CN203031963U - 一种风电叶片一体化成型装置 - Google Patents

一种风电叶片一体化成型装置 Download PDF

Info

Publication number
CN203031963U
CN203031963U CN 201220733928 CN201220733928U CN203031963U CN 203031963 U CN203031963 U CN 203031963U CN 201220733928 CN201220733928 CN 201220733928 CN 201220733928 U CN201220733928 U CN 201220733928U CN 203031963 U CN203031963 U CN 203031963U
Authority
CN
China
Prior art keywords
control valve
resin
vacuum
wind
pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201220733928
Other languages
English (en)
Inventor
荣晓敏
杨科
赵晓路
秦志文
徐建中
刘丛庆
马双彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Engineering Thermophysics of CAS
Original Assignee
Institute of Engineering Thermophysics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Engineering Thermophysics of CAS filed Critical Institute of Engineering Thermophysics of CAS
Priority to CN 201220733928 priority Critical patent/CN203031963U/zh
Application granted granted Critical
Publication of CN203031963U publication Critical patent/CN203031963U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

本实用新型涉及一种水平轴风电叶片一体化成型装置,所述装置包括真空抽气系统、加压设备、树脂消泡系统、树脂供给系统及树脂收集系统。制备风电叶片时,采用正压辅助真空灌注的方式一体化成型,既克服了传统真空灌注工艺的不足,提高叶片成型的产品质量,也避免了传统工艺壳体使用粘接剂粘接带来的各种弊端和风险。

