CN203404906U - 空调系统 - Google Patents
空调系统 Download PDFInfo
- Publication number
- CN203404906U CN203404906U CN201320452194.XU CN201320452194U CN203404906U CN 203404906 U CN203404906 U CN 203404906U CN 201320452194 U CN201320452194 U CN 201320452194U CN 203404906 U CN203404906 U CN 203404906U
- Authority
- CN
- China
- Prior art keywords
- refrigerant
- expansion valve
- storage device
- conditioning system
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
本实用新型公开一种空调系统,包括压缩机单元、室外机单元、室内机单元,室内机单元具有室内机蒸发器,在室外机单元和室内机单元之间连接有依次连接的第一膨胀阀、冷媒调节存储装置和第二膨胀阀。由于本实用新型空调系统通过第二膨胀阀和第一膨胀阀实现了压缩机单元、室外机单元和室内机单元内的冷媒充填量和冷媒循环量的控制,通过调节冷媒充填量和冷媒循环量,从而提高空调系统的性能;而且第二膨胀阀和第一膨胀阀串接,这个可以获得比单个膨胀阀更好的节流效果,能更加精确的控制冷媒循环量,使得压缩机单元可以稳定的运行在更低的频率,因而扩展了其运行能力范围。
Description
技术领域
本实用新型涉及空调技术领域,具体涉及一种调节冷媒充填量和冷媒循环量的空调系统。
背景技术
空调系统一般由压缩机、室外机、室内机和节流装置等组成。节流装置一般采用毛细管或膨胀阀。空调系统在不同工况下所需的冷媒循环量和所需的冷媒充填量有所不同,为了达到空调系统的最优化运行,需要对空调系统的冷媒循环量和冷媒充填量进行调节。
为了调节空调系统的冷媒循环量,空调系统内加入开度可调的膨胀阀,通过调节膨胀阀的开度控制冷媒循环量,从而达到优化空调系统的性能。但是由于膨胀阀的开度调节范围有限,特别是当空调系统的冷媒循环量需求极小时,需要将膨胀阀的开度调节到很小,此时膨胀阀的开度调节精确度将会下降。
由于对空调系统能产生影响的冷媒充填量主要是压缩机、室外机和室内机内的冷媒量。为了调节空调系统的冷媒充填量,空调系统中加入冷媒存储装置5,如图1所示。冷媒存储装置5设置于室外机2与膨胀阀6之间。当空调系统处于制冷状态时,冷媒存储装置5内的冷媒状态将会和室外机2的出口处的冷媒状态相同,其为高压液体,密度较大,以R410A冷媒为例,此时的冷媒密度为1000kg/m3量级,因而存放于冷媒存储装置5内的冷媒量较大,而室外机、室内机和压缩机内的冷媒量则变少;当空调系统处于制热状态时,由于冷媒先流经膨胀阀6,此时冷媒存储装置5内的冷媒状态将会和室外机2的入口处的冷媒状态相同,其为低压两相流体,密度较小,以R410A冷媒为例,此时的冷媒密度为150kg/m3量级,因而存放于冷媒存储装置5内的冷媒量较小,而室外机、室内机和压缩机内的冷媒量则将会增加。通过上述冷媒存储装置5可以调节空调系统在制冷状态和制热状态时冷媒充填量的不同需求。但是这种调节仅仅可以调节在制冷状态和制热状态切换时的冷媒充填量,不能调节制在不同制冷状态或在不同制热状态时等不同工况下的冷媒充填量。
发明内容
本实用新型的目的在于提供一种调节冷媒充填量和冷媒循环量的空调系统,该空调系统能在不同工况下调节冷媒充填量和冷媒循环量,并能提高冷媒循环量的精度。
