CN203164156U - 一种利用声速变化的超声气体相对湿度检测装置 - Google Patents

一种利用声速变化的超声气体相对湿度检测装置 Download PDF

Info

Publication number
CN203164156U
CN203164156U CN 201220632975 CN201220632975U CN203164156U CN 203164156 U CN203164156 U CN 203164156U CN 201220632975 CN201220632975 CN 201220632975 CN 201220632975 U CN201220632975 U CN 201220632975U CN 203164156 U CN203164156 U CN 203164156U
Authority
CN
China
Prior art keywords
ultrasonic
module
relative humidity
cavity
display module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN 201220632975
Other languages
English (en)
Inventor
宁更新
叶家恒
韦岗
聂文斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN 201220632975 priority Critical patent/CN203164156U/zh
Application granted granted Critical
Publication of CN203164156U publication Critical patent/CN203164156U/zh
Anticipated expiration legal-status Critical
Withdrawn - After Issue legal-status Critical Current

Links

Images

Abstract

本实用新型公开了一种利用声速变化的超声气体相对湿度检测装置,检测装置包控制显示模块和测量腔,其中,控制显示模块包括DSP控制模块、显示模块和电源模块;所述DSP控制模块用于产生固定频率超声波信号供超声波发射器发射,控制超声波接收器的移动,并进行运算处理;数码管显示模块主要是把DSP控制模块运算的结果显示在显示模块上;电源模块负责整个装置的电力供给。本实用新型通过测量声波在100%湿度、0%湿度和当前湿度条件下的传播速度得到当前所监测环境的相对湿度指数。本实用新型具有对测量环境要求低,仪器价格便宜,测量方便快捷,测量结果准确、可靠等优点,有着重要的实际应用价值。