Description

一种风电叶片一体化成型装置
技术领域
本实用新型涉及一种风电叶片一体化成型装置,属于风力发电设备的关键零部件。 
背景技术
随着能源和环境问题的日益突出,风力发电作为一种清洁能源和可再生能源而得到全球性的关注和高度重视。随着各国研发的投入,风电技术也取得了长足的进步,风电机组单机容量不断增加。从初期的千瓦级到今天的多兆瓦级,叶片长度也从几米达到目前的八十多米。目前商业化的最长叶片已经达到了61.5米,更大更长的叶片也在研发中。大型化已经成为一个必然的趋势,但是带来的运输问题和高昂的运费也无法承受。 
现有技术的风电叶片成型方法或装置,都是采用传统的真空灌注工艺,未能解决真空压力小、灌注速度慢、成型质量差等一些关键问题。 
传统的风电叶片都是先分别制作出吸力面和压力面壳体,前固化后在固定面上粘接一个或两个抗剪腹板,之后在前尾缘和抗剪腹板的顶部使用粘接剂将两个半面壳体粘接起来,然后叶根端面切割打孔制成成形叶片。壳体一般采用真空灌注或预浸料工艺制作,抗剪腹板一般采用真空灌注、手糊或缠绕工艺预制。 
传统叶片工艺的最大缺点是上下壳体(包括抗剪腹板)完全靠粘接剂来连接,容易带来很多问题。粘接剂本身从广泛的意义上来说,是一种高粘度的纯树脂,有的加入了一些毫米级短切纤维或其他填料,但相比纤维增强的层合板,性能等级相差甚大。并且粘接剂是一种脆性材料,韧性和疲劳性能 差,造成叶片的粘接区域多为叶片的性能薄弱区域。实际情况也是,叶片在风场运行过程中粘接剂常发生裂纹、粘接面开裂和剥离的现象。 
传统的真空灌注工艺,由于主要依赖于真空负压的作用,压差不好(不超过一个大气压),所以导致灌注过程的速度慢,并且会发生吸不透等质量缺陷。另外,在纤维增强材料层数厚的地方还需要加上连续毡等导流介质,保证增强材料能够浸透,但是连续毡等导流介质本身是多孔性材料,容易聚集气泡,含胶量也大,这些不利因素会消弱层合板层间剪切能力,降低叶片在实际运行中的承载能力。另外,整个灌注过程高度依赖真空负压的压力推动树脂的流动前峰,对真空系统的要求高,一般需要使用二套真空系统防止灌注和固化阶段泄露造成的质量缺陷。 
传统的RTM工艺,使用树脂注射机,在较高的正压下,将树脂液体在高压下流动浸透增强纤维材料。整套系统效率高,但是整个模具系统设计复杂,硬件投入成本高。同时对树脂注射机的要求也非常高,模具承受的压力大,刚度要求高,成本高。所以RTM工艺一般适合于中小型的复合材料部件,在风电叶片上的成型工艺上应用受限。 
发明内容
针对现有技术的缺点和不足,本实用新型旨在提供一种风电叶片一体化成型装置,以解决现有技术的风电叶片成型方法中灌注速度慢、成型质量差、生产效率低、制造成本高等关键问题。 
本实用新型为解决其技术问题所采用的技术方案为:一种风电叶片一体化成型装置,所述装置包括真空抽气系统、加压设备、树脂消泡系统、树脂供给系统及树脂收集系统,其特征在于: 
所述真空抽气系统包括真空泵47、真空管道Ⅰ45及位于所述真空管道Ⅰ45上的控制阀Ⅰ46,所述真空管道Ⅰ45一端与真空泵47连接,另一端与所述风 电叶片模具型腔的密封空气系统相连,用于灌注树脂前抽出所述型腔内部的空气,抽气时打开控制阀Ⅰ46,抽气结束时关闭控制阀Ⅰ46; 
所述树脂消泡系统包括真空消泡箱29、真空管道Ⅱ30、位于所述真空管道Ⅱ30上的控制阀Ⅱ31、排气管道32、位于所述排气管道32上的控制阀Ⅲ33、通气管道35、位于所述通气管道35上的控制阀Ⅳ34、流胶管路Ⅰ42、位于所述流胶管路42的控制阀Ⅴ41,所述真空管道Ⅱ30、排气管道32设置于真空消泡箱29上部,所述通气管道35连通储胶罐38的上部和所述真空消泡箱29的上部,所述流胶管路42连通所述储胶罐38的底部和所述真空消泡箱29的底部; 
