图;
图36为采用多个外壳负极封装单体锂离子电池构成的R14充电电池装配后的爆炸结构示意图;
图37为R14充电电池配用充放电控制器的正电极端盖一端结构示意图;
图38为R14充电电池配用充放电控制器的锂离子电池正极接入一端的结构示意图;
图39为R14充电电池配用充放电控制器装配后,充放电控制器壳体、充放电控制器支架和正电极端盖沿轴线剖视的内部装配结构示意图;
图40为R14充电电池配用充放电控制器装配后的爆炸结构示意图;
图41为R14充电电池配用充放电控制器中PCB焊装体正电极端盖一端的结构示意图;
图42为R14充电电池配用充放电控制器中PCB焊装体锂离子电池正极接入一端的结构示意图;
图43为R14充电电池配用充放电控制器中PCB焊装体爆炸结构示意图;
图44为本实用新型R20充电电池的充电接线原理示意图;
图45为本实用新型充电电池中,采用集成DC-DC降压型锂离子电池充电控制芯片、集成锂离子电池充放电检测及控制芯片、集成DC-DC降压型稳压芯片,构成充电电池的锂离子电池充放电控制电路的电原理示意图;
图46为充电电池采用钴酸锂(LiCoO2)电池及磷酸铁锂(LiFePO4)电池的放电过程电压曲线和充电电池放电过程电压曲线对比示意图。
具体实施方式
为更进一步阐述本实用新型所采取的技术手段及其效果,以下结合本实用新型的优选实施例及其附图进行详细描述。
本实用新型提供一种采用锂离子电池构成的通用型充电电池,包括:外封装壳体,以及该外封装壳体内依次压合组装的充放电控制器、正极焊接片、锂离子电池、及负极端盖;所述充放电控制器一端设有正极接触点外露于外封装壳体的正极端盖,所述正极接触点作为通用型充电电池的正电极,所述负极端盖一端设有一外露于外封装壳体的负极接触点,所述负极接触点作为通用型充电电池的负电极。
请参阅图18至24和图37至43及图45,所述充放电控制器150(250)包括:充放电控制器壳体151(251),以及设于充放电控制器壳体151(251)内的充放电控制电路焊装体160(260)、充放电控制器支架152(252),所述充放电控制电路焊装体160(260)焊装有锂离子电池充放电控制电路。所述充放电控制电路焊装体160(260)上的电路结构:采用在PCB电路基板171(271)的正面焊装锂离子电池充放电控制电路的元器件和正极端盖101(201),在PCB电路基板171(271)的背面焊装正极焊接片161(261),并将充放电控制器壳体151(251)与PCB电路基板171(271)焊接构成。所述锂离子电池的正极通过正极焊接片161(261)接入锂离子电池充放电控制电路的节点Jb+(如图45所示),锂离子电池的负极通过负极端盖103(203)和外封装壳体102(202)及充放电控制器壳体151(251)接入锂离子电池充放电控制电路的V-端,正极端盖101(201)接入锂离子电池充放电控制电路的V+端。
所述充放电控制电路焊装体160(260)的装配步骤包括:步骤1、在PCB电路基板171(271)正面上焊装锂离子电池充放电控制电路的元器件,构成PCB焊装体170(270);步骤2、在PCB焊装体170(270)的PCB电路基板171(271)正面的锂离子电池充放电控制电路V+端的敷铜部位,焊装正电极端盖101(201);步骤3、在PCB焊装体170(270)的PCB电路基板171(272)背面的锂离子电池充放电控制电路节点Jb+的敷铜部位,焊装正极焊接片161(261),构成充放电控制电路焊装体160(260)。
所述充放电控制器150(250)的装配步骤包括:步骤1、将充放电控制器支架152(252)装入充放电控制器壳体151(251)中;步骤2、将充放电控制电路焊装体160(260)装入充放电控制器支架152(252)中;步骤3、用滚边机将充放电控制器壳体151(251)滚边封口;步骤4、将PCB电路基板171(271)的锂离子电池充放电控制电路V-端敷铜部位与充放电控制器壳体151(251)滚边后的褶边焊接;步骤5、通过PCB电路基板171(271)的注胶孔灌注封装胶,待封装胶固化后构成充放电控制器150(250)。装配完成后的充放电控制器150(250)中,充放电控制器壳体151(251)成为锂离子电池充放电控制电路V-端的接入电极,正电极端盖101(201)成为锂离子电池充放电控制电路V+端的接入电极,正极焊接片161(261)成为锂离子电池充放电控制电路节点Jb+的接入电极。
所述充放电控制器支架152(252)采用导光型绝缘材料制造而成,用于安装充放电控制电路焊装体160(260),并将用来显示通用型充电电池充电状态的发光二极管D1发出的光信号传导至通用型充电电池外部,以显示该通用型充电电池的充电状态。
该充放电控制器150的结构满足R20充电电池配用技术条件,充放电控制器250的结构满足R14充电电池配用技术条件。
所述锂离子电池选用外壳负极封装单体锂离子电池、外壳正极封装单体锂离子电池,或者,通过集流装置接入的数只并联的外壳负极封装单体锂离子电池、数只并联的外壳正极封装单体锂离子电池、数只并联的软包封装单体锂离子电池。所述集流装置包括设于单体锂离子电池两端的正极集流焊片及负极集流焊片。
采用单体锂离子电池装配通用型充电电池的步骤包括:步骤1、采用点焊机将负电极端盖焊接在锂离子电池的负极上;步骤2、采用点焊机将充放电控制器的正极焊接片与锂离子电池正极焊接;步骤3、将焊接后的充放电控制器、单体锂离子电池和负电极端盖沿轴线方向装入外封装壳体,并放入滚边封口机的绝缘定位工装压合固定后,将外封装壳体滚边封口完成通用型充电电池装配;步骤4、在装配完成的通用型充电电池的外封装壳体外部包覆或涂敷绝缘及装饰材料构成通用型充电电池成品。采用此类装配方法的实施例包括:采用外壳负极封装单体锂离子电池构成的R20充电电池、采用外壳正极封装单体锂离子电池构成的R14充电电池。
采用通过集流装置接入的数只并联的单体锂离子电池装配通用型充电电池的步骤包括:步骤1、将正极集流焊片贴附有绝缘膜的一面朝向锂离子电池的正极,采用点焊机将正极集流焊片分别与各单体锂离子电池的正极焊接,使正极集流焊片成为各单体锂离子电池的并联正电极;步骤2、将负极集流焊片贴附有绝缘膜的一面朝向锂离子电池的负极,采用点焊机将负极集流焊片分别与各单体锂离子电池的负极焊接,使负极集流焊片成为各单体锂离子电池的并联负电极,构成数只单体锂离子电池的并联装配体;步骤3、采用点焊机将负电极端盖焊接在锂离子电池并联装配体的负极集流焊片上;步骤4、采用点焊机将充放电控制器的正极焊接片与锂离子电池并联装配体的正极集流焊片焊接;步骤5、将焊接后的充放电控制器、锂离子电池并联装配体和负电极端盖沿轴线方向装入外封装壳体,并放入滚边封口机的绝缘定位工装压合固定后,将外封装壳体滚边封口完成通用型充电电池装配;步骤6、在装配完成的通用型充电电池的外封装壳体外部包覆或涂敷绝缘及装饰材料构成通用型充电电池成品。采用此类装配方法的实施例包括:采用数只外壳正极封装单体锂离子电池并联构成的R20充电电池、采用数只外壳负极封装单体锂离子电池并联构成的R14充电电池。
本实用新型中,所述正极端盖、外封装壳体、负极端盖、充放电控制器壳体、正极焊接片、正极集流焊片、负极集流焊片均采用具有高导热率、高导电性能的金属材料制造而成,并且表面经过导电性防氧化处理,其中,正极集流焊片和负极集流焊片,经导电性防氧化处理后在其一面贴附有焊接部位镂空的绝缘膜。所述外封装壳体的成型工艺为采用预制薄壁管材成型,或采用板材滚筒成型,或采用板材卷筒成型;所述充放电控制器壳体的成型工艺为采用预制薄壁管材成型,或采用板材滚筒成型,或采用板材卷筒成型。所述PCB电路基板采用导热率较高的绝缘材料制造而成,可以将锂离子电池和元器件产生的热量传递至外封装壳体散热。
所述通用型充电电池装配后的散热原理为:锂离子电池充放电控制电路功率器件产生的热量,经PCB电路基板及电路敷铜导热结构、充放电控制器壳体传导至通用型充电电池外封装壳体散热;锂离子电池产生的热量,在锂离子电池的正极一端,经正极焊接片、PCB电路基板及电路敷铜导热结构、充放电控制器壳体传导至通用型充电电池外封装壳体散热。在锂离子电池的负极一端,经负极端盖传导至通用型充电电池外封装壳体散热。
本实用新型的锂离子电池充放电控制电路包括:锂离子电池充电控制电路、锂离子电池检测及控制电路、及DC-DC降压型稳压放电电路。本实用新型的通用型充电电池采用计算机USB接口或通用型锂离子电池充电适配器充电,当通用型充电电池连接至充电电源时,所述锂离子电池检测及控制电路检测到接入的充电电压时,控制DC-DC降压型稳压放电电路关闭稳压输出,并控制锂离子电池充电控制电路开启对锂离子电池进行充电。
