CN102830084A - 一种用于大气可吸入颗粒物浓度在线检测的传感器 - Google Patents

一种用于大气可吸入颗粒物浓度在线检测的传感器 Download PDF

Info

Publication number
CN102830084A
CN102830084A CN2012103089855A CN201210308985A CN102830084A CN 102830084 A CN102830084 A CN 102830084A CN 2012103089855 A CN2012103089855 A CN 2012103089855A CN 201210308985 A CN201210308985 A CN 201210308985A CN 102830084 A CN102830084 A CN 102830084A
Authority
CN
China
Prior art keywords
infrared pulse
sensor
infrared
pulse light
conversion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012103089855A
Other languages
English (en)
Inventor
张思福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU STANFORD INSTRUMENT CO Ltd
Original Assignee
SUZHOU STANFORD INSTRUMENT CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU STANFORD INSTRUMENT CO Ltd filed Critical SUZHOU STANFORD INSTRUMENT CO Ltd
Priority to CN2012103089855A priority Critical patent/CN102830084A/zh
Publication of CN102830084A publication Critical patent/CN102830084A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种用于大气可吸入颗粒物浓度在线检测的传感器,包括光声转换腔、拾音器以及红外脉冲光源;所述光声转换腔由一密闭容器构成,该密闭容器的侧壁上设有透光窗口,透光窗口作为光声转换腔的照射窗,密闭容器上还设有进气口和出气口,进气口和出气口分别与密闭容器的内腔连通;拾音器的输入端位于密闭容器的内腔中,拾音器的输出端作为所述传感器的输出端;所述红外脉冲光源发出红外脉冲光,该红外脉冲光经照射窗照射入光声转换腔内。本发明能够直接感测待测颗粒物质量相关的信号,精确度高,且操作简单,快速方便,可以连续测量。