所述树脂供给系统包括所述储胶罐38、主供胶管路44、位于所述主供胶管路44的控制阀Ⅵ43、加压管路36、位于所述加压管路36的控制阀Ⅶ37,所述主供胶管路44与所述风电叶片模具型腔中的注胶管路16连接,所述加压管路36与加压设备连接; 
所述树脂收集系统包括密封箱体27、位于密封箱体27中的树脂收集器28、回胶管路23、位于所述回胶管路23的控制阀Ⅷ24、通气管路26、位于所述通气管路26的控制阀Ⅸ25,所述回胶管路23一端通入树脂收集器28,另一端与所述风电叶片模具尾缘处的回胶管道连接,所述通气管路26一端与密封箱体27连通,另一端与真空泵连接。 
优选地,所述真空管道Ⅰ45的另一端与位于所述风电叶片模具前缘翻模边上的管道口相连。 
优选地,所述真空消泡箱29布置于比所述储胶罐38高的位置。 
优选地,所述树脂供给系统还包括备用供胶管路40及位于所述备用供胶管路40的控制阀Ⅷ39,所述备用供胶管路40在需要时与所述注胶管路16连接或与所述风电叶片模具型腔中的备用注胶管路连接,需要时开启控制阀Ⅷ39,将储胶罐38中的树脂通过备用供胶管路40供给到所述风电叶片模具型腔中。 
优选地,当所述真空抽气系统进行真空抽气时,同时打开控制阀Ⅷ24、控制阀Ⅸ25,所述通气管路26接通真空泵,对所述真空抽气系统进行辅助抽真空,抽真空完毕后,关闭控制阀Ⅸ25。 
本实用新型的风电叶片一体化成型装置,同现有技术相比,具有以下显著的优点: 
1.本实用新型解决风电叶片的一体化成型问题,并且采用正压辅助真空灌注工艺,优化传统工艺方法,提高生产效率和叶片成品质量,还可以降低成本。 
2.本实用新型采用的是正压辅助真空灌注工艺,成型装置系统可利用现有设备进行改造,无需专用注胶泵。较低的正压结合真空负压,可以有效的提高注胶速度,缩短制作周期。在固化的过程中也保持正压,防止泄露带来的质量缺陷。由于使用较低的正压,对软胎芯模的要求不高,成本低。另外,可以根据层合板的纤维层数调节正压的大小,取消连续毡等导流介质,节省材料用量,降低成本,还能提高成型后的叶片质量,提高叶片的承载能力。 
附图说明
图1是本实用新型的正压辅助真空灌注一体化成型的集成图。 
具体实施方式
下面,将结合附图和具体实施案例,对本实用新型进行详细的细节阐述。应理解这些实施例仅用于说明本实用新型而不用于限制本实用新型的范围,在阅读了本实用新型之后,本领域技术人员对本实用新型的各种等价形式的修改均落于本申请所附权利要求所限定的范围。 
图1是本实用新型采用的正压辅助真空灌注一体化成型的集成图。阴模1、21提供生产叶片上、下壳体的模具,在叶片制作过程中,通过模具桁架和翻模边上定位、锁紧装置紧固在一起形成一个整体,模具里面含有水加热 或电加热系统,并配备温度控制系统可以调节温度。 
本实用新型的风电叶片一体化成型成型装置,所述装置包括真空抽气系统、加压设备、树脂消泡系统、树脂供给系统及树脂收集系统。 
所述真空抽气系统包括真空泵47、真空管道Ⅰ45及位于所述真空管道Ⅰ45上的控制阀Ⅰ46,所述真空管道Ⅰ45一端与真空泵47连接,另一端与所述风电叶片模具型腔的密封空气系统相连,用于灌注树脂前抽出所述型腔内部的空气,抽气时打开控制阀Ⅰ46,抽气结束时关闭控制阀Ⅰ46。 
所述树脂消泡系统包括真空消泡箱29、真空管道Ⅱ30、位于所述真空管道Ⅱ30上的控制阀Ⅱ31、排气管道32、位于所述排气管道32上的控制阀Ⅲ33、通气管道35、位于所述通气管道35上的控制阀Ⅳ34、流胶管路Ⅰ42、位于所述流胶管路42的控制阀Ⅴ41,所述真空管道Ⅱ30、排气管道32设置于真空消泡箱29上部,所述通气管道35连通储胶罐38的上部和所述真空消泡箱29的上部,所述流胶管路42连通所述储胶罐38的底部和所述真空消泡箱29的底部;所述树脂消泡系统进行真空消泡时,打开控制阀Ⅱ31,关闭控制阀Ⅲ33、控制阀Ⅳ34、控制阀Ⅴ41,所述真空管道Ⅱ30接入所述真空抽气系统。 