Description

一种利用声速变化的超声气体相对湿度检测装置
技术领域
本实用新型涉及超声波传播速度测量的技术领域,具体涉及一种通过测量超声波传播速度来实现对气体相对湿度的检测装置。 
背景技术
气体湿度反映的是气体中水分的含量,是环境监测中一个重要的参数指标。 
工农业生产、气象、环保、国防、科研、航天等部门都需要经常对环境的湿度进行测量和控制;在日常生活中,空气湿度对人的健康也有着重要的影响,湿度的测量可以对人体舒适度作出衡量,从而提高人的舒适度,改善人类的生活环境。可见,对环境湿度的控制以及对工业材料水份值的检测与分析都已经成为了比较普遍的技术要求之一。 
但是,在常规的环境参数中,湿度是最难准确测量的一个参数。测量湿度要比测量温度等参数要复杂得多。这是由于温度是一个独立的被测量,而湿度却受到大气压强、温度等因素的影响,而且,湿度的校准也是一个难题。 
目前测量湿度的方法有很多。人工操作的有毛发湿度计、干湿球湿度计、露点法等等。前两种方法一般存在滞后和精度不高等固有缺点;露点法的成本高,而且需要专业的操作人员,并且对污染物敏感。电子测量最常见的是利用电容式湿度传感器测量,比如利用电容式湿度传感器测量的“用于确定气体湿度的装置和方法”(专利申请号:01812581.6)、“温湿度测量装置”(专利号200920106276.2)等。电容式传感器缺点在于输出具有非线性,并且寄生电容的影响往往降低传感器的灵敏度,导致测量精度降低。而且目前的湿度测量装置 都必须把装置放置于待测气体中持续一定时间方能获得较为精确的结果。 
针对目前现有的气体湿度检测方法和装置的缺陷,本实用新型提出了一种全新的、基于声学的测量气体湿度的装置,并且通过抽取待测样本检测的形式取代传统的放置测量装置于待测样本中的方法。本实用新型的检测方法新颖,装置构造简单,测量便捷,成本也比较低,使用范围广。 
实用新型内容
本实用新型的目的在于克服现有技术存在的上述不足,提供一种利用声速变化的超声气体相对湿度检测装置。 
一种利用声速变化的超声气体相对湿度检测装置,其包控制显示模块和测量腔,其中,控制显示模块包括DSP控制模块、显示模块和电源模块;所述DSP控制模块与电源模块和显示模块连接,DSP控制模块还与测量腔中的超声波发射器和超声波接收器连接,所述DSP控制模块用于产生固定频率超声波信号供超声波发射器发射,控制超声波接收器的移动,并进行运算处理;显示模块主要是把DSP控制模块运算的结果显示在显示模块上;电源模块负责整个装置的电力供给。 
进一步的,所述装置还包括与DSP控制模块连接的USB输出模块,USB输出模块负责把测量得到的数据导入到计算机等设备中。 
进一步的,所述测量腔包括腔体,腔体一端设有用于抽取样本气体的活塞装置A,活塞装置A内侧面测设超声发射器B,腔体中还设有可滑动的超声接收器C,腔体的另一端由盖子D密封。 
进一步的,所述腔体内还设有一个超声加湿器E,用于以保证腔体内湿度达到100%。 
进一步的,所述腔体中还包括在0%湿度条件下用于确保腔体内部气体完全干燥的透气膜F, 透气膜F放置在腔体出口。 
上述检测装置的检测方法包括:其通过测量声波在100%湿度、0%湿度和当前湿度条件下的传播速度得到当前所监测环境的相对湿度指数: 
x = c T - c 0 c 100 - c 0 × 100 %
其中,x代表待测环境的相对湿度,cT表示在待测环境中测得的声波速度,c0表示湿度为0%时的声波速度,c100表示湿度为100%时的声波速度。 
进一步的,所述检测方法中,通过驻波法测量设定频率f的正弦声波在气体中传播时的波长λ,进而计算出声波的传播速度。  
进一步的,所述检测方法中,通过DSP信号发生器产生正弦信号,通过超声波发射器S1转换为声波并向超声波接收器S2发射,超声波接收器S2把接收到的超声波转换成电压信号,超声波接收器S2在接收超声波的同时还会反射一部分超声波,并与超声波发射器S1发出的超声波产生定域干涉,根据波的干涉理论,当S1和S2之间距离L恰好为半波长的整数倍时,即 
L = k λ 2 , k = 0,1,2,3 . . . . . 时 
形成驻波共振,任意两个相邻的共振态之间,S2的位移为 
ΔL = L k + 1 - L k = λ 2 - - - ( 5 )
通过测量得S1和S2之间的距离变化ΔL(可由传感器读出),最后通过声速公式: 
v = λ · f - - - ( 6 )
求得三种情况下的声速分别: 
1)100%湿度下声速 
c 100 = f · λ 100 - - - ( 7 )
2)0%湿度下声速 
c 0 = f · λ 0 - - - ( 8 )
3)待测湿度下声速 
c T = f · λ T - - - ( 9 )
进而得到当前环境的湿度
Figure DEST_PATH_GDA0000323184278
 。 
与现有技术相比,本实用新型具有如下优点和有益效果:  
本实用新型的超声湿度测量相对于传统的测量方法有着对测量环境要求低,仪器价格便宜,测量方便快捷,测量结果准确、可靠等优点,有着重要的实际应用价值。本实用新型利用在相同温度下,气体湿度大小与声波传播速度的关系,提出了一种超声波测量空气湿度装置,该装置简单实用,检测方便快捷,可广泛应用于日常生活环境测量领域。超声波具有传播方向性强的特性,能量易于集中,使得仪器容易检测到超声信号;另外,超声波的频率高于人类的听觉范围,在检测的时候不会影响人类的正常作息。 
附图说明
图1是相同的温度下,相对湿度与气体声速之间的函数关系。 
图2是测量声波波长的测量腔示意图。 
图3是本实施方式超声气体相对湿度检测装置的结构示意图。 