Description

一种用于大气可吸入颗粒物浓度在线检测的传感器
技术领域
本发明涉及一种传感器,具体涉及一种用于大气可吸入颗粒物浓度在线检测的传感器,该传感器输出的信号含有颗粒物的动力学直径和相应的质量信息,通过二次仪表和数学处理,并通过实验标定可获得大气可吸入颗粒物的质量浓度。 
背景技术
大气可吸入颗粒物对人类健康影响显著,特别是可以进入肺泡的空气动力学直径小于2.5微米(PM2.5)的大气可吸入颗粒物对人类可造成呼吸道疾病,肺功能损伤等危害。为了正确检测大气中可吸入颗粒物的浓度,近年来人们发明创造了多种检测方法和检测设备,其中包括传统经典的滤膜称重法:该方法以规定的流量采样,将空气中的颗粒物捕集于具有一定直径孔隙率的滤膜上,然后通过称量滤膜采样前后的质量,由其质量差求得捕集的大气颗粒物的质量,最后将这一质量与采样空气体积之比即为大气颗粒物的质量浓度。这种方法是目前国家标准方法。随着科技进步,出现了许多新的现场实时检测方法和仪器,比较典型的代表是1)光散射法:该方法的基本原理是用一个激光光源发出的光照射至被测颗粒物上引起光散射,在一定的方向上用光电转换元件接收散射光的信号,包括散射光次数和光强。检测到的散射光的次数表示粒子数,光强信号代表粒子的大小(直径)。该方法可直接得到粒子数,但要通过统计计算换算成质量浓度。2)β射线吸收法:它是利用C14放射源放射出的β射线照射介质时被吸收导致其强度衰减的原理设计的。β射线法可间接获得可吸入颗粒物的质量浓度。3)微量振荡天平法:在以一定频率振动的锥形元件(TEOM)振荡天平顶端安装了一个可以更换的滤膜圆盘,当被采集的空气通过滤膜时,颗粒物沉积在滤膜上,随着滤膜重量增加,TEOM的振荡频率降低,通过频率变化可计算出单位时间内沉积到滤膜上颗粒质量.  再根据采样流量,采样现场,空气温度和气压计算出这段时间内所采空气的标态体积,而得到颗粒物质量浓度。 
现行的《环境空气质量标准》中的大气可吸入颗粒物的浓度限值以大气可吸入颗粒物的质量浓度(mg/m3)为标准,颗粒物的质量浓度是指单位体积气体中含有大气可吸入颗粒物的总质量。 
滤膜称重法原理简单,测定数据可靠,为国家现行的标准方法,能够直接测得大气可吸入颗粒物的质量浓度。但在测定过程中,存在操作较复杂、费时、设备比较多等缺点,另外,不能立即显示测试结果,需要经过称重和计算等步骤。光散射法虽然能够实现在线、快速检测,但这种技术本身检测到的信号主要含有粒子数和粒子大小信息,而不含有颗粒物的质量信息,要得到大气可吸入颗粒物的质量浓度需要通过进一步实验得到被测颗粒物的密度,从而增加了测量的复杂度。β射线吸收法输出信号比较复杂,这是因为颗粒物化学成分和性质不同会影响到β射线的衰减,因此也是一种间接方法。微量振荡天平法的检测信号中直接含有颗粒物质量信息,但该方法适用将仪器固定在被测场所,不适合便携,现场实时测量。 
因此,研究一种新的测量方法和传感器,它的输出信号本身包含颗粒物的质量信息,同时又能实现携带方便,操作快速简单,精确度高和能现场实时检测,将对保护环境,防止大气污染非常有必要。 
发明内容
本发明提供一种用于大气可吸入颗粒物浓度在线检测的传感器,其目的是要设计一种能够直接感测待测颗粒物质量相关的信号,而且携带方便,操作简单快速的新型传感器,以克服现有技术的不足。 
为达到上述目的,本发明采用的技术方案是:一种用于大气可吸入颗粒物浓度在线检测的传感器,其创新在于:包括光声转换腔、拾音器以及红外脉冲光源; 
所述光声转换腔由一密闭容器构成,该密闭容器的侧壁上设有透光窗口,透光窗口作为光声转换腔的照射窗,密闭容器上还设有进气口和出气口,进气口和出气口分别与密闭容器的内腔连通;