所述树脂供给系统包括所述储胶罐38、主供胶管路44、位于所述主供胶管路44的控制阀Ⅵ43、加压管路36、位于所述加压管路36的控制阀Ⅶ37,所述主供胶管路44与所述风电叶片模具型腔中的注胶管路16连接,所述加压管路36与加压设备连接;对所述风电叶片进行灌注树脂时,首先开启控制阀Ⅳ34、控制阀Ⅴ41及控制阀Ⅲ33,关闭控制阀Ⅱ31、控制阀Ⅵ43、控制阀Ⅷ39,真空消泡箱29中的树脂在重力作用下通过所述流胶管路42流入所述储胶罐38中,同时所述储胶罐38中的空气通过通气管道35、排气管路32排放出去;之后关闭控制阀Ⅳ34、控制阀Ⅴ41,开启控制阀Ⅶ37、控制阀Ⅵ43,储胶罐38中的树脂在加压设备的加压下通过所述主供胶管路44供给到所述风电叶片模 具型腔中的注胶管路16。 
所述树脂收集系统包括密封箱体27、位于密封箱体27中的树脂收集器28、回胶管路23、位于所述回胶管路23的控制阀Ⅷ24、通气管路26、位于所述通气管路26的控制阀Ⅸ25,所述回胶管路23一端通入树脂收集器28,另一端与所述风电叶片模具尾缘处的回胶管道连接,所述通气管路26一端与密封箱体27连通,另一端与真空泵连接;对所述风电叶片进行灌注树脂时,打开控制阀Ⅷ24、控制阀Ⅸ25,接通真空泵,当树脂的流动前锋到达模具的尾缘时,树脂溢出进入所述回胶管路23,进入树脂收集器28中,当所有相关的树脂收集器管路中都有树脂流入时,关闭控制阀Ⅵ43,停止注胶,同时关闭控制阀Ⅸ25,防止树脂过多被抽出。 
优选地,所述真空管道Ⅰ45的另一端与位于所述风电叶片模具前缘翻模边上的管道口相连。 
优选地,所述真空消泡箱29布置于比所述储胶罐38高的位置。 
优选地,所述树脂供给系统还包括备用供胶管路40及位于所述备用供胶管路40的控制阀Ⅷ39,所述备用供胶管路40在需要时与所述注胶管路16连接或与所述风电叶片模具型腔中的备用注胶管路连接,需要时开启控制阀Ⅷ39,将储胶罐38中的树脂通过备用供胶管路40供给到所述风电叶片模具型腔中。 
优选地,当所述真空抽气系统进行真空抽气时,同时打开控制阀Ⅷ24、控制阀Ⅸ25,所述通气管路26接通真空泵,对所述真空抽气系统进行辅助抽真空,抽真空完毕后,关闭控制阀Ⅸ25。 
下面介绍适用本实用新型的装置制备风电叶片的工艺步骤。 
一体化成型工艺的第一步是下壳体原材料铺放。下壳体阴模1上涂抹完脱模剂后开始铺外蒙皮2,这些玻璃纤维布可能包含一些工艺上的毡,或者是碳纤维织物、制品。这部分纤维织物在前缘和尾缘的一部分都需要预留部 分超出模具法兰边的分模线,待芯模18和20放置后铺放到上壳体上。然后在外蒙皮2上铺放Balsa木或PVC材料的前缘段、尾缘段夹芯材料3和5,及玻纤或碳纤的中间段夹芯材料4(或者它们的预制品)。内蒙皮6的纤维材料和外蒙皮1的铺放方法一致,根据设计需要,部分或者整体超出前缘和尾缘的分模线。为了便于脱模前去除真空辅材,铺放完主材后铺放脱模布。然后在前缘位置铺放注胶管路16,根据叶片的结构铺层和导流需要,可能在其他位置也需要铺放这样的注胶管路,或者铺放一些备用注胶管路,以备一些应急情况。 
第二步是放置芯模和剪切腹板。如图1,在下壳体内蒙皮6上面,放置前缘段、中间段、尾缘段芯模18、19和20,剪切腹板11和13。根据叶片气动外形和工艺便捷性的需要,芯模18、19和20每个都可以是单独的整体,或者由可拆装的多部分组装构成,尤其是尾缘段芯模20,几何形状可能会有弯扭部分。每个芯模的组成材料都一样,如前缘段芯模18就是在木质或泡沫材料的外面包裹硅橡胶或其他橡胶类弹性材料而成,其中木质或泡沫材料用数控机床、线切割或其他加工方式做成与内腔表面接近的型面。待上壳体铺放完毕后,通过气囊充压,使得纤维和夹芯材料贴附在上模壳模腔内表面赋形。芯模外面硅橡胶的外面再覆盖真空袋,后续真空灌注之前抽真空需要。剪切腹板11和13的芯材可以是Balsa、PVC或其他硬质泡沫材料,并且在腹板的两侧都覆盖有纤维布,吸注成型后和芯材构成三明治结构,并且两侧的纤维布需要延伸到芯模的上下面上,即下壳体内蒙皮6和芯模18、19和20上。根据工艺需要,可以在叶片展向合适的位置处放置PVC泡沫或玻璃钢支撑块12,起到定位和支撑腹板的作用。 