请参阅图45,所述锂离子电池充放电控制电路包括:锂离子电池LIB、集成DC-DC降压型锂离子电池充电控制芯片U1、集成锂离子电池充放电检测及控制芯片U2、集成DC-DC降压型稳压芯片U3、第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第七电阻R7、第八电阻R8、第九电阻R9、第十电阻R10、第十一电阻R11、第十二电阻R12、负温度系数热敏电阻Rt、发光二极管D1、第一电感L1、第二电感L2、第一电容C1、第二电容C2、第三电容C3、第四电容C4;其中,集成DC-DC降压型锂离子电池充电控制芯片U1、第一电阻R1、第二电阻R2、第三电阻R3、第一电容C1、第二电容C2、第四电容C4、第一电感L1、发光二极管D1构成锂离子电池充电控制电路,集成锂离子电池充放电检测及控制芯片U2、第四电阻R4、第五电阻R5、第六电阻R6、负温度系数热敏电阻Rt构成锂离子电池检测及控制电路,集成DC-DC降压型稳压芯片U3、第七电阻R7、第八电阻R8、第九电阻R9、第十电阻R10、第十一电阻R11、第十二电阻R12、第二电感L2、第二电容C2、第三电容C3、第四电容C4构成DC-DC降压型稳压放电电路;所述锂离子电池LIB的正极接节点Jb+,锂离子电池LIB的负极接锂离子电池充放电控制电路的V-端;所述集成DC-DC降压型锂离子电池充电控制芯片U1的充电电源输入引脚PVin接锂离子电池充放电控制电路的V+端和第四电容C4的正极,集成DC-DC降压型锂离子电池充电控制芯片U1的电源地引脚PGND接第二电容C2的负极、第四电容C4的负极及锂离子电池充放电控制电路的V-端,集成DC-DC降压型锂离子电池充电控制芯片U1的信号地引脚AGND接第一电容C1的负极、第四电容C4的负极及锂离子电池充放电控制电路的V-端,集成DC-DC降压型锂离子电池充电控制芯片U1的热敏电阻接入引脚NTC接集成DC-DC降压型锂离子电池充电控制芯片U1的信号地引脚AGND,集成DC-DC降压型锂离子电池充电控制芯片U1的充电输出及检测引脚BAT接锂离子电池LIB的正极和第二电容C2的正极,集成DC-DC降压型锂离子电池充电控制芯片U1的充电状态输出引脚LDD接发光二极管D1的阴极,集成DC-DC降压型锂离子电池充电控制芯片U1的充电电流设置引脚IBSET接第二电阻R2的一端,集成DC-DC降压型锂离子电池充电控制芯片U1的输出跟踪检测引脚BSC接第一电容C1的正极和第一电感L1的一端,集成DC-DC降压型锂离子电池充电控制芯片U1的调制输出引脚SW接第一电感L1的另一端,集成DC-DC降压型锂离子电池充电控制芯片U1的充电使能引脚EN接集成锂离子电池充放电检测及控制芯片U2的充电控制引脚CEC和第三电阻R3的一端;所述集成锂离子电池充放电检测及控制芯片U2的锂离子电池接入引脚VBSE接锂离子电池LIB的正极,集成锂离子电池充放电检测及控制芯片U2的电源地引脚GND接锂离子电池充放电控制电路的V-端,集成锂离子电池充放电检测及控制芯片U2的温度检测设置引脚DTCS接节点P1,集成锂离子电池充放电检测及控制芯片U2的NTC电压检测引脚NTC接分压点P2,集成锂离子电池充放电检测及控制芯片U2的充电电源接入引脚VCS接锂离子电池充放电控制电路的V+端,集成锂离子电池充放电检测及控制芯片U2的充电控制引脚CEC接集成DC-DC降压型锂离子电池充电控制芯片U1的充电使能引脚EN,集成锂离子电池充放电检测及控制芯片U2的放电控制引脚DEN接集成DC-DC降压型稳压芯片U3的输出使能引脚EN,集成锂离子电池充放电检测及控制芯片U2的放电反馈控制引脚DFBC接节点P3,集成锂离子电池充放电检测及控制芯片U2的充余电能释放引脚DECO接第六电阻R6的一端;所述集成DC-DC降压型稳压芯片U3的功率电源输入引脚PVDD接锂离子电池LIB的正极和第二电容C2的正极,集成DC-DC降压型稳压芯片U3的信号电源输入引脚AVDD接锂离子电池LIB的正极和第二电容C2的正极,集成DC-DC降压型稳压芯片U3的电源地引脚PGND接第二电容C2的负极、第四电容C4的负极及锂离子电池充放电控制电路的V-端,集成DC-DC降压型稳压芯片U3的信号地引脚AGND接第二电容C2的负极、第三电容C3的负极及锂离子电池充放电控制电路的V-端,集成DC-DC降压型稳压芯片U3的误差放大器外部补偿引脚SHDN/RT接第十二电阻R12的一端,集成DC-DC降压型稳压芯片U3的震荡器外部设定引脚COMP接第十一电阻R11的一端,集成DC-DC降压型稳压芯片U3的反馈输入引脚FB接分压点P4,集成DC-DC降压型稳压芯片U3的输出使能引脚EN接集成锂离子电池充放电检测及控制芯片U2的放电控制引脚DEN和第七电阻R7的第一端,集成DC-DC降压型稳压芯片U3的调制输出引脚SW接第二电感L2的一端;所述第一电阻R1为发光二极管D1的限流电阻,第一电阻R1一端接锂离子电池充放电控制电路的V+端,另一端接发光二极管D1的阳极;所述第二电阻R2为集成DC-DC降压型锂离子电池充电控制芯片U1的充电电流设置电阻,第二电阻R2一端接集成DC-DC降压型锂离子电池充电控制芯片U1的充电电流设置引脚IBSET,另一端接集成DC-DC降压型锂离子电池充电控制芯片U1的信号地引脚AGND;所述第三电阻R3为集成DC-DC降压型锂离子电池充电控制芯片U1充电使能引脚EN的上拉电阻,第三电阻R3一端接集成DC-DC降压型锂离子电池充电控制芯片U1的充电使能引脚EN,另一端接锂离子电池LIB的正极;所述第四电阻R4为分压点P2的上偏置分压电阻,第四电阻R4一端接锂离子电池LIB的正极,另一端接第五电阻R5于节点P1;所述第五电阻R5为分压点P2的上偏置分压电阻,第五电阻R5一端接第四电阻R4于节点P1,另一端接负温度系数热敏电阻Rt于分压点P2;所述第六电阻R6为第四电容C4的充电剩余电能放电限流电阻,第六电阻R6一端接集成锂离子电池充放电检测及控制芯片U2的充余电能释放引脚DECO,另一端接第四电容C4的正极;所述第七电阻R7为集成DC-DC降压型稳压芯片U3输出使能引脚EN的上拉电阻,第七电阻R7一端接集成DC-DC降压型稳压芯片U3的输出使能引脚EN,另一端接锂离子电池LIB的正极;所述第八电阻R8为分压点P4的上偏置分压电阻,第八电阻R8一端接锂离子电池充放电控制电路的V+端,另一端接第九电阻R9于分压点P4;所述第九电阻R9为分压点P4的下偏置分压电阻,第九电阻R9一端接第八电阻R8于分压点P4,另一端接第十电阻R10于节点P3;所述第十电阻R10为分压点P4的下偏置分压电阻,第十电阻R10一端接第九电阻R9于节点P3,另一端接集成锂离子电池充放电检测及控制芯片U2的电源地引脚GND和集成DC-DC降压型稳压芯片U3的信号地引脚AGND;所述第十一电阻R11为集成DC-DC降压型稳压芯片U3的震荡频率设定电阻,第十一电阻R11一端接集成DC-DC降压型稳压芯片U3的震荡器外部设定引脚COMP,另一端接集成DC-DC降压型稳压芯片U3的信号地引脚AGND;所述第十二电阻R12为集成DC-DC降压型稳压芯片U3的误差放大器补偿回路电阻,第十二电阻R12一端接集成DC-DC降压型稳压芯片U3的误差放大器外部补偿引脚SHDN/RT,另一端接第三电容C3的一端;所述负温度系数热敏电阻Rt为锂离子电池LIB温度传感的负温度系数热敏电阻,负温度系数热敏电阻Rt一端接第五电阻R5于分压点P2,另一端接集成锂离子电池充放电检测及控制芯片U2的电源地引脚GND,负温度系数热敏电阻Rt的本体绝缘部分贴靠在与锂离子电池LIB输出电极连接的导热电路结构上;所述发光二极管D1为集成DC-DC降压型锂离子电池充电控制芯片U1的充电工作状态显示发光二极管,发光二极管D1的阳极接第一电阻R1的另一端,发光二极管D1的阴极接集成DC-DC降压型锂离子电池充电控制芯片U1的充电状态输出引脚LDD;所述第一电感L1为集成DC-DC降压型锂离子电池充电控制芯片U1的输出滤波及补偿电感,第一电感L1一端接集成DC-DC降压型锂离子电池充电控制芯片U1的输出跟踪检测引脚BSC和第一电容C1的正极,另一端接集成DC-DC降压型锂离子电池充电控制芯片U1的调制输出引脚SW;所述第二电感L2为集成DC-DC降压