所述拾音器的最小检出限小于或等于-80分贝(dB),信噪比大于100分贝(dB),频率响应为10-25000赫兹(Hz),拾音器的输入端位于密闭容器的内腔中,拾音器的输出端作为所述传感器的输出端;
所述红外脉冲光源发出红外脉冲光,该红外脉冲光经照射窗照射入光声转换腔内;所述红外脉冲光的脉冲频率大于或等于100赫兹(Hz),且红外脉冲光的波长范围为7±0.5微米(μm)。
上述技术方案中的有关内容解释如下: 
1. 上述方案中,所述拾音器的输入端是指拾音器上用于采集振动的频率和振幅信号的敏感端面;拾音器的输出端是指拾音器上用于输出代表振动的频率和振幅信号的电信号的端口。所述“拾音器的最小检出限”实际上是对拾音器的灵敏度提出要求,最小检出限相当于灵敏度。
2. 上述方案中,所述红外脉冲光源存在下列四种可能的实现方式: 
(1)红外脉冲光源由红外脉冲发射器构成,该红外脉冲发射器发出的红外脉冲光直接经照射窗照射入光声转换腔内。
(2)红外脉冲光源由红外脉冲发射器和椭球面反射镜组成,所述红外脉冲发射器位于椭球面反射镜的近焦点上,所述光声转换腔的照射窗位于椭球面反射镜的远焦点的内侧。 
(3)红外脉冲光源由红外光源和光学斩波器组成,该红外光源发出的红外光依次经光学斩波器、照射窗照射入光声转换腔内。 
(4)红外脉冲光源由红外光源、椭球面反射镜和光学斩波器组成,所述红外光源位于椭球面反射镜的近焦点上,所述光声转换腔的照射窗位于椭球面反射镜的远焦点的内侧,光学斩波器位于红外光源到光声转换腔照射窗的光路上。 
3. 上述方案中,为了过滤杂散光和收窄光的波长范围,使其达到红外脉冲光的波长要求,在红外脉冲光源和光声转换腔的照射窗之间的光路上设置一片光学滤波器,该光学滤波器位于红外脉冲光源到光声转换腔的照射窗的光路上。 
4. 上述方案中,为了尽可能去除检测腔内杂散声光干扰信号,光声转换腔内壁面除照射窗外,涂覆有吸音材料层。 
5. 上述方案中,为了提高光的透射率,照射窗材料采用石英晶体。 
6. 上述方案中,可将密闭容器主体设计成一沿竖直方向放置的圆柱形,所述照射窗为一平面窗,平面窗设在平行于圆柱形轴线的切面上;所述进气口位于密闭容器的上端面,出气口位于密闭容器的下端面。 
7. 上述方案中,为了排除环境温度的干扰,可将光声转换腔置于一个半导体恒温室内。 
本发明工作原理是:首先,将需检测的场所的样品空气通过进气口输送到光声转换腔内,通气大约一分钟左右即可,然后关闭进气口和出气口。由红外脉冲光源发出的红外脉冲光通过照射窗射入光声转换腔内,使样品空气中的大气可吸入颗粒物吸收特定频率和波长范围要求的红外脉冲光能量后发热产生机械振动。由于大气可吸入颗粒物的固有振动频率pi与颗粒物质量mi、颗粒物吸收的红外光的能量n、空气粘度η和光声转换腔温度T有关,即: 
Pi =f(mi,n,η,T)
由于红外脉冲光源确定后,颗粒物吸收红外脉冲光的能量n也可以随之确定(这是由大气可吸入颗粒物的吸收特性决定的)。空气粘度η与当时空气的湿度有关,湿度确定后是一个常数。而传感器在检测过程中,光声转换腔温度T可由当时的温度环境来确定,比如采用半导体恒温室后,温度T可由半导体恒温室来确定。因此,大气可吸入颗粒物的固有振动频率pi与颗粒物质量mi直接相关,即大气可吸入颗粒物的质量不同,其振动频率就不同,而相同质量的大气可吸入颗粒物具有相同的振动频率,叠加后将增加振动的振幅,即:
Figure 2012103089855100002DEST_PATH_IMAGE001
 