为了实现本实用新型目的,本实用新型提供一种空调系统,包括压缩机单元、室外机单元、室内机单元,室内机单元具有室内机蒸发器,在室外机单元和室内机单元之间连接有依次连接的第一膨胀阀、冷媒调节存储装置和第二膨胀阀。
优选地,所述冷媒调节存储装置为圆柱体。
优选地,所述冷媒调节存储装置为椭圆体。
优选地,所述冷媒调节存储装置为加长的连接管。
优选地,所述冷媒调节存储装置的内容积为室内机单元的室内机蒸发器的内容积的二分之一。
优选地,所述第一膨胀阀和第二膨胀阀均为电磁膨胀阀。
由于本实用新型空调系统通过第二膨胀阀和第一膨胀阀实现了压缩机单元、室外机单元和室内机单元内的冷媒充填量和冷媒循环量的控制,通过调节冷媒充填量和冷媒循环量,从而提高空调系统的性能;而且第二膨胀阀和第一膨胀阀串接,这个可以获得比单个膨胀阀更好的节流效果,能更加精确的控制冷媒循环量,使得压缩机单元可以稳定的运行在更低的频率,因而扩展了其运行能力范围。
附图说明
图1为现有空调系统的结构示意图;
图2为本实用新型第一实施例空调系统的结构示意图;
图3为本实用新型第一实施例空调系统的冷媒调节单元的结构示意图;
图4为本实用新型空调系统冷媒状态的示意图;
图5为本实用新型空调系统的冷媒调节存储装置内冷媒的压力随位于冷媒流动方向上游的电磁膨胀阀的开度变化的曲线图;
图6为本实用新型空调系统的冷媒调节存储装置内冷媒的密度随位于冷媒流动方向上游的电磁膨胀阀的开度变化的曲线图;
图7为本实用新型空调系统的冷媒充填量和运行性能关系的曲线图;
图8为本实用新型第二实施例空调系统的结构示意图;
图9为本实用新型第三实施例空调系统的结构示意图;
图10为本实用新型调节冷媒充填量和冷媒循环量方法的流程图;
图11为本实用新型调节冷媒充填量和冷媒循环量方法中根据不同的工况调节相应电磁膨胀阀的开度的流程图。
本实用新型目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅用以解释本实用新型,并不用于限定本实用新型。相应地,本实用新型提供了一种调节空调系统冷媒充填量和冷媒循环量的方法,包括:
S1,在室外机单元和室内机单元之间连接依次连接的第一膨胀阀、冷媒调节存储装置和第二膨胀阀;
S2,根据不同的工况调节第一膨胀阀和第二膨胀阀中位于冷媒流动方向下游的膨胀阀的开度来调节空调系统的冷媒循环量和调节第一膨胀阀和第二膨胀阀中位于冷媒流动方向上游的膨胀阀的开度来调节空调系统的冷媒充填量。
优选地,在S2中,包括:
S21,建立与室外温度T1对应的目标排气温度Tps和目标冷媒调节存储装置内冷媒温度Tgs的数据库或目标函数;
S22,检测室外温度T、排气温度Tp和冷媒调节存储装置内冷媒温度Tg;
S23,根据室外温度T从数据库中或根据目标函数获取对应的目标排气温度Tps和目标冷媒调节存储装置内冷媒温度Tgs;以及
S24,将排气温度Tp与获取的目标排气温度Tps进行比较以及将冷媒调节存储装置内冷媒温度Tg与获取的目标冷媒调节存储装置内冷媒温度Tgs进行比较,并根据排气温度Tp偏离目标排气温度Tps的程度调节第一膨胀阀和第二膨胀阀中位于冷媒流动方向下游的膨胀阀的开度,根据冷媒调节存储装置内冷媒温度Tg偏离目标冷媒调节存储装置内冷媒温度Tgs的程度调节第一膨胀阀和第二膨胀阀中位于冷媒流动方向上游的膨胀阀的开度。
优选地,在S21中,所述目标冷媒调节存储装置内冷媒温度Tgs为目标冷媒调节存储装置表面温度;在S22中,检测冷媒调节存储装置内冷媒温度Tg是通过检测冷媒调节存储装置51的表面温度来获得的;在S23中根据冷媒调节存储装置的表面温度偏离目标冷媒调节存储装置表面温度的程度调节位于冷媒流动方向上游的膨胀阀的开度。