第三步是铺放上壳体材料。如图1,接下来是在前缘段、中间段、尾缘段芯模18、19、20和剪切腹板11、13两侧超出的纤维铺层以及前尾缘超出 分模线的纤维铺层上面铺放上壳体内蒙皮7的纤维材料,和下壳体内蒙皮6的纤维铺放方式一样。然后在上壳体内蒙皮7上铺放Balsa木或PVC材料的夹芯材料8和14,玻纤或碳纤10(或者它们的预制品)。然后也类似外蒙皮1,铺放上壳体外蒙皮15,覆盖上壳体内蒙皮7、夹芯材料8、14和10。为了增加前尾缘的强度,外蒙皮和前缘、尾缘超出分模线部分的纤维可以交叉重叠铺放。 
第四步是上下壳体合模。上壳体阴模21脱模完脱模剂后,使用液压翻转系统放置在上壳体外蒙皮15的上面,通过模具桁架、翻模边等上的定位锁紧装置使得上下两面位置准确、配合精密的连接在一起。上下壳体同时都有加热系统,并能根据工艺过程的需要对温度能进行调控。 
第五步是真空灌注前的准备工作。这步分为两个部分,第一部分是抽真空。整个叶片的上下壳体型腔由纤维层2、4、6、7、10、15,夹芯材料3、5、8、11、13、14,注胶管路16和其他一些辅助材料组成,里面充满空气。将真空抽气系统(45、46、47)与型腔的密封空气系统相连,抽出型腔内部的空气。真空管道Ⅰ45与模具翻模边上的管道口相连,整个抽真空系统由控制阀Ⅰ46控制。纤维布和芯材随着柔性真空袋的延展而压紧再一起。17和22是模具翻模边上的密封材料,绕着模具一周对模具进行密封,以保证良好的真空度。如果想获得致密性更好的层合板,或者在发生真空泄露后无法找到漏点,可以根据需要在硅橡胶气囊内充入一定压力,使得纤维布贴合更加密实。也可以在树脂收集系统(23、24、25、26、27、28)的通气管路26上接上真空泵,打开控制阀Ⅷ24、控制阀Ⅸ25,对型腔进行辅助抽真空,抽真空完毕后,关闭控制阀Ⅸ25。 
第二部分是树脂的消泡处理。29、30、31、32、33、34、41、42是树脂消泡系统。先保证控制阀Ⅳ34、控制阀Ⅴ41及控制阀Ⅲ33处于关闭状态,然 后将树脂放入真空消泡箱28中,真空管道Ⅱ30接入抽真空系统,打开控制阀Ⅱ31进行抽真空消泡处理。 
第六步是一体化灌注成型。当完成前面几个步骤之后,就可以对分段叶片进行一体化灌注成型。开启阀门控制阀Ⅴ41、控制阀Ⅳ34、控制阀Ⅵ43、控制阀Ⅶ37,其中加压管路36接入加压设备。控制阀Ⅷ39一般处于关闭状态,供胶管路40在需要的时刻接入注胶管路16或其他备用注胶管路,接入后同时开启控制阀Ⅷ39。开启控制阀Ⅴ41、控制阀Ⅳ34的同时开启控制阀Ⅲ33,消泡箱29的树脂流入储胶罐38的同时,将储胶罐38的空气通过排气管路32排放出去。控制阀Ⅵ43可以调节主供胶管路44和注胶管路16中的树脂流量和流动速率。树脂经由注胶管路16上的孔洞、缝隙,芯材3、5、8和14上的切割缝,纤维布的纤维束之间的编织缝隙等,树脂的流动前锋逐渐到达叶片的各个部位。当流动前锋到达模具的尾缘时,树脂溢出进入流胶管路23,进入树脂收集器28中。当所有相关的树脂收集器管路中都有树脂流入时,关闭控制阀Ⅵ43,停止注胶。因为抽真空会持续整个固化过程,为了防止树脂过多被抽出,此时也应当关闭树脂收集系统的控制阀Ⅷ24。 
叶片灌注完成进行加热固化,达到规定要求的固化度后翻转模具进行起模。 
以上所述仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本实用新型的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本实用新型的范围之内。 