其中:zi表示某特定质量颗粒物振动的振幅;Zi表示具有相同振动频率的颗粒物振幅总和。
本发明传感器的输出信号含有颗粒物振动的频率和振幅信息,而振动频率信息与各个颗粒物质量相关,振幅信息代表具有相同振动频率的颗粒物质量累加。因此传感器的输出信号经二次仪表和数学处理,并通过实验标定可获得大气可吸入颗粒物的质量浓度。实验标定方法简单描述如下: 
首先,用标准粒子(由标准粒子发生器产生,动力学直径和质量都可控的粒子)来得到校准曲线,校准曲线主要是标准粒子的频率-质量曲线和振幅-质量曲线,然后,根据校准曲线,从频率信号pi可以推算出被检颗粒物质量mi,而从振幅信号Zi可推算出具有相同频率pi的被检颗粒物的总质量Mi,又有: 
Figure 592916DEST_PATH_IMAGE002
Figure 2012103089855100002DEST_PATH_IMAGE002
其中:ρi表示颗粒物的密度,可通过实验或查相关物质密度表得到,Vi表示颗粒物体积,di表示颗粒物动力学直径。
由于光声转换腔内空气体积V是固定的,则动力学直径为di大气可吸入颗粒物的浓度ci由下式得出: 
Figure 2012103089855100002DEST_PATH_IMAGE003
由于上述技术方案运用,本发明与现有技术相比具有下列优点和效果:
1、本发明是一种用于现场实时监测大气可吸入颗粒物的质量浓度的传感器,它能够直接感测与待测颗粒物质量相关的信号,精确度高,且操作简单,快速方便,可以连续测量。
2、本发明采用最小检出限小于或等于-80dB, 信噪比大于100dB, 频率响应为10-25000Hz的拾音器,灵敏线性范围宽,因此测量精度高。 
3、本发明结构简单,体积小,便于携带。 
附图说明
附图1为本发明实施例一传感器的结构示意图; 
附图2为本发明实施例传感器中光声转换腔与透光窗口的结构示意图;
附图3为本发明实施例二传感器的结构示意图。
以上附图中:1.光声转换腔;2.第一拾音器;3.第二拾音器;4.红外光源;5.透光窗口;6.进气口;7.出气口;8.椭球面反射镜;9.光学滤波器;10.第一拾音器的输入端;11.第一拾音器信号输出端;12.第二拾音器的输入端;13.第二拾音器的输出端;14.椭球面反射镜的远焦点;15.光学斩波器;16.红外脉冲发射器。 
具体实施方式
下面结合附图及实施例对本发明作进一步描述: 
实施例一:一种用于大气可吸入颗粒物浓度在线检测的传感器
如图1所示,该传感器包括光声转换腔1、拾音器以及红外脉冲光源。所述光声转换腔1由一密闭容器构成,该密闭容器的侧壁上设有透光窗口5,透光窗口5作为光声转换腔的照射窗。为了提高光的透射率,光声转换腔(1)的照射窗材料采用石英晶体。如图2所示,将密闭容器主体设计成一沿竖直方向放置的圆柱形,所述照射窗为一平面窗,平面窗设在平行于圆柱形轴线的切面上。密闭容器上还设有进气口6和出气口7,进气口6位于密闭容器的上端面,出气口7位于密闭容器的下端面,进气口6和出气口7分别与密闭容器的内腔连通。密闭容器可以采用聚四氟乙烯材料(PTFE,通常又被称之为铁氟龙、铁富龙、特富龙、特氟隆等等),圆柱筒的壁厚为3mm,上下端盖的壁厚为3mm。为了尽可能去除检测腔内杂散声光干扰信号,在光声转换腔1除照射窗外,其余内壁面涂覆有吸音材料层。
所述拾音器由第一拾音器2和第二拾音器3组成,第一拾音器2和第二拾音器3完全相同,他们的最小检出限都小于或等于-80dB,信噪比都大于100dB,频率响应都为10-25000Hz。第一拾音器2的输入端10和第二拾音器3的输入端12都位于密闭容器的内腔中。第一拾音器2用作产生背景参考信号,该拾音器是在未通入被测空气的情况下(空载)或者是在通入被测空气而没有打开红外脉冲光源的情况下使用的,其输出端11输出的是光声转换腔1和其本身的热噪声、电子噪声等背景噪声信号。第二拾音器3用作产生工作信号,第二拾音器3是在通入被测空气且打开红外脉冲光源的情况下使用,其输出端13输出的是光声转换腔1内有大气可吸入颗粒物时的总的信号。在大气可吸入颗粒物检测过程中,通过软件控制,将第二拾音器3检测的信号减去第一拾音器2的信号,从而得到大气可吸入颗粒物振动的信号。 
所述红外脉冲光源由红外光源4、椭球面反射镜8和光学斩波器15组成,所述红外光源4位于椭球面反射镜8的近焦点上,所述光声转换腔1的照射窗位于椭球面反射镜8的远焦点14的内侧,光学斩波器15位于红外光源4到光声转换腔1照射窗的光路上,见图1所示。光学斩波器用于将红外光源4发出的连续的红外光转换为脉冲光。为了进一步收窄波长范围,过滤杂散光,只允许特定要求的红外光通过,可以在红外脉冲光源和光声转换腔1的照射窗之间设有一光学滤波器9,该光学滤波器9位于红外脉冲光源到光声转换腔1的照射窗的光路上。所述红外脉冲光源发出红外脉冲光,该红外脉冲光经照射窗照射入光声转换腔1内。所述红外脉冲光的脉冲频率大于或等于100Hz,红外脉冲光的波长范围为7±0.5μm,且红外发射峰位置可调,同时要求发射率高,热传导性高,及极低的热驻留性,在高频脉冲工作时,能快速得加热和冷却。 
为了排除环境温度的干扰,将光声转换腔1置于一个半导体恒温室内(图中未画出),由半导体恒温室提供恒温环境。 
在本实施例中,如果红外脉冲光源中不使用椭球面反射镜8,而是仅由由红外光源4和光学斩波器15组成,该红外光源4发出的红外光依次经光学斩波器15、照射窗照射入光声转换腔1内,理论上也可行,但使用椭球面反射镜8聚光后效果更好。 
实施例二:一种用于大气可吸入颗粒物浓度在线检测的传感器 
如图3所示,该传感器包括光声转换腔1、拾音器以及红外脉冲光源。与实施例一的不同之处在于:红外脉冲光源有所不同。本实施例红外脉冲光源可以直接由红外脉冲发射器16构成,也可以由红外脉冲发射器16和椭球面反射镜8组成,其中,红外脉冲发射器16可以采用市售的高频可调制MEMS红外光源发射器,该发射器产生符合本发明要求的红外脉冲光。如果设有椭球面反射镜8时,所述红外脉冲发射器16位于椭球面反射镜8的近焦点上,所述光声转换腔1的照射窗位于椭球面反射镜8的远焦点14的内侧(见图3所示)。
其它结构和要求与实施例一相同,这里不再重复描述。 
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。 