图4a、图4b、图4c是实施方式中100%湿度、待测湿度和0%湿度下测量腔的剖面示意图。 
图5是本实用新型超声测湿的实现步骤流程图。 
图6是本实用新型超声气体相对湿度检测装置中的DSP模块流程图。 
具体实施方式
以下结合实例对本实用新型的实施作进一步说明,但本实用新型的实施和保护不限于此。 
本实用新型利用的原理:声波在不同湿度的空气中传播的速度不一样,而且这个差异是比较明显的。在同一温度的情况下,空气相对湿度越高,声波的传播速率越低。 
声速与声源的性质无关,只与媒质的弹性、密度以及温度有关。根据声波的传播理论,声波在气体中传播的速度为: 
V = K ρ - - - ( 1 )
上式中,K为体积弹性模量;ρ为气体的密度。由于含有定量水蒸气的气体比干燥气体的密度要小,而且含水蒸气的气体与干燥气体相比,K比较大,所以在相同温度下,湿度比较高的气体中,声速比较大。 
同时,大量的研究表明,在相同的温度下,相对湿度越大,声速越高,而且呈线性关系(如图1)。 
可以用式子表示出来: 
x 100 % = c T - c 0 c 100 - c 0 - - - ( 2 )
上式中,x代表待测环境的相对湿度,cT表示在待测环境中测得的声波速度,c0表示湿度为0%时的声波速度,c100表示湿度为100%时的声波速度。 
因此,通过测量声波在100%湿度、0%湿度和当前湿度条件下的传播速度来 得出快速得到当前所监测环境的相对湿度指数 
x = c T - c 0 c 100 - c 0 × 100 % - - - ( 3 )
本实施方式采用声波的驻波特性来测量声波的传播速度。根据波动理论,得出有以下关系: 
c = f · λ - - - ( 4 )
上式(4)中,c代表声波的传播速度,f代表声波的频率,λ代表声波的波长。 
因此只需要测量特定频率f的声波在气体中传播时的波长λ,便可以计算出声波的传播速度。通过驻波法,可以精确测量出正弦声波的波长。 
测量波长的测量腔如图2所示。DSP信号发生器产生正弦信号,通过超声波发射器S1转换为声波并向超声波接收器S2发射,超声波接收器可以把接收到的超声波转换成电压信号。S2在接收超声波的同时还会反射一部分超声波,并与S1发出的超声波产生定域干涉。根据波的干涉理论,当S1和S2之间距离L恰好为半波长的整数倍时,即 
L = k λ 2 , k = 0,1,2,3 . . . . . 时 
形成驻波共振。任意两个相邻的共振态之间,S2的位移为 
ΔL = L k + 1 - L k = λ 2 - - - ( 5 )
因此,当S1和S2之间的距离L连续改变时,接收器上的信号幅度每一次周期性变化,就相当于S1和S2之间的距离改变了λ/2。 
而S1和S2之间的距离变化很容易测得,如可以通过传感器读出。最后通过声速公式: 
v = λ · f - - - ( 6 )
求得三种情况下的声速分别: 
1)100%湿度下声速 
c 100 = f · λ 100 - - - ( 7 )
2)0%湿度下声速 
c 0 = f · λ 0 - - - ( 8 )
3)待测湿度下声速 
c T = f · λ T - - - ( 9 )
将式(7)、式(8)和式(9)带入到式(3)既得到当前环境的湿度。 
如图3所示,是本实施方式超声气体相对湿度检测装置的结构示意图,主要分为两个部分:控制显示模块部分和测量腔部分。 
其中,控制显示模块包括了DSP控制模块、数码管显示模块和电源模块。DSP控制模块用于产生固定频率信号,控制超声接收挡板的移动,并进行运算处理;数码管显示模块主要是把运算的结果(即待测湿度)显示在数码管上;USB输出模块负责把测量得到的数据导入到计算机等设备中;电源模块则是负责整个装置的电力供给。 
图4a、图4b、图4c是实施方式中100%湿度、待测湿度和0%湿度下测量腔的剖面示意图。 
三个腔体相同的部分是,都有用于抽取样本气体的活塞201、超声发射器202、可前后滑动活动的超声波接收器203以及封闭腔体的盖子204。针对要测量的环境的不同要求,在100%湿度的腔体内设置了一个超声加湿器401(如图4b),以保证腔体内湿度达到100%;0%湿度的腔体出口放置一块内置干燥剂的 透气膜402(如图4c),以确保腔体内部气体完全干燥。 
本实例中,DSP模块选用ARM架构芯片;测量腔材料选用不锈钢;加湿器选用φ16mm压电陶瓷震荡雾化片;干燥剂选用Mg(ClO4)2(高氯酸镁),可烘干重复使用;超声波发射器与接收器选用TCT40-10型号,10MM/40KHz分体超声波传感器(发射T,接收R一对),数码管选用一个三位8段绿色数码管。 
测量方法和步骤按照图5所示进行。 
步骤一:使用活塞,先把三个腔体内的空气挤出(本实用新型也可以采用一个腔体,在不同测试条件下作调整即可,如确定是否使用超声波加湿器或用于确保腔体内部气体完全干燥的透气膜F),然后抽动活塞抽取待测气体进入三根腔体内,合上盖子。同时,0%湿度腔体内气体在通过干燥剂,进行干燥。 
步骤二:对100%湿度腔体进行加湿操作。 
步骤三:按照图6的流程,超声发射器在三根腔体内发射频率为f的超声波,使用驻波法对三根管道内的超声波进行声速测量,分别得到湿度100%声速C100、湿度0%声速c0,以及待测湿度声速cT。 
步骤三:根据所得声速,根据公式(3)得到待测环境的湿度,并在数码管上显示测量结果。 
上述实施例为本实用新型较佳的实施方式,但本实用新型的实施方式并不受上述实施例的限制,其它的任何未背离本实用新型的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本实用新型的保护范围之内。 