型稳压芯片U3的输出滤波及补偿电感,第二电感L2一端接集成DC-DC降压型稳压芯片U3的调制输出引脚SW,另一端接第四电容C4的正极和锂离子电池充放电控制电路的V+端;所述第一电容C1为集成DC-DC降压型锂离子电池充电控制芯片U1的充电输出滤波及补偿电容,第一电容C1的正极接集成DC-DC降压型锂离子电池充电控制芯片U1的输出跟踪检测引脚BSC和第一电感L1的一端,第一电容C1的负极接集成DC-DC降压型锂离子电池充电控制芯片U1的电源地引脚PGND和集成DC-DC降压型锂离子电池充电控制芯片U1的信号地引脚AGND及锂离子电池充放电控制电路的V-端;所述第二电容C2为集成DC-DC降压型锂离子电池充电控制芯片U1的充电输出滤波电容和集成DC-DC降压型稳压芯片U3的输入滤波及补偿电容,第二电容C2的正极接集成DC-DC降压型锂离子电池充电控制芯片U1的充电输出及检测引脚BAT、集成DC-DC降压型稳压芯片U3的信号电源输入引脚AVDD及集成DC-DC降压型稳压芯片U3的功率电源输入引脚PVDD,第二电容C2的负极接集成DC-DC降压型锂离子电池充电控制芯片U1的电源地引脚PGND、集成DC-DC降压型锂离子电池充电控制芯片U1的信号地引脚AGND、集成DC-DC降压型稳压芯片U3的信号地引脚AGND及集成DC-DC降压型稳压芯片U3的电源地引脚PGND;所述第三电容C3为集成DC-DC降压型稳压芯片U3的误差放大器补偿回路电容,第三电容C3的一端接第十二电阻R12的另一端,另一端接集成DC-DC降压型稳压芯片U3的信号地引脚AGND;所述第四电容C4为集成DC-DC降压型锂离子电池充电控制芯片U1的输入滤波及补偿电容和集成DC-DC降压型稳压芯片U3的输出滤波及补偿电容,第四电容C4的正极接集成DC-DC降压型锂离子电池充电控制芯片U1的充电电源输入引脚PVin和第二电感L2及锂离子电池充放电控制电路的V+端,第四电容C4的负极接集成DC-DC降压型锂离子电池充电控制芯片U1的电源地引脚PGND、集成DC-DC降压型稳压芯片U3的电源地引脚PGND、集成DC-DC降压型锂离子电池充电控制芯片U1的信号地引脚AGND及集成DC-DC降压型稳压芯片U3的信号地引脚AGND。所述集成DC-DC降压型锂离子电池充电控制芯片U1的型号为深圳市麦格松电气科技有限公司(ShenZhen Migison ElectricCo.,Ltd)的MGS2520A或MGS2520B或MGS2520C,其主要控制参数包括,充电输入电压4V~6V,充电上限电压VH(MGS2520A为4.2V,MGS2520B为3.65V,MGS2520C为4.35V),最大充电输出电流2A(ICHG),充满态判定电流ICHG/10;所述集成锂离子电池充放电检测及控制芯片U2的型号为深圳市麦格松电气科技有限公司的MGS1700A或MGS1700B,其主要控制参数包括,输入电压2.25V~9V,NTC电压检测门限为0.5VLIB,放电低电量电压VL(MGS1700A为3.4V,MGS1700B为3.0V),放电截止电压VD(MGS1700A为3.0V,MGS1700B为2.55V),充余电能释放门限为1.65V;所述集成DC-DC降压型稳压芯片U3的型号为深圳市麦格松电气科技有限公司的MGS3050或MGS3035,其主要控制参数包括,输入电压2.25V~6V,反馈参考电压0.6V(VFB),最大输出电流(MGS3050为5A,MGS3035为3.5A)。
请参阅图1及图2,R20充电电池100包括:外封装壳体102、及封装在外封装壳体102内的充放电控制器150和锂离子电池110(120、130)及负极端盖103。在R20充电电池100的正极一端,露出外封装壳体102的正电极端盖101的凸出结构作为R20充电电池100的正电极,由导光型绝缘材料制造的充放电控制器支架152的导光凸缘结构,作为R20充电电池100的充电工作状态发光显示体;在R20充电电池100的负极一端,露出外封装壳体102的负极端盖103的凸出结构作为R20充电电池100的负电极。
所述的R20充电电池100,在R20电池结构技术规范和充放电控制器150结构技术条件下,采用外壳负极封装单体锂离子电池110、多个外壳正极封装单体锂离子电池120并联、多个软包封装单体锂离子电池130并联的结构方法构成,具体如下:
(一)采用外壳负极封装单体锂离子电池110构成R20充电电池100:
请参阅图3及图4,外壳负极封装单体锂离子电池110的圆形外壳体及底端为锂离子电池110的负极112,另一端凸盖为锂离子电池110的正极111;外壳负极封装单体锂离子电池110为采用钢质外壳体或其它导电材质外壳体封装的外壳体为负极的锂离子电池。本实施例在优先考虑降低通用型充电电池成本条件下,所述外壳负极封装单体锂离子电池110采用R33520钢壳封装3300mAh锰酸锂电池。
请参阅图45,本实施例锂离子电池充放电控制电路配用的集成DC-DC降压型锂离子电池充电控制芯片U1采用MGS2520A,集成锂离子电池充放电检测及控制芯片U2采用MGS1700A,集成DC-DC降压型稳压芯片U3采用MGS3050;主要控制参数包括,充电输入电压4V~6V,充电上限电压(VH)4.2V,最大充电输出电流2A(ICHG),充满态判定电流ICHG/10,放电低电量电压3.4V(VL),放电截止电压3.0V(VD),最大稳压输出电流5A。在此基础上可实现的本实施例通用型充电电池主要控制参数包括,充电输入电压5V±0.7V,最大充电电流(ICHG)设计为1.0A(锂离子电池LIB的最大充电倍率约为0.3C),锂离子电池LIB充电上限温度TCH设计为45℃,锂离子电池LIB放电上限温度TDH设计为50℃,稳压输出电压1.5V,低电量稳压输出电压1.1V,最大稳压输出电流5A(锂离子电池LIB的最大放电倍率约为0.7C),蓄电容量约7700mAh。
请参阅图1至图6,在本实施例中,所述锂离子电池LIB为外壳负极封装单体锂离子电池110,外壳负极封装单体锂离子电池110的正极111为锂离子电池LIB的正极,外壳负极封装单体锂离子电池110的负极112为锂离子电池LIB的负极。采用外壳负极封装单体锂离子电池110构成R20充电电池100的装配步骤,可以直接按照上述装配步骤进行装配,及装配后的散热原理与上述散热原理相同,此处不再赘述。
请结合参阅图3至图6、图18至24及图45,采用外壳负极封装单体锂离子电池110构成的R20充电电池100装配后的电路连接关系:焊接在图45中V+的正电极端盖101作为R20充电电池100放电输出和充电输入的正电极;外壳负极封装单体锂离子电池110的正极111与焊接在图45中节点Jb+的正极焊接片161焊接,电路连接意义等于外壳负极封装单体锂离子电池110的正极111接入图45中的节点Jb+;通过外封装壳体102,焊接在图45中V-的充放电控制器壳体151与焊接在单体锂离子电池110负极112的负电极端盖103压合建立电路连接,电路连接意义等于单体锂离子电池110的负极112通过负电极端盖103、充电电池外封装壳体102及充放电控制器壳体151接入图45中的V-,使负电极端盖103成为R20充电电池100的放电输出和充电输入的负电极。
(二)采用数只外壳正极封装单体锂离子电池120并联构成的R20充电电池100:
请参阅图7及图8,外壳正极封装单体锂离子电池120的圆形外壳体及底端为单体锂离子电池120的正极121,另一端凸盖为单体锂离子电池120的负极122,在圆形外壳体外部热塑包覆有绝缘包覆护套123,绝缘包覆护套123将外壳体包覆后仅在底端露出外壳体部分底部作为单体锂离子电池120的正极121;外壳正极封装单体锂离子电池120为采用铝质外壳体或其它导电材质外壳体封装的外壳体为正极的锂离子电池。本实施例在优先考虑提高通用型充电电池蓄电容量条件下,所述外壳正极封装单体锂离子电池120采用R11510铝壳封装700mAh高能钴酸锂电池。