Claims (10)

1.一种用于大气可吸入颗粒物浓度在线检测的传感器,其特征在于:包括光声转换腔(1)、拾音器以及红外脉冲光源;
所述光声转换腔(1)由一密闭容器构成,该密闭容器的侧壁上设有透光窗口(5),透光窗口(5)作为光声转换腔(1)的照射窗,密闭容器上还设有进气口(6)和出气口(7),进气口(6)和出气口(7)分别与密闭容器的内腔连通;
所述拾音器的最小检出限小于或等于-80分贝,信噪比大于100分贝,频率响应为10-25000赫兹,拾音器的输入端位于密闭容器的内腔中,拾音器的输出端作为所述传感器的输出端;
所述红外脉冲光源发出红外脉冲光,该红外脉冲光经照射窗照射入光声转换腔(1)内;所述红外脉冲光的脉冲频率大于或等于100赫兹,且红外脉冲光的波长范围为7±0.5微米。
2.根据权利要求1所述的用于大气可吸入颗粒物浓度在线检测的传感器,其特征在于:所述红外脉冲光源由红外脉冲发射器(16)构成,该红外脉冲发射器发出的红外脉冲光直接经照射窗照射入光声转换腔(1)内。
3.根据权利要求1所述的用于大气可吸入颗粒物浓度在线检测的传感器,其特征在于:所述红外脉冲光源由红外脉冲发射器(16)和椭球面反射镜(8)组成,所述红外脉冲发射器(16)位于椭球面反射镜(8)的近焦点上,所述光声转换腔(1)的照射窗位于椭球面反射镜(8)的远焦点(14)的内侧。
4.根据权利要求1所述的用于大气可吸入颗粒物浓度在线检测的传感器,其特征在于:所述红外脉冲光源由红外光源(4)和光学斩波器(15)组成,该红外光源(4)发出的红外光依次经光学斩波器(15)、照射窗照射入光声转换腔(1)内。
5.根据权利要求1所述的用于大气可吸入颗粒物浓度在线检测的传感器,其特征在于:所述红外脉冲光源由红外光源(4)、椭球面反射镜(8)和光学斩波器(15)组成,所述红外光源(4)位于椭球面反射镜(8)的近焦点上,所述光声转换腔(1)的照射窗位于椭球面反射镜(8)的远焦点(14)的内侧,光学斩波器(15)位于红外光源(4)到光声转换腔(1)照射窗的光路上。
6.根据权利要求1所述的用于大气可吸入颗粒物浓度在线检测的传感器,其特征在于:所述红外脉冲光源和光声转换腔(1)的照射窗之间设有一光学滤波器(10),该光学滤波器(10)位于红外脉冲光源到光声转换腔(1)的照射窗的光路上。
7.根据权利要求1所述的用于大气可吸入颗粒物浓度在线检测的传感器,其特征在于:所述光声转换腔(1)除照射窗外,其余内壁面涂覆有吸音材料层。
8.根据权利要求1所述的用于大气可吸入颗粒物浓度在线检测的传感器,其特征在于:所述光声转换腔(1)的照射窗的材料采用石英晶体。
9.根据权利要求1所述的用于大气可吸入颗粒物浓度在线检测的传感器,其特征在于:所述密闭容器主体为一沿竖直方向放置的圆柱形,所述照射窗为一平面窗,平面窗设在平行于圆柱形轴线的切面上;所述进气口(6)位于密闭容器的上端面,出气口(7)位于密闭容器的下端面。
10.根据权利要求1所述的用于大气可吸入颗粒物浓度在线检测的传感器,其特征在于:包括一半导体恒温室,所述光声转换腔(1)置于半导体恒温室内。
CN2012103089855A 2012-08-28 2012-08-28 一种用于大气可吸入颗粒物浓度在线检测的传感器 Pending CN102830084A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012103089855A CN102830084A (zh) 2012-08-28 2012-08-28 一种用于大气可吸入颗粒物浓度在线检测的传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012103089855A CN102830084A (zh) 2012-08-28 2012-08-28 一种用于大气可吸入颗粒物浓度在线检测的传感器