优选地,在S21中,还建立位于冷媒流动方向上游的膨胀阀的开度与室外温度T1对应的上游膨胀阀开度函数,以及位于冷媒动下游的膨胀阀的开度与室外温度T1对应的下游膨胀阀开度函数;在S23中,还根据室外温度T和上游膨胀阀开度函数获取位于冷媒流动方向上游的膨胀阀的开度,并根据获取的位于冷媒流动方向上游的膨胀阀的开度调节相应的膨胀阀,以及根据室外温度T和下游膨胀阀开度函数获取位于冷媒流动方向下游的膨胀阀的开度,并根据获取的位于冷媒流动方向下游的膨胀阀的开度调节相应的膨胀阀。
优选地,在S21中,将室外温度T1按温度高低划分为至少两个区间,对每个区间建立目标排气温度Tps和目标冷媒调节存储装置内冷媒温度Tgs。
优选地,在S24中,当排气温度Tp与目标排气温度Tps的差值Δtp在预定的值ts1和预定的值ts2之间时,则不对位于冷媒流动方向下游的膨胀阀的开度进行调整,当差值Δtp大于预定的值ts1时,则根据差值Δtp相应的调大位于冷媒流动方向下游的膨胀阀的开度,当差值Δtp小于预定的值ts2时,则根据差值Δtp相应的调小位于冷媒流动方向下游的膨胀阀的开度;当冷媒调节存储装置内冷媒温度Tg与目标冷媒调节存储装置内冷媒温度Tgs的差值Δtg在预定的值ts3和预定的值ts4之间时,则不对位于冷媒流动方向上游的膨胀阀的开度进行调整,当差值Δtg大于预定的值ts3时,则根据差值Δtg调小位于冷媒流动方向上游的膨胀阀的开度,当差值Δtg小于预定的值ts4时,则根据差值Δtg调大位于冷媒流动方向上游的膨胀阀的开度。
由于本实用新型空调系统和方法通过第二膨胀阀和第一膨胀阀实现了压缩机单元、室外机单元和室内机单元内的冷媒充填量和冷媒循环量的控制,通过调节冷媒充填量和冷媒循环量,从而提高空调系统的性能;而且第二膨胀阀和第一膨胀阀串接,这个可以获得比单个膨胀阀更好的节流效果,能更加精确的控制冷媒循环量,使得压缩机单元可以稳定的运行在更低的频率,因而扩展了其运行能力范围。
本实用新型提供一种空调系统,参照图2,其揭示了本实用新型的第一实施例,在本实施例中,该空调系统包括压缩机单元10、室外机单元20、室内机单元30、四通阀40以及冷媒调节单元50。
压缩机单元10用于将冷媒进行压缩,其包括压缩机、油分离器和气液分离器,压缩机单元10对冷媒进行压缩的工作过程已为本领域的技术人所熟知,在此不再详加说明。该压缩机单元10具有进口11和出口12。
室外机单元20用于冷媒与室外环境进行热交换,从而在制冷状态时向室外释放热量或在制热状态时从室外吸收热量,该室外机单元20具有第一外机端口21和第二外机端口22。
室内机单元30用于与室内环境进行热交换,其具有室内机蒸发器。在制冷状态时,冷媒在室内机蒸发器内蒸发而吸收室内环境的热量;在制热状态时,冷媒流经室内机蒸发器而释放在室外吸收的热量。该室内机单元30具有第一内机端口31和第二内机端口32。
四通阀40具有四个端口,其分别与压缩机单元10的进口11和出口12以及室外机单元20的第一外机端口21和室内机单元30的第一内机端口31连接。
冷媒调节单元50具有冷媒调节存储装置51、第一电磁膨胀阀52和第二电磁膨胀阀53。第一电磁膨胀阀52的一端连接室外机单元20的第二外机端口22,其另一端连接冷媒调节存储装置51;第二电磁膨胀阀53的一端连接冷媒调节存储装置51,其另一端连接室内机单元30的第二内机端口32,从而第一电磁膨胀阀52、冷媒调节存储装置51和第二电磁膨胀阀53依次串联后连接在室外机单元20和室内机单元30之间。冷媒调节存储装置51为圆柱体,其内容积优选为室内机单元30的室内机蒸发器的内容积的一半。