Claims (5)

1.一种利用声速变化的超声气体相对湿度检测装置,其特征在于包控制显示模块和测量腔,其中,控制显示模块包括DSP控制模块、显示模块和电源模块;所述DSP控制模块与电源模块和显示模块连接,DSP控制模块还与测量腔中的超声波发射器和超声波接收器连接,所述DSP控制模块用于产生固定频率超声波信号供超声波发射器发射,控制超声波接收器的移动,并进行运算处理;显示模块主要是把DSP控制模块运算的结果显示在显示模块上;电源模块负责整个装置的电力供给。
2.根据权利要求1所述的一种利用声速变化的超声气体相对湿度检测装置,其特征在于还包括与DSP控制模块连接的USB输出模块,USB输出模块负责把测量得到的数据导入到计算机设备中。
3.根据权利要求1所述的一种利用声速变化的超声气体相对湿度检测装置,其特征在于测量腔包括腔体,腔体一端设有用于抽取样本气体的活塞,活塞内侧面测设超声发射器,腔体中还设有可滑动的超声接收器,腔体的另一端由盖子密封。
4.根据权利要求3所述的一种利用声速变化的超声气体相对湿度检测装置,其特征在于所述腔体内还设有一个超声加湿器E,用于以保证腔体内湿度达到100%。
5.根据权利要求4所述的一种利用声速变化的超声气体相对湿度检测装置,其特征在于所述腔体中还包括在0%湿度条件下用于确保腔体内部气体完全干燥的透气膜F, 透气膜F放置在腔体出口。
CN 201220632975 2012-11-26 2012-11-26 一种利用声速变化的超声气体相对湿度检测装置 Withdrawn - After Issue CN203164156U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201220632975 CN203164156U (zh) 2012-11-26 2012-11-26 一种利用声速变化的超声气体相对湿度检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201220632975 CN203164156U (zh) 2012-11-26 2012-11-26 一种利用声速变化的超声气体相对湿度检测装置

Publications (1)

Publication Number Publication Date
CN203164156U true CN203164156U (zh) 2013-08-28

Family

ID=49025333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201220632975 Withdrawn - After Issue CN203164156U (zh) 2012-11-26 2012-11-26 一种利用声速变化的超声气体相对湿度检测装置

Country Status (1)

Country Link
CN (1) CN203164156U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181229A (zh) * 2014-08-05 2014-12-03 华北电力大学 一种基于声学的汽轮机排汽湿度在线测量系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181229A (zh) * 2014-08-05 2014-12-03 华北电力大学 一种基于声学的汽轮机排汽湿度在线测量系统及方法

Similar Documents

Publication Publication Date Title
CN103278561B (zh) 通用型超声波液体浓度检测装置
CN108663296B (zh) 一种基于双频超声的粉尘浓度检测系统及检测方法
CN102980941B (zh) 一种利用声速变化的超声气体相对湿度检测方法及装置
CN207215243U (zh) 一种基于超声波的液位测量装置
CN102520019B (zh) 一种谐振式露点测量方法
CN107917768B (zh) 一种基于低频声波的空气温度测量装置及方法
CN108535158A (zh) 一种声-电复合的粉尘浓度检测系统及检测方法
CN204758542U (zh) 一种金属结构的裂纹的检测装置
CN102670252B (zh) 颅内压无创测量方法及系统
CN110296913B (zh) 一种可燃粉尘扩散动态浓度的检测系统及其检测方法
CN102680412A (zh) 利用光声光谱法检测微量水蒸气浓度的方法
CN204214816U (zh) 一种利用超声波检测蠕墨铸铁蠕化率的装置
CN203164156U (zh) 一种利用声速变化的超声气体相对湿度检测装置
CN201583657U (zh) 带温度和湿度补偿的超声波测距装置
Young Wireless sensor system for measurement of violin bowing parameters
CN201600312U (zh) 利用粮堆中机械波传播过程检测粮堆密度的装置
CN110568074B (zh) 基于非接触多点测振与Hilbert变换的风力机叶片裂纹定位方法
CN102830084A (zh) 一种用于大气可吸入颗粒物浓度在线检测的传感器
CN203732109U (zh) 基于Cortex M3内核处理器的气体流量测量电路
CN201788170U (zh) 基于rbf人工神经网络的saw气体传感器
SE0300848D0 (sv) Acoustic Analysis of Gas Mixtures
CN203396721U (zh) 一种基于ZigBee网络的木地板含水率检测系统
CN202562842U (zh) 利用光声光谱法检测微量水蒸气浓度的装置
CN207976230U (zh) 一种河海口水域的平均水温测量装置
CN203705298U (zh) 一种超声波比重测量装置

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20130828

Effective date of abandoning: 20151202

C25 Abandonment of patent right or utility model to avoid double patenting