Publications (1)

Publication Number Publication Date
CN102830084A true CN102830084A (zh) 2012-12-19

Family

ID=47333296

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012103089855A Pending CN102830084A (zh) 2012-08-28 2012-08-28 一种用于大气可吸入颗粒物浓度在线检测的传感器

Country Status (1)

Country Link
CN (1) CN102830084A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868855A (zh) * 2014-03-27 2014-06-18 西安交通大学 基于光路偏转的双光路单传感器气体红外检测系统及方法
CN109211825A (zh) * 2018-10-10 2019-01-15 吉林大学 一种采用声光效应准直光路的水中溶解气红外检测装置及方法
CN111707619A (zh) * 2020-05-27 2020-09-25 山东大学 一种基于mems麦克风阵列的光声池及光声光谱传感器
CN112945861A (zh) * 2021-01-29 2021-06-11 南京客莱沃智能科技有限公司 一种双级吸收光声光谱法绝缘油溶解气体在线监测系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85104620A (zh) * 1985-06-15 1986-12-10 株式会社堀场制作所 光声效应式分析器
CN1411552A (zh) * 2000-03-03 2003-04-16 矿井安全装置公司 气体传感器
CN1685215A (zh) * 2002-09-30 2005-10-19 诺维尔技术解决有限公司 光声检测器
US20070151325A1 (en) * 2004-03-29 2007-07-05 Noveltech Solutions Oy Method and system for detecting one or more gases or gas mixtures and/or for measuring the concentration of one or more gases or gas mixtures
CN101561391A (zh) * 2009-06-04 2009-10-21 中国航空工业集团公司西安飞机设计研究所 一种气体浓度测试装置及测试方法
WO2012057760A1 (en) * 2010-10-28 2012-05-03 Empire Technology Development Llc Photoacoustic sensor
CN102539338A (zh) * 2011-12-30 2012-07-04 昆山和智电气设备有限公司 运用光声光谱进行变压器油中气体含量在线监测的系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85104620A (zh) * 1985-06-15 1986-12-10 株式会社堀场制作所 光声效应式分析器
CN1411552A (zh) * 2000-03-03 2003-04-16 矿井安全装置公司 气体传感器
CN1685215A (zh) * 2002-09-30 2005-10-19 诺维尔技术解决有限公司 光声检测器
US20070151325A1 (en) * 2004-03-29 2007-07-05 Noveltech Solutions Oy Method and system for detecting one or more gases or gas mixtures and/or for measuring the concentration of one or more gases or gas mixtures
CN101561391A (zh) * 2009-06-04 2009-10-21 中国航空工业集团公司西安飞机设计研究所 一种气体浓度测试装置及测试方法
WO2012057760A1 (en) * 2010-10-28 2012-05-03 Empire Technology Development Llc Photoacoustic sensor
CN102539338A (zh) * 2011-12-30 2012-07-04 昆山和智电气设备有限公司 运用光声光谱进行变压器油中气体含量在线监测的系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈涛: "火灾气体产物和烟雾颗粒的光声复合探测研究", 《万方数据库-中国科学科技大学博士论文》, 28 December 2004 (2004-12-28) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868855A (zh) * 2014-03-27 2014-06-18 西安交通大学 基于光路偏转的双光路单传感器气体红外检测系统及方法
CN103868855B (zh) * 2014-03-27 2016-03-30 西安交通大学 基于光路偏转的双光路单传感器气体红外检测系统及方法
CN109211825A (zh) * 2018-10-10 2019-01-15 吉林大学 一种采用声光效应准直光路的水中溶解气红外检测装置及方法
CN111707619A (zh) * 2020-05-27 2020-09-25 山东大学 一种基于mems麦克风阵列的光声池及光声光谱传感器
CN112945861A (zh) * 2021-01-29 2021-06-11 南京客莱沃智能科技有限公司 一种双级吸收光声光谱法绝缘油溶解气体在线监测系统