当空调系统在制冷状态时,压缩机单元10将压缩后的冷媒通过四通阀40相应的端口输送至室外机单元20释放热量,释放热量后的冷媒经过第一电磁膨胀阀52、冷媒调节存储装置51和第二电磁膨胀阀53进入室内机单元30,从而冷媒在室内机单元30的室内机蒸发器蒸发而吸收室内环境的热量,蒸发后的冷媒通过四通阀40相应的端口进入压缩单元10内再进行压缩;当空调系统在制热状态时,压缩机单元10将压缩后的冷媒通过四通阀40相应的端口输送至室内机单元30释放热量,释放热量后的冷媒经过第二电磁膨胀阀53、冷媒调节存储装置51和第一电磁膨胀阀52进入室外机单元20,从而冷媒在室外机单元20蒸发而吸收室外环境的热量,蒸发后的冷媒通过四通阀40相应的端口进入压缩单元10内再进行压缩。
本实用新型冷媒调节单元50的第一电磁膨胀阀52和第二电磁膨胀阀53可独立的调节开度的大小,其中位于冷媒流动方向上游的电磁膨胀阀(在制冷状态时为第一电磁膨胀阀52,在制热状态时为第二电磁膨胀阀53)用于调节冷媒调节存储装置51内冷媒的冷媒量,从而调节压缩机单元10、室外机单元20和室内机单元30内的冷媒充填量;位于冷媒流动方向下游的电磁膨胀阀(在制冷状态时为第二电磁膨胀阀53,在制热状态时为第一电磁膨胀阀52)用于调节排气温度,从而可以调节冷媒循环量。以下对本实用新型调节冷媒充填量和冷媒循环量的工作原理说明如下。
本实用新型调节冷媒充填量的工作原理说明如下。
请参与图3和图4,在制热状态时,选择第二电磁膨胀阀53连接室内机单元30处的A点、冷媒调节存储装置51内的B点以及第一电磁膨胀阀52连接室外机单元20处的C点作为参考点,则A点的冷媒为高压高密度液体,C点的冷媒为低压低密度的两相冷媒,B点的冷媒状态与第二电磁膨胀阀53和第一电磁膨胀阀52的开度有关,其主要是与第二电磁膨胀阀53的开度有关。在A点处冷媒的压力P(A)和C点处冷媒的压力P(C)保持不变的情况下,随着第二电磁膨胀阀53的开度的减小,冷媒调节存储装置51内B点的压力P(B)也越小,如图5所示。此时,冷媒调节存储装置51内冷媒的冷媒密度在干度一致的前提下,冷媒调节存储装置51内的压力P(B)的减小会导致冷媒的密度ρ(B)的减小,如图6所示。随冷媒调节存储装置51内冷媒的密度ρ(B)的减小,则冷媒调节存储装置51内的冷媒量也会减小,由于空调系统的冷媒总量不会发生变化,因此压缩机单元10、室外机单元20和室内机单元30内的冷媒充填量则会增大;反之随着第二电磁膨胀阀53的开度的增大,则冷媒调节存储装置51内的冷媒量增大,相应的压缩机单元10、室外机单元20和室内机单元30内的冷媒充填量则减小。
在制冷状态时,其工作过程与在制热状态时类似,其不同之处是冷媒流动方向是相反的,此时第一电磁膨胀阀52位于冷媒流动方向的上游,第二电磁膨胀阀53位于冷媒流动方向的下游,通过调节第一电磁膨胀阀52可以调节冷媒调节存储装置51内的冷媒量,进而调节压缩机单元10、室外机单元20和室内机单元30内的冷媒充填量。
由于空调系统在特定工况运行下时,压缩机单元10、室外机单元20和室内机单元30内的冷媒充填量存在一个最优值,如图7所示,因此通过在不同工况下相应的调节第二电磁膨胀阀53的开度,从而可以调节压缩机单元10、室外机单元20和室内机单元30内的冷媒充填量,使冷媒充填量达到最优值,进而提高空调系统的性能。
本实用新型调节冷媒循环量的工作原理说明如下。
在制冷状态下,空调系统在不同工况下,从室内环境吸收的热量不同,若空调系统的负荷较大,则冷媒吸收的热量较多,从而经过压缩机单元10压缩后的冷媒在出口12处的温度较高,亦即排气温度较高,此时需要增大空调系统的冷媒循环量,通过调大位于冷媒流动方向的下游的第二电磁膨胀阀53的开度,从而增大进入室内机单元30的冷媒量,因此提高冷媒循环量以增大空调系统从室内环境吸收热量的效率;反之则调小位于冷媒流动方向的下游的第二电磁膨胀阀53的开度,从而进减小进入室内机单元30的冷媒量,因此降低冷媒循环量以减小空调系统从室内环境吸收热量的效率。