请参阅图45,本实施例锂离子电池充放电控制电路配用的集成DC-DC降压型锂离子电池充电控制芯片U1采用MGS2520C,集成锂离子电池充放电检测及控制芯片U2采用MGS1700A,集成DC-DC降压型稳压芯片U3采用MGS3050;主要控制参数包括,充电输入电压4V~6V,充电上限电压(VH)4.35V,最大充电输出电流2A(ICHG),充满态判定电流ICHG/10,放电低电量电压3.4V(VL),放电截止电压(VD)3.0V,最大稳压输出电流5A。在此基础上可实现的本实施例通用型充电电池主要控制参数包括,充电输入电压5V±0.7V,最大充电电流(ICHG)设计为1.5A(锂离子电池LIB的最大充电倍率约为0.3C),锂离子电池LIB充电上限温度TCH设计为45℃,锂离子电池LIB放电上限温度TDH设计为55℃,稳压输出电压1.5V,低电量稳压输出电压1.1V,最大稳压输出电流5A(锂离子电池LIB的最大放电倍率约为0.5C),蓄电容量约12000mAh。
请参阅图1和图2、图7至图12,在本实施例中,所述锂离子电池LIB由7只外壳正极封装单体锂离子电池120并联构成,并联后的总荷电容量为4900mAh。锂离子电池LIB的正极为锂离子电池并联装配体125的正极集流焊片126,锂离子电池LIB的负极为锂离子电池并联装配体125的负极集流焊片127。采用7只外壳正极封装单体锂离子电池120并联构成锂离子电池并联装配体125、采用锂离子电池并联装配体125构成R20充电电池100的装配步骤,可以直接按照上述装配步骤进行装配,及装配后的散热原理与上述散热原理相同,此处不再赘述。
请参阅图7至12、图18至图24及图45,采用外壳正极封装单体锂离子电池120并联构成的R20充电电池100装配后的电路连接关系:焊接在图45中V+的正电极端盖101作为R20充电电池100放电输出和充电输入的正电极;锂离子电池并联焊装体125的正极集流焊片126与焊接在图45中节点Jb+的正极焊接片161焊接,电路连接意义等于所有单体锂离子电池120的正极121并联后接入图45中的节点Jb+;通过外封装壳体102,焊接在图45中V-的充放电控制器壳体151与焊接在锂离子电池并联焊装体125负极集流焊片127上的负电极端盖103压合建立电路连接,电路连接意义等于所有单体锂离子电池120的负极122并联后通过负极集流焊片127、负电极端盖103、充电电池外封装壳体102及充放电控制器壳体151接入图45中的V-,使负电极端盖103成为R20充电电池100的放电输出和充电输入的负电极。
(三)采用数只软包封装单体锂离子电池130并联构成的R20充电电池100:
请参阅图13,软包封装单体锂离子电池130的一端为正极131,另一端为负极132;软包封装单体锂离子电池130为采用铝塑复合膜133或其它材料制成的软包封装单体锂离子电池,本实施例在优先考虑提高通用型充电电池安全性能和循环寿命条件下,所述软包封装单体锂离子电池130采用R11500软包封装320mAh磷酸铁锂电池。
请参阅图45,本实施例锂离子电池充放电控制电路配用的集成DC-DC降压型锂离子电池充电控制芯片U1采用MGS2520B,集成锂离子电池充放电检测及控制芯片U2采用MGS1700B,集成DC-DC降压型稳压芯片U3采用MGS3035;主要控制参数包括,充电输入电压4V~6V,充电上限电压3.65V(VH),最大充电输出电流2A(ICHG),充满态判定电流ICHG/10,放电低电量电压3.0V(VL),放电截止电压2.55V(VD),最大稳压输出电流3.5A。在此基础上可实现的本实施例通用型充电电池主要控制参数包括,充电输入电压5V±0.7V,最大充电电流(ICHG)设计为0.7A(锂离子电池LIB的最大充电倍率约为0.3C),锂离子电池LIB充电上限温度TCH设计为50℃,锂离子电池LIB放电上限温度TDH设计为60℃,稳压输出电压1.5V,低电量稳压输出电压1.1V,最大稳压输出电流3.5A(锂离子电池LIB的最大放电倍率约为0.7C),蓄电容量约4500mAh。
请参阅图1和图2、图13至图17,在本实施例中,所述锂离子电池LIB为7只软包封装单体锂离子电池130并联构成,并联后的总荷电容量为2240mAh。锂离子电池LIB的正极为锂离子电池并联焊装体135的正极集流板136,锂离子电池LIB的负极为锂离子电池并联焊装体135的负极集流板137。采用7只软包封装单体锂离子电池130并联构成锂离子电池并联装配体135、采用锂离子电池并联焊装体135构成R20充电电池100的装配步骤包括:步骤1、将正极集流板136的绝缘面朝向绝缘定位支架138并装入,分别将各单体锂离子电池130的正极极耳131沿绝缘定位支架138的导向槽孔穿入,使正极极耳131由正极集流板136的对应极耳孔穿出,并将各单体锂离子电池130的正极极耳131折弯使之贴靠在正极集流板上;步骤2、采用点焊机分别将各单体锂离子电池130的正极极耳131与正极集流板136焊接,使正极集流板136成为锂离子电池并联装配体135的并联正电极;步骤3、将负极集流板137的绝缘面朝向绝缘定位支架139并装入,分别将各单体锂离子电池的负极极耳132沿绝缘定位支架139的导向槽孔穿入,使负极极耳132由负极集流板137的对应极耳孔穿出,并将各单体锂离子电池130的负极极耳132折弯使之贴靠在负极集流板137上;步骤4,采用点焊机分别将各单体锂离子电池130的负极极耳132与负极集流板137焊接,使负极集流板137成为锂离子电池并联装配体135的并联负电极;步骤5、采用点焊机将负电极端盖103焊接在锂离子电池并联装配体135的负极集流板137上;步骤6、采用点焊机将充放电控制器150的正极焊接片161与锂离子电池并联装配体135的正极集流板136焊接;步骤7、将焊接后的充放电控制器150、锂离子电池并联装配体135和负电极端盖103沿轴线方向装入外封装壳体102,并放入滚边封口机的绝缘定位工装压合固定后将外封装壳体102滚边封口完成R20充电电池100装配;步骤8、在装配完成的R20充电电池100的外封装壳体102外部包覆或涂敷绝缘及装饰材料构成R20充电电池100成品。装配后的R20充电电池100的散热原理与前述的散热原理相同,此处不再赘述。
所述正极集流板136及负极集流板137,采用具有高导热率、高导电性能的金属板材和导热率较高的绝缘板材复合而成,具有较强抗应变强度且一面为金属导体另一面为绝缘体。
请参阅图13至17、图18至24及图45,采用7只软包封装单体锂离子电池130并联构成的R20充电电池100装配后的电路连接关系:焊接在图45中V+的正电极端盖101作为R20充电电池100放电输出和充电输入的正电极;锂离子电池并联焊装体135的正极集流板136与焊接在图45中节点Jb+的正极焊接片161焊接,电路连接意义等于所有单体锂离子电池130的正极131并联后接入图45中的节点Jb+;通过外封装壳体102,焊接在图45中V-的充放电控制器壳体151与焊接在锂离子电池并联焊装体135的负极集流板137上的负电极端盖103压合建立电路连接,电路连接意义等于所有单体锂离子电池130的负极132并联后通过负极集流板137、负电极端盖103、充电电池外封装壳体102及充放电控制器壳体151接入图45中的V-,使负电极端盖103成为R20充电电池100的放电输出和充电输入的负电极。
请参阅图25及图26,R14充电电池200包括:外封装壳体202、及封装在外封装壳体202内的充放电控制器250和锂离子电池210(220)及负极端盖203构成。在R14充电电池200的正极一端,露出外封装壳体202的正电极端盖201的凸出结构作为R14充电电池200的正电极,由导光型绝缘材料制造的充放电控制器支架252的导光凸缘结构,作为R14充电电池200的充电工作状态发光显示体;在R14充电电池200的负极一端,露出外封装壳体202的负极端盖203的凸出结构作为R14充电电池200的负电极。
所述的R14充电电池200,在R14充电电池结构技术规范和充放电控制器250结构技术条件下,采用外壳正极封装单体锂离子电池220、多个外壳负极封装单体锂离子电池210并联的结构方法构成,具体如下:
(一)采用外壳正极封装单体锂离子电池220构成R14充电电池200:
请参阅图27及图28,外壳正极封装单体锂离子电池220的圆形外壳体及底端为锂离子电池220的正极221,另一端凸盖为锂离子电池220的负极222,在锂离子电池220的圆形外壳体上热塑包覆有塑料绝缘膜223,塑料绝缘膜223将壳体包覆后仅在底端露出外壳体部分底部作为锂离子电池正极221;外壳正极封装单体锂离子电池220为采用铝质外壳体或其它导电材质外壳体封装的外壳体为正极的锂离子电池,本实施例在优先考虑提高通用型充电电池蓄电容量性价比条件下,所述外壳正极封装单体锂离子电池220采用R25410铝壳封装2600mAh镍钴锰酸锂电池。