Similar Documents

Publication Publication Date Title
CN104122180B (zh) 一种测量颗粒物质量浓度的方法
CN105334147B (zh) 基于β射线法和光散射法的颗粒物在线监测系统及方法
CN203949849U (zh) 一种测量颗粒物质量浓度的检测装置
CN106769973A (zh) 利用光声光谱法检测氨气气体检测装置及方法
CN105092430B (zh) 一种基于发散超声波衰减的颗粒粒度测量装置及方法
CN204514760U (zh) 一种高精度激光颗粒传感器
CN109507074A (zh) 一种超低排放烟尘浓度监测装置和监测方法
CN103983549A (zh) 一种基于超声脉动原理测量颗粒粒径和浓度的方法
CN102830084A (zh) 一种用于大气可吸入颗粒物浓度在线检测的传感器
CN104833620B (zh) 一种大气颗粒物浓度的监测装置
CN107607449A (zh) 一种检测颗粒物质量浓度的装置及方法
CN109540754A (zh) 一种基于β射线法的大气颗粒物在线监测装置及方法
CN109632589B (zh) 一种大气颗粒物检测装置和方法
CN106644942A (zh) 光声吸收池及大气颗粒物多光学参数在线测量装置
CN103048285B (zh) 利用光-热法测量大气气溶胶吸收系数的新方法
CN112782121B (zh) 一种多角度光学粒子计数和折射率在线测量装置及方法
CN107036946A (zh) 一种高湿度环境下固体颗粒物浓度检测装置
CN204594848U (zh) 一种大气颗粒物浓度的监测装置
CN102323193A (zh) 一种激光散射法空气颗粒分布测量方法及装置
CN108387504A (zh) 凝聚合颗粒计数器
CN207300816U (zh) 一种基于脉冲激光法的颗粒物传感器
CN209559714U (zh) 一种超低排放烟尘浓度监测装置
CN206740639U (zh) 利用光声光谱法检测氨气气体检测装置
CN103163087B (zh) 利用光声光谱法检测硫酰氟气体残留浓度的方法
CN104502551A (zh) 测量空气中可吸入颗粒物的在线监测系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121219