由于本实用新型空调系统通过第二电磁膨胀阀53和第一电磁膨胀阀52实现了压缩机单元10、室外机单元20和室内机单元30内的冷媒充填量和冷媒循环量的控制,通过调节冷媒充填量和冷媒循环量,从而提高空调系统的性能;而且第二电磁膨胀阀53和第一电磁膨胀阀52串接,这个可以获得比单个膨胀阀更好的节流效果,能更加精确的控制冷媒循环量,使得压缩机单元10可以稳定的运行在更低的频率,因而扩展了其运行能力范围。
请参阅图8,其揭示了本实用新型的第二实施例,本实施例之空调系统与第一实施例之空调系统相似,其不同之处在于:冷媒调节存储装置54为椭圆体。
请参阅图9,其揭示了本实用新型的第三实施例,本实施例之空调系统与第一实施例之空调系统相似,其不同之处在于:冷媒调节存储装置55为加长的连接管。
请参阅图1和图10,相应的,本实用新型提供了一种空调系统的控制方法,该方法包括:
S1,在室外机单元和室内机单元之间连接依次连接的第一电磁膨胀阀52、冷媒调节存储装置51和第二电磁膨胀阀53;
S2,根据不同的工况调节第一电磁膨胀阀52和第二电磁膨胀阀53中位于冷媒流动方向下游的电磁膨胀阀的开度来调节空调系统的冷媒循环量和调节第一膨胀阀和第二膨胀阀中位于冷媒流动方向上游的电磁膨胀阀的开度来调节空调系统的冷媒充填量。
在S2中,根据不同的工况调节位于冷媒流动方向下游的电磁膨胀阀的开度和位于冷媒流动方向上游的电磁膨胀阀的开度的具体操作包括:
S21,建立与室外温度T1对应的目标排气温Tps度和目标冷媒调节存储装置内冷媒温度Tgs的数据库或目标函数;
S22,检测室外温度T、排气温度Tp和冷媒调节存储装置内冷媒温度Tg;
S23,根据室外温度T从数据库中或根据目标函数获取对应的目标排气温度Tps和目标冷媒调节存储装置内冷媒温度Tgs;以及
S24,将排气温度Tp与获取的目标排气温度Tps进行比较以及将冷媒调节存储装置内冷媒温度Tg与获取的目标冷媒调节存储装置内冷媒温度Tgs进行比较,并根据排气温度Tp偏离目标排气温度Tps的程度调节第一电磁膨胀阀52和第二电磁膨胀阀53中位于冷媒流动方向下游的电磁膨胀阀的开度,根据冷媒调节存储装置内冷媒温度Tg偏离目标冷媒调节存储装置内冷媒温度Tgs的程度调节第一电磁膨胀阀52和第二电磁膨胀阀53中位于冷媒流动方向上游的电磁膨胀阀的开度。
其中,在S21中,目标冷媒调节存储装置内冷媒温度Tgs为目标冷媒调节存储装置表面温度;在S22中,检测冷媒调节存储装置内冷媒温度Tg是通过检测冷媒调节存储装置51的表面温度来获得的,由于冷媒调节存储装置51的冷媒处于两相区,处于两相区的冷媒的压力与温度存在一一对应关系,因此在给定的焓值情况下,冷媒调节存储装置51内冷媒量可以通过检测冷媒调节存储装置51的表面温度来推算出来;进而在S23中可以根据冷媒调节存储装置51的表面温度偏离目标冷媒调节存储装置表面温度的程度调节位于冷媒流动方向上游的电磁膨胀阀的开度,从而调节压缩机单元10、室外机单元20和室内机单元30内的冷媒充填量。
此外,在S21中,还建立位于冷媒流动方向上游的电磁膨胀阀的开度与室外温度T1对应的上游膨胀阀开度函数,以及位于冷媒动下游的电磁膨胀阀的开度与室外温度T1对应的下游膨胀阀开度函数;而且在S21中将室外温度T1按温度高低划分为至少两个区间,比如在制冷状态时,制冷区间一的室外温度T1>33度,制冷区间二的室外温度T1≤33度,在制热状态时,制热区间一的室外温度T1>5度,制热区间二的室外温度T1≤5,对每个区间建立最优化能力的目标排气温度Tps和目标冷媒调节存储装置内冷媒温度Tgs,具体参数见下表:
相应地,在S23中,还根据室外温度T和上游膨胀阀开度函数获取位于冷媒流动方向上游的电磁膨胀阀的开度,并根据获取的位于冷媒流动方向上游的电磁膨胀阀的开度调节相应的电磁膨胀阀;以及根据室外温度T和下游膨胀阀开度函数获取位于冷媒流动方向下游的电磁膨胀阀的开度,并根据获取的位于冷媒流动方向下游的电磁膨胀阀的开度调节相应的电磁膨胀阀。