请参阅图45,本实施例锂离子电池充放电控制电路配用的集成DC-DC降压型锂离子电池充电控制芯片U1采用MGS2520A,集成锂离子电池充放电检测及控制芯片U2采用MGS1700A,集成DC-DC降压型稳压芯片U3采用MGS3035;主要控制参数包括,充电输入电压4V~6V,充电上限电压4.2V(VH),最大充电输出电流2A(ICHG),充满态判定电流ICHG/10,放电低电量电压3.4V(VL),放电截止电压3.0V(VD),最大稳压输出电流3.5A。在此基础上可实现的本实施例通用型充电电池主要控制参数包括,充电输入电压5V±0.7V,最大充电电流(ICHG)设计为0.8A(锂离子电池LIB的最大充电倍率约为0.3C),锂离子电池LIB充电上限温度TCH设计为45℃,锂离子电池LIB放电上限温度TDH设计为55℃,稳压输出电压1.5V,低电量稳压输出电压1.1V,最大稳压输出电流3.5A(锂离子电池LIB的最大放电倍率约为0.7C),蓄电容量约5900mAh。
请参阅图27及图30,在本实施例中,所述锂离子电池LIB为外壳正极封装单体锂离子电池220,外壳正极封装单体锂离子电池220的正极221为锂离子电池LIB的正极,外壳正极封装单体锂离子电池220的负极222为锂离子电池LIB的负极。采用外壳正极封装单体锂离子电池220组装R14充电电池200的装配步骤,可以直接按照上述装配步骤进行装配,及装配后的散热原理与上述散热原理相同,此处不再赘述。
请参阅图27至30、图37至43及图45,采用外壳正极封装单体锂离子电池220组装的R14充电电池200装配后的电路连接关系包括:焊接在图45中V+的正电极端盖201作为R14充电电池200放电输出和充电输入的正电极;单体锂离子电池220的正极221与焊接在图45中节点Jb+的正极焊接片261焊接,电路连接意义等于单体锂离子电池220的正极221接入图45中的节点Jb+;通过外封装壳体202,焊接在图45中V-的充放电控制器壳体251与焊接在单体锂离子电池220负极222的负电极端盖203压合建立电路连接,电路连接意义等于单体锂离子电池220的负极222通过负电极端盖203、外封装壳体202及充放电控制器壳体251接入图45中的V-,使负电极端盖203成为R14充电电池200的放电输出和充电输入的负电极。
(二)采用数只外壳负极封装单体锂离子电池210并联构成R14充电电池200:
请参阅图31及图32,外壳负极封装单体锂离子电池210的圆形外壳体及底端为单体锂离子电池210的负极212,另一端凸盖为单体锂离子电池210的正极211;外壳负极封装单体锂离子电池210为采用钢质外壳体或其它导电材质外壳体封装的外壳体为负极的锂离子电池,本实施例在优先考虑提高通用型充电电池蓄电容量条件下,所述外壳负极封装单体锂离子电池210采用R10410钢壳封装500mAh普通钴酸锂电池。
请参阅图45,本实施例锂离子电池充放电控制电路配用的集成DC-DC降压型锂离子电池充电控制芯片U1采用MGS2520A,集成锂离子电池充放电检测及控制芯片U2采用MGS1700A,集成DC-DC降压型稳压芯片U3采用MGS3035;主要控制参数包括,充电输入电压4V~6V,充电上限电压4.2V(VH),最大充电输出电流2A(ICHG),充满态判定电流ICHG/10,放电低电量电压3.4V(VL),放电截止电压3.0V(VD),最大稳压输出电流3.5A。在此基础上可实现的本实施例通用型充电电池主要控制参数包括,充电输入电压5V±0.7V,最大充电电流(ICHG)设计为0.6A(锂离子电池LIB的最大充电倍率约为0.3C),锂离子电池LIB充电上限温度TCH设计为45℃,锂离子电池LIB放电上限温度TDH设计为55℃,稳压输出电压1.5V,低电量稳压输出电压1.1V,最大稳压输出电流3.5A(锂离子电池LIB的最大放电倍率约为0.9C),蓄电容量约4600mAh。
请参阅33及34,在本实施例中,所述锂离子电池LIB为4只外壳负极封装单体锂离子电池210并联构成,并联后的总荷电容量为2000mAh。锂离子电池LIB的正极为锂离子电池并联装配体215的正极集流板216,锂离子电池LIB的负极为锂离子电池并联装配体215的负极集流板217。采用4只外壳负极封装单体锂离子电池210并联构成锂离子电池装配体215、采用锂离子电池并联装配体215构成R14充电电池200的装配步骤,可以直接按照上述装配步骤进行装配,及装配后的散热原理与上述散热原理相同,此处不再赘述。
请参阅图31至43及图45,采用4只外壳负极单体锂离子电池210并联焊装体215组装R14充电电池200装配完成后的电路连接关系包括:焊接在图45中V+的正电极端盖201作为R14充电电池200放电输出和充电输入的正电极;锂离子电池并联焊装体215的正极集流焊片216与焊接在图45中节点Jb+的正极焊接片261焊接,电路连接意义等于所有单体锂离子电池210的正极211并联后接入图45中的节点Jb+;通过外封装壳体202,焊接在图45中V-的充放电控制器壳体251与焊接在锂离子电池并联焊装体215的负极集流焊片217上的负电极端盖203压合建立电路连接,电路连接意义等于所有单体锂离子电池210的负极212并联后通过负极集流焊片217、负电极端盖203、外封装壳体202及充放电控制器壳体251接入图45中的V-,使负电极端盖203成为R14充电电池200的放电输出和充电输入的负电极。
请参阅图44,本实用新型采用锂离子电池构成的通用型充电电池,采用计算机USB接口或通用型锂离子电池充电适配器作为充电电源对通用型充电电池充电。单节充电电池的充电装置电路为设有两个电极和两根导线的最简结构,其中一根导线将充电电源的正极连接至通用型充电电池的正电极,另一根将充电电源的负极连接至通用型充电电池的负电极。所述R14充电电池的充电装置电路接线原理与R20充电电池相同;通用型充电电池可以直接并联充电(包括不同型号),但在充电电源的最大输出电流小于并联后的所有充电电池的最大充电电流之和时,所需的充电时间较长。
请参阅图46,为本实用新型采用锂离子电池构成的通用型充电电池放电过程的锂离子电池输出电压曲线和通用型充电电池输出电压曲线对比示意图。其中,LC为通用型充电电池中配用的钴酸锂(LiCoO2)电池放电过程的输出电压曲线;LF为通用型充电电池中配用的磷酸铁锂(LiFePO4)电池放电过程的输出电压曲线,LE为通用型充电电池放电过程的输出电压曲线;通用型充电电池充满后放电过程的锂离子电池输出电压和通用型充电电池输出电压的对应关系为:在锂离子电池输出电压为VLIB>VL区间(VL为设定的通用型充电电池的放电低电量电压),通用型充电电池输出电压为1.5V;在锂离子电池输出电压为VL≥VLIB>VD区间(VD为设定的通用型充电电池的放电截止电压),通用型充电电池输出电压为1.1V;当锂离子电池输出电压VLIB≤VD时,通用型充电电池关闭输出。图中描述的锂离子电池放电曲线,为环境温度约为25℃及锂离子电池放电倍率约为0.4C条件下的示意曲线,在不同的环境温度和放电倍率条件下,锂离子电池输出电压v与时间t的函数关系会与图46标示有所不同。采用不同正极体系、负极体系、电解液及电池结构构成的锂离子电池,其放电曲线、充电完成时的端电压VH、放电截止电压VD等与图46标示参数会有所不同。
本实用新型给出的上述所有参数以及实施例的控制参数配置、实施例的锂离子电池设计引用等,仅为对本实用新型技术原理的辅助说明,而非对本实用新型技术原理的限制。
综上所述,本实用新型的采用锂离子电池构成的通用型充电电池,充放电控制器结构及装配工艺简单,有利于自动化量产装配,利用控制器壳体作为锂离子电池负极接入锂离子电池充放电控制电路的电极结构,节省了较大的充放电控制器内部空间,消除了阻碍充放电控制器密封的活动部件,可将充电控制电路和温度传感及控制电路安装在充放电控制器内,且可实现充放电控制器的防水密封,防止受潮及浸水后电路失效问题,同时有利于提高通用型充电电池的蓄电容量,降低生产成本;采取正极焊接片将锂离子电池正极与锂离子电池充放电控制电路焊接方式建立电性连接,防止在大电流充放电时产生触点烧蚀问题;采取控制器支架导光结构显示通用型充电电池的充电工作状态,实现在通用型充电电池外部可观测到通用型充电电池的充电工作状态。
以上所述,对于本领域的普通技术人员来说,可以根据本实用新型的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本实用新型权利要求的保护范围。