Claims (5)

1.一种风电叶片一体化成型装置,所述装置包括真空抽气系统、加压设备、树脂消泡系统、树脂供给系统及树脂收集系统,其特征在于: 
所述真空抽气系统包括真空泵(47)、真空管道Ⅰ(45)及位于所述真空管道Ⅰ(45)上的控制阀Ⅰ(46),所述真空管道Ⅰ(45)一端与真空泵(47)连接,另一端与所述风电叶片模具型腔的密封空气系统相连,用于灌注树脂前抽出所述型腔内部的空气,抽气时打开控制阀Ⅰ(46),抽气结束时关闭控制阀Ⅰ(46); 
所述树脂消泡系统包括真空消泡箱(29)、真空管道Ⅱ(30)、位于所述真空管道Ⅱ(30)上的控制阀Ⅱ(31)、排气管道(32)、位于所述排气管道(32)上的控制阀Ⅲ(33)、通气管道(35)、位于所述通气管道(35)上的控制阀Ⅳ(34)、流胶管路Ⅰ(42)、位于所述流胶管路(42)的控制阀Ⅴ(41),所述真空管道Ⅱ(30)、排气管道(32)设置于真空消泡箱(29)上部,所述通气管道(35)连通储胶罐(38)的上部和所述真空消泡箱(29)的上部,所述流胶管路(42)连通所述储胶罐(38)的底部和所述真空消泡箱(29)的底部; 
所述树脂供给系统包括所述储胶罐(38)、主供胶管路(44)、位于所述主供胶管路(44)的控制阀Ⅵ(43)、加压管路(36)、位于所述加压管路(36)的控制阀Ⅶ(37),所述主供胶管路44与所述风电叶片模具型腔中的注胶管路(16)连接,所述加压管路(36)与加压设备连接; 
所述树脂收集系统包括密封箱体(27)、位于密封箱体(27)中的树脂收集器(28)、回胶管路(23)、位于所述回胶管路(23)的控制阀Ⅷ(24)、通气管路(26)、位于所述通气管路(26)的控制阀Ⅸ(25),所述回胶管 路(23)一端通入树脂收集器(28),另一端与所述风电叶片模具尾缘处的回胶管道连接,所述通气管路(26)一端与密封箱体(27)连通,另一端与真空泵连接。 
2.根据权利要求1所述的一体化成型装置,其特征在于:所述真空管道Ⅰ(45)的另一端与位于所述风电叶片模具前缘翻模边上的管道口相连。 
3.根据权利要求1所述的一体化成型装置,其特征在于:所述真空消泡箱(29)布置于比所述储胶罐(38)高的位置。 
4.根据权利要求1所述的一体化成型装置,其特征在于:所述树脂供给系统还包括备用供胶管路(40)及位于所述备用供胶管路(40)的控制阀Ⅷ(39),所述备用供胶管路(40)在需要时与所述注胶管路(16)连接或与所述风电叶片模具型腔中的备用注胶管路连接,需要时开启控制阀Ⅷ(39),将储胶罐(38)中的树脂通过备用供胶管路(40)供给到所述风电叶片模具型腔中。 
5.根据权利要求1所述的一体化成型装置,其特征在于:当所述真空抽气系统进行真空抽气时,同时打开控制阀Ⅷ(24)、控制阀Ⅸ(25),所述通气管路(26)接通真空泵,对所述真空抽气系统进行辅助抽真空,抽真空完毕后,关闭控制阀Ⅸ(25)。 
CN 201220733928 2012-12-27 2012-12-27 一种风电叶片一体化成型装置 Expired - Fee Related CN203031963U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201220733928 CN203031963U (zh) 2012-12-27 2012-12-27 一种风电叶片一体化成型装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201220733928 CN203031963U (zh) 2012-12-27 2012-12-27 一种风电叶片一体化成型装置