相应地,在S24中,当排气温度Tp与目标排气温度Tps的差值Δtp在预定的值ts1和预定的值ts2(其中预定的值ts1大于预定的值ts2)之间时,则不对位于冷媒流动方向下游的电磁膨胀阀的开度进行调整,当差值Δtp大于预定的值ts1时,则根据差值Δtp相应的调大位于冷媒流动方向下游的电磁膨胀阀的开度,当差值Δtp小于预定的值ts2时,则根据差值Δtp相应的调小位于冷媒流动方向下游的电磁膨胀阀的开度;当冷媒调节存储装置内冷媒温度Tg与目标冷媒调节存储装置内冷媒温度Tgs的差值Δtg在预定的值ts3和预定的值ts4(其中预定的值ts3大于预定的值ts4)之间时,则不对位于冷媒流动方向上游的电磁膨胀阀的开度进行调整,当差值Δtg大于预定的值ts3时,则根据差值Δtg调小位于冷媒流动方向上游的电磁膨胀阀的开度,当差值Δtg小于预定的值ts4时,则根据差值Δtg调大位于冷媒流动方向上游的电磁膨胀阀的开度。
由于本实用新型方法通过在室外机单元20和室内机单元30之间连接依次连接的第一电磁膨胀阀52、冷媒调节存储装置51和第二电磁膨胀阀53,根据排气温度Tp与目标排气温度Tps来调节位于冷媒流动方向下游的电磁膨胀阀的开度以调节冷媒循环量,以及根据冷媒调节存储装置内冷媒温度Tg与目标冷媒调节存储装置内冷媒温度Tgs来调节位于冷媒流动方向上游的电磁膨胀阀的开度以调节冷媒充填量,从而使空调系统在各工况下均能在最优化的状态运行;而且第二电磁膨胀阀53和第一电磁膨胀阀52串接,这个可以获得比单个膨胀阀更好的节流效果,能更加精确的控制冷媒循环量,使得压缩机单元10可以稳定的运行在更低的频率,因而扩展了其运行能力范围。
以上仅为本实用新型的优选实施例,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本实用新型的专利保护范围内。
Claims (6)
1.一种空调系统,包括压缩机单元、室外机单元、室内机单元,室内机单元具有室内机蒸发器,其特征在于,在室外机单元和室内机单元之间连接有依次连接的第一膨胀阀、冷媒调节存储装置和第二膨胀阀。
2.如权利要求1所述的空调系统,其特征在于,所述冷媒调节存储装置为圆柱体。
3.根据权利要求1所述的空调系统,其特征在于,所述冷媒调节存储装置为椭圆体。
4.根据权利要求1所述的空调系统,其特征在于,所述冷媒调节存储装置为加长的连接管。
5.如权利要求1-4任一项所述的空调系统,其特征在于,所述冷媒调节存储装置的内容积为室内机单元的室内机蒸发器的内容积的二分之一。
6.如权利要求1所述的空调系统,其特征在于,所述第一膨胀阀和第二膨胀阀均为电磁膨胀阀。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201320452194.XU CN203404906U (zh) | 2013-07-26 | 2013-07-26 | 空调系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201320452194.XU CN203404906U (zh) | 2013-07-26 | 2013-07-26 | 空调系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203404906U true CN203404906U (zh) | 2014-01-22 |
Family