Claims (10)

1.一种采用锂离子电池构成的通用型充电电池,其特征在于,包括:外封装壳体,以及该外封装壳体内依次压合组装的充放电控制器、正极焊接片、锂离子电池、及负极端盖;所述充放电控制器包括:充放电控制器壳体,以及设于充放电控制器壳体内的充放电控制电路焊装体、充放电控制器支架,所述充放电控制电路焊装体焊装有锂离子电池充放电控制电路,该锂离子电池充放电控制电路包括:焊装在电路板上且分别与锂离子电池、正极端盖、及通过充放电控制器壳体和外封装壳体与负极端盖电性连接的锂离子电池充电控制电路、锂离子电池检测及控制电路、及DC-DC降压型稳压放电电路。
2.如权利要求1所述的采用锂离子电池构成的通用型充电电池,其特征在于,所述充放电控制器一端设有正极接触点外露于外封装壳体的正极端盖,所述正极接触点作为通用型充电电池的正电极;所述负极端盖一端设有一外露于外封装壳体的负极接触点,所述负极接触点作为通用型充电电池的负电极。
3.如权利要求1所述的采用锂离子电池构成的通用型充电电池,其特征在于,所述通用型充电电池采用计算机USB接口或通用型锂离子电池充电适配器作为充电电源对通用型充电电池充电。
4.如权利要求1所述的采用锂离子电池构成的通用型充电电池,其特征在于,所述锂离子电池选用外壳负极封装单体锂离子电池、外壳正极封装单体锂离子电池,或者,通过集流装置接入的数只并联的外壳负极封装单体锂离子电池、数只并联的外壳正极封装单体锂离子电池、数只并联的软包封装单体锂离子电池。
5.如权利要求1所述的采用锂离子电池构成的通用型充电电池,其特征在于,所述通用型充电电池为R20充电电池或R14充电电池。
6.如权利要求1所述的采用锂离子电池构成的通用型充电电池,其特征在于,所述正极端盖、外封装壳体、负极端盖、充放电控制器壳体及正极焊接片均采用具有高导热率、高导电性能的金属材料制造而成;所述外封装壳体的成型工艺为采用预制薄壁管材成型,或采用板材滚筒成型,或采用板材卷筒成型;所述充放电控制器壳体的成型工艺为采用预制薄壁管材成型,或采用板材滚筒成型,或采用板材卷筒成型。
7.如权利要求1所述的采用锂离子电池构成的通用型充电电池,其特征在于,所述充放电控制器支架采用导光型绝缘材料制造而成,用于安装充放电控制电路焊装体,并将用来显示通用型充电电池充电状态的发光二极管发出的光信号传导至通用型充电电池外部。
8.如权利要求1所述的采用锂离子电池构成的通用型充电电池,其特征在于,所述充放电控制器结构:采用在充放电控制器壳体内装配充放电控制器支架、充放电控制电路焊装体,并将充放电控制器壳体滚边封口后,将充放电控制器壳体褶边焊接在PCB电路基板的锂离子电池充放电控制电路V-端的敷铜部位构成;所述充放电控制电路焊装体电路结构:采用在PCB电路基板的正面焊装锂离子电池充放电控制电路的元器件和正极端盖,在PCB电路基板的背面焊装正极焊接片,并将充放电控制器壳体与PCB电路基板焊接构成。
9.如权利要求1所述的采用锂离子电池构成的通用型充电电池,其特征在于,所述锂离子电池充放电控制电路包括:锂离子电池、集成DC-DC降压型锂离子电池充电控制芯片、集成锂离子电池充放电检测及控制芯片、集成DC-DC降压型稳压芯片、第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第八电阻、第九电阻、第十电阻、第十一电阻、第十二电阻、负温度系数热敏电阻、发光二极管、第一电感、第二电感、第一电容、第二电容、第三电容、第四电容;其中,集成DC-DC降压型锂离子电池充电控制芯片、第一电阻、第二电阻、第三电阻、第一电容、第二电容、第四电容、第一电感、发光二极管构成锂离子电池充电控制电路,集成锂离子电池充放电检测及控制芯片、第四电阻、第五电阻、第六电阻、负温度系数热敏电阻构成锂离子电池检测及控制电路,集成DC-DC降压型稳压芯片、第七电阻、第八电阻、第九电阻、第十电阻、第十一电阻、第十二电阻、第二电感、第二电容、第三电容、第四电容构成DC-DC降压型稳压放电电路;所述锂离子电池的正极接节点Jb+,锂离子电池的负极接锂离子电池充放电控制电路的V-端;所述集成DC-DC降压型锂离子电池充电控制芯片的充电电源输入引脚接锂离子电池充放电控制电路的V+端和第四电容的正极,集成DC-DC降压型锂离子电池充电控制芯片的电源地引脚接第二电容的负极、第四电容的负极及锂离子电池充放电控制电路的V-端,集成DC-DC降压型锂离子电池充电控制芯片的信号地引脚接第一电容的负极、第四电容的负极及锂离子电池充放电控制电路的V-端,集成DC-DC降压型锂离子电池充电控制芯片的热敏电阻接入引脚接集成DC-DC降压型锂离子电池充电控制芯片的信号地引脚,集成DC-DC降压型锂离子电池充电控制芯片的充电输出及检测引脚接锂离子电池的正极和第二电容的正极,集成DC-DC降压型锂离子电池充电控制芯片的充电状态输出引脚接发光二极管的阴极,集成DC-DC降压型锂离子电池充电控制芯片的充电电流设置引脚接第二电阻的一端,集成DC-DC降压型锂离子电池充电控制芯片的输出跟踪检测引脚接第一电容的正极和第一电感的一端,集成DC-DC降压型锂离子电池充电控制芯片的调制输出引脚接第一电感的另一端,集成DC-DC降压型锂离子电池充电控制芯片的充电使能引脚接集成锂离子电池充放电检测及控制芯片的充电控制引脚和第三电阻的一端;所述集成锂离子电池充放电检测及控制芯片的锂离子电池接入引脚接锂离子电池的正极,集成锂离子电池充放电检测及控制芯片的电源地引脚接锂离子电池充放电控制电路的V-端,集成锂离子电池充放电检测及控制芯片的温度检测设置引脚接节点P1,集成锂离子电池充放电检测及控制芯片的NTC电压检测引脚接分压点P2,集成锂离子电池充放电检测及控制芯片的充电电源接入引脚接锂离子电池充放电控制电路的V+端,集成锂离子电池充放电检测及控制芯片的充电控制引脚接集成DC-DC降压型锂离子电池充电控制芯片的充电使能引脚,集成锂离子电池充放电检测及控制芯片的放电控制引脚接集成DC-DC降压型稳压芯片的输出使能引脚,集成锂离子电池充放电检测及控制芯片的放电反馈控制引脚接节点P3,集成锂离子电池充放电检测及控制芯片的充余电能释放引脚接第六电阻的一端;所述集成DC-DC降压型稳压芯片的功率电源输入引脚接锂离子电池的正极和第二电容的正极,集成DC-DC降压型稳压芯片的信号电源输入引脚接锂离子电池的正极和第二电容的正极,集成DC-DC降压型稳压芯片的电源地引脚接第二电容的负极、第四电容的负极及锂离子电池充放电控制电路的V-端,集成DC-DC降压型稳压芯片的信号地引脚