Publications (1)

Publication Number Publication Date
CN203031963U true CN203031963U (zh) 2013-07-03

Family

ID=48684103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201220733928 Expired - Fee Related CN203031963U (zh) 2012-12-27 2012-12-27 一种风电叶片一体化成型装置

Country Status (1)

Country Link
CN (1) CN203031963U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103042701A (zh) * 2012-12-27 2013-04-17 中国科学院工程热物理研究所 一种风电叶片一体化成型装置及方法
CN106426985A (zh) * 2016-10-28 2017-02-22 河北大学 一种底部注入树脂的真空循环灌注装置及灌注方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103042701A (zh) * 2012-12-27 2013-04-17 中国科学院工程热物理研究所 一种风电叶片一体化成型装置及方法
CN103042701B (zh) * 2012-12-27 2015-06-24 中国科学院工程热物理研究所 一种风电叶片一体化成型装置及方法
CN106426985A (zh) * 2016-10-28 2017-02-22 河北大学 一种底部注入树脂的真空循环灌注装置及灌注方法

Similar Documents

Publication Publication Date Title
CN103042700B (zh) 一种分段叶片一体化成型方法及装置
CN103042701B (zh) 一种风电叶片一体化成型装置及方法
CN102814996B (zh) 大型风电叶片混杂复合材料翼梁的制备方法
CN101705922B (zh) 大型复合材料风电叶片及其制备方法
CN102817794B (zh) 可加长大型复合材料风电叶片
CN109203515B (zh) 一种风电叶片及其制造方法
CN100385114C (zh) 复合材料风力机叶片及其制备方法
CN101585238B (zh) 超大型复合材料构件整体成型工艺及成型系统
CN101462360A (zh) 大功率风力机叶片根端一次性真空辅助灌注成型方法
CN102416700A (zh) 垂直轴风力发电机叶片的生产制造工艺
CN101451492A (zh) 用于制造风力涡轮机构件的方法和装置
CN108005846B (zh) 大型风电叶片用主承力梁、混杂翼梁复合材料风电叶片及其制备方法
CN202088471U (zh) 一种风力发电机叶片rtm模具与其相应形状的叶片
CN102114710B (zh) 一种制备大型复合材料风力发电机叶片的方法
CN101905538A (zh) 兆瓦级风轮叶片整体制作工艺
CN103921457A (zh) 一种采用拉挤工艺制造的单向片材制造风机叶片主梁或辅梁的方法
CN109109341B (zh) 一种风电叶片的制备方法
WO2010136432A1 (en) A method of manufacturing a composite structure with prefabricated reinforcement element
CN101695871A (zh) 一种大型风力叶片及其制作工艺
CN103153592A (zh) 制造长形复合结构的方法
CN102514205B (zh) 一种复合材料风电叶片根部成型方法
CN110884167B (zh) 一种风力发电叶片聚氨酯树脂灌注结构及成型方法
CN104552994B (zh) Z-pin增强复合材料风电叶片及其制造方法
CN109203516B (zh) 一种风电叶片的制造方法
CN109571991A (zh) 采用不同材料制备风电叶片主梁的方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130703

Termination date: 20201227