ID=49940838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201320452194.XU Expired - Lifetime CN203404906U (zh) | 2013-07-26 | 2013-07-26 | 空调系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203404906U (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104344508A (zh) * | 2013-07-26 | 2015-02-11 | 广东美的制冷设备有限公司 | 调节冷媒充填量和冷媒循环量的空调系统及方法 |
-
2013
- 2013-07-26 CN CN201320452194.XU patent/CN203404906U/zh not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104344508A (zh) * | 2013-07-26 | 2015-02-11 | 广东美的制冷设备有限公司 | 调节冷媒充填量和冷媒循环量的空调系统及方法 |
CN104344508B (zh) * | 2013-07-26 | 2017-06-30 | 广东美的制冷设备有限公司 | 调节冷媒充填量和冷媒循环量的空调系统及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103765124B (zh) | 制冷装置 | |
CN103471275A (zh) | 补气增焓的空调循环系统及其控制方法 | |
CN103673416A (zh) | 汽车空调系统中制冷剂流量的控制方法及汽车空调系统 | |
CN103017417B (zh) | 一种蒸发器系统及蒸发器流量控制方法 | |
CN202133556U (zh) | 一种制冷剂循环模拟系统 | |
CN104969014A (zh) | 冷冻循环装置和冷冻循环装置的控制方法 | |
CN107560210B (zh) | 一种制冷系统 | |
CN201407856Y (zh) | 一种双温制冷循环系统 | |
CN203298540U (zh) | 离心式冷水机组 | |
CN103954067A (zh) | 制冷装置 | |
CN201429257Y (zh) | 一种电子膨胀阀制冷系统 | |
CN105206162A (zh) | 一种不同节流机构性能对比实验台 | |
KR20120114576A (ko) | 공기 조화기 | |
CN104344508B (zh) | 调节冷媒充填量和冷媒循环量的空调系统及方法 | |
CN104344610B (zh) | 空调机组 | |
CN203404906U (zh) | 空调系统 | |
CN103776186A (zh) | 涡轮制冷机 | |
CN201748722U (zh) | 空调器的节流装置 | |
US20120073316A1 (en) | Control of a transcritical vapor compression system | |
CN104879950A (zh) | 空调一体机系统及其控制方法 | |
CN103234298B (zh) | 一种用于空调制冷设备性能测试装置的制冷回路 | |
CN109654597B (zh) | 一种能够调节换热量的空调系统 | |
CN109556329B (zh) | 电子膨胀阀过热度控制方法、系统及空调设备 | |
CN105358918B (zh) | 制冷剂回路和空调装置 | |
CN203908089U (zh) | 制冷装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20140122 |
|
CX01 | Expiry of patent term |