接第二电容的负极、第三电容的负极及锂离子电池充放电控制电路的V-端,集成DC-DC降压型稳压芯片的误差放大器外部补偿引脚接第十二电阻的一端,集成DC-DC降压型稳压芯片的震荡器外部设定引脚接第十一电阻的一端,集成DC-DC降压型稳压芯片的反馈输入引脚接分压点P4,集成DC-DC降压型稳压芯片的输出使能引脚接集成锂离子电池充放电检测及控制芯片的放电控制引脚和第七电阻的一端,集成DC-DC降压型稳压芯片的调制输出引脚接第二电感的一端;所述第一电阻为发光二极管的限流电阻,第一电阻一端接锂离子电池充放电控制电路的V+端,另一端接发光二极管的阳极;所述第二电阻为集成DC-DC降压型锂离子电池充电控制芯片的充电电流设置电阻,第二电阻一端接集成DC-DC降压型锂离子电池充电控制芯片的充电电流设置引脚,另一端接集成DC-DC降压型锂离子电池充电控制芯片的信号地引脚;所述第三电阻为集成DC-DC降压型锂离子电池充电控制芯片充电使能引脚的上拉电阻,第三电阻一端接集成DC-DC降压型锂离子电池充电控制芯片的充电使能引脚,另一端接锂离子电池的正极;所述第四电阻为分压点P2的上偏置分压电阻,第四电阻一端接锂离子电池的正极,另一端接第五电阻于节点P1;所述第五电阻为分压点P2的上偏置分压电阻,第五电阻一端接第四电阻于节点P1,另一端接负温度系数热敏电阻于分压点P2;所述第六电阻为第四电容的充电剩余电能放电限流电阻,第六电阻一端接集成锂离子电池充放电检测及控制芯片的充余电能释放引脚,另一端接第四电容的正极;所述第七电阻为集成DC-DC降压型稳压芯片输出使能引脚的上拉电阻,第七电阻一端接集成DC-DC降压型稳压芯片的输出使能引脚,另一端接锂离子电池的正极;所述第八电阻为分压点P4的上偏置分压电阻,第八电阻一端接锂离子电池充放电控制电路的V+端,另一端接第九电阻于分压点P4;所述第九电阻为分压点P4的下偏置分压电阻,第九电阻一端接第八电阻于分压点P4,另一端接第十电阻于节点P3;所述第十电阻为分压点P4的下偏置分压电阻,第十电阻一端接第九电阻于节点P3,另一端接集成锂离子电池充放电检测及控制芯片的电源地引脚和集成DC-DC降压型稳压芯片的信号地引脚;所述第十一电阻为集成DC-DC降压型稳压芯片的震荡频率设定电阻,第十一电阻一端接集成DC-DC降压型稳压芯片的震荡器外部设定引脚,另一端接集成DC-DC降压型稳压芯片的信号地引脚;所述第十二电阻为集成DC-DC降压型稳压芯片的误差放大器补偿回路电阻,第十二电阻一端接集成DC-DC降压型稳压芯片的误差放大器外部补偿引脚,另一端接第三电容的一端;所述负温度系数热敏电阻为锂离子电池温度传感的负温度系数热敏电阻,负温度系数热敏电阻一端接第五电阻于分压点P2,另一端接集成锂离子电池充放电检测及控制芯片的电源地引脚,负温度系数热敏电阻的本体绝缘部分贴靠在与锂离子电池输出电极连接的导热电路结构上;所述发光二极管为集成DC-DC降压型锂离子电池充电控制芯片的充电工作状态显示发光二极管,发光二极管的阳极接第一电阻的另一端,发光二极管的阴极接集成DC-DC降压型锂离子电池充电控制芯片的充电状态输出引脚;所述第一电感为集成DC-DC降压型锂离子电池充电控制芯片的输出滤波及补偿电感,第一电感一端接集成DC-DC降压型锂离子电池充电控制芯片的输出跟踪检测引脚和第一电容的正极,另一端接集成DC-DC降压型锂离子电池充电控制芯片的调制输出引脚;所述第二电感为集成DC-DC降压型稳压芯片的输出滤波及补偿电感,第二电感一端接集成DC-DC降压型稳压芯片的调制输出引脚,另一端接第四电容的正极和锂离子电池充放电控制电路的V+端;所述第一电容为集成DC-DC降压型锂离子电池充电控制芯片的充电输出滤波及补偿电容,第一电容的正极接集成DC-DC降压型锂离子电池充电控制芯片的输出跟踪检测引脚和第一电感的一端,第一电容的负极接集成DC-DC降压型锂离子电池充电控制芯片的电源地引脚、集成DC-DC降压型锂离子电池充电控制芯片的信号地引脚及锂离子电池充放电控制电路的V-端;所述第二电容为集成DC-DC降压型锂离子电池充电控制芯片的充电输出滤波电容和集成DC-DC降压型稳压芯片的输入滤波及补偿电容,第二电容的正极接集成DC-DC降压型锂离子电池充电控制芯片的充电输出及检测引脚、集成DC-DC降压型稳压芯片的信号电源输入引脚及集成DC-DC降压型稳压芯片的功率电源输入引脚,第二电容的负极接集成DC-DC降压型锂离子电池充电控制芯片的电源地引脚、集成DC-DC降压型锂离子电池充电控制芯片的信号地引脚、集成DC-DC降压型稳压芯片的信号地引脚及集成DC-DC降压型稳压芯片的电源地引脚;所述第三电容为集成DC-DC降压型稳压芯片的误差放大器补偿回路电容,第三电容的一端接第十二电阻的另一端,另一端接集成DC-DC降压型稳压芯片的信号地引脚;所述第四电容为集成DC-DC降压型锂离子电池充电控制芯片的输入滤波及补偿电容和集成DC-DC降压型稳压芯片的输出滤波及补偿电容,第四电容的正极接集成DC-DC降压型锂离子电池充电控制芯片的充电电源输入引脚和第二电感及锂离子电池充放电控制电路的V+端,第四电容的负极接集成DC-DC降压型锂离子电池充电控制芯片的电源地引脚、集成DC-DC降压型稳压芯片的电源地引脚、集成DC-DC降压型锂离子电池充电控制芯片的信号地引脚及集成DC-DC降压型稳压芯片的信号地引脚。
10.如权利要求9所述的采用锂离子电池构成的通用型充电电池,其特征在于,所述集成DC-DC降压型锂离子电池充电控制芯片的型号为MGS2520A或MGS2520B或MGS2520C,所述集成锂离子电池充放电检测及控制芯片的型号为MGS1700A或MGS1700B,所述集成DC-DC降压型稳压芯片的型号为MGS3050或MGS3035。
CN201320588983.6U 2013-09-23 2013-09-23 采用锂离子电池构成的通用型充电电池 Expired - Lifetime CN203536530U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201320588983.6U CN203536530U (zh) 2013-09-23 2013-09-23 采用锂离子电池构成的通用型充电电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201320588983.6U CN203536530U (zh) 2013-09-23 2013-09-23 采用锂离子电池构成的通用型充电电池

Publications (1)

Publication Number Publication Date
CN203536530U true CN203536530U (zh) 2014-04-09

Family

ID=50422707

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201320588983.6U Expired - Lifetime CN203536530U (zh) 2013-09-23 2013-09-23 采用锂离子电池构成的通用型充电电池

Country Status (1)

Country Link
CN (1) CN203536530U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015039583A1 (zh) * 2013-09-23 2015-03-26 李松 采用锂离子电池构成的通用型充电电池及控制方法
WO2015039584A1 (zh) * 2013-09-23 2015-03-26 李松 采用锂离子电池构成的通用型充电电池及控制方法
US11431046B2 (en) * 2018-08-21 2022-08-30 Nio Technology (Anhui) Co., Ltd. Lithium-ion cell using aluminum can

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015039583A1 (zh) * 2013-09-23 2015-03-26 李松 采用锂离子电池构成的通用型充电电池及控制方法
WO2015039584A1 (zh) * 2013-09-23 2015-03-26 李松 采用锂离子电池构成的通用型充电电池及控制方法
US10103412B2 (en) 2013-09-23 2018-10-16 Shenzhen Maigesong Electrical Technology Co. Ltd Universal rechargeable battery constituted by employing lithium-ion battery and control method
US11431046B2 (en) * 2018-08-21 2022-08-30 Nio Technology (Anhui) Co., Ltd. Lithium-ion cell using aluminum can

Similar Documents

Publication Publication Date Title
CN103490112B (zh) 采用锂离子电池构成的通用型充电电池及控制方法
CN103490099B (zh) 采用锂离子电池构成的通用型充电电池及控制方法
CN102299392B (zh) 采用锂离子电池构成的充电电池及控制方法
CN203536537U (zh) 采用锂离子电池构成的通用型充电电池
CN110138025B (zh) 感应垃圾桶可充电电池
CN102394321B (zh) 积层式可储能太阳能电池及其制备方法
CN107275557A (zh) 一种采用锂离子电芯构成的通用型充电电池及其组装方法
CN202142621U (zh) 采用锂离子电池构成的充电电池
CN203536530U (zh) 采用锂离子电池构成的通用型充电电池
CN114982040A (zh) 一种三电极电池及储能系统
CN203607887U (zh) 复合储能装置
CN207009532U (zh) 一种采用锂离子电芯构成的通用型充电电池
CN107069130B (zh) 一种usb充电电池结构
TWI780392B (zh) 能量儲存系統
CN209434923U (zh) 采用锂离子电池构成的通用型可充电电池的新型架构
CN107732068A (zh) 一种太阳能汽车用锂电池
CN2881982Y (zh) 圆柱状锂电池
CN201174404Y (zh) 一种可充电电池
CN206742441U (zh) 一种内置管理电路模块的硬壳封装锂离子电芯
CN207250661U (zh) 一种在负极内置管理电路模块的硬壳封装锂离子电芯
CN202333073U (zh) 快速充电蓄电池
CN202585669U (zh) 一种使用锂电池材料的通用电池结构
CN213520103U (zh) 恒压1.5v锂电池
CN202649437U (zh) 一种电池检测系统
CN214205073U (zh) 一种太阳能发电支持的充电器

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150930

Address after: Longgang District of Shenzhen City, Guangdong province 518000 Ping Ping Street East Nikko Street No. 3 on the third.

Patentee after: SHENZHEN MAIGESONG ELECTRICAL TECHNOLOGY Co.,Ltd.

Address before: Longgang huidou Villa District of Shenzhen City, Guangdong province 518117 B15

Patentee before: Li Song

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20140409