CN202993383U - 溶液式恒温除湿机 - Google Patents

溶液式恒温除湿机 Download PDF

Info

Publication number
CN202993383U
CN202993383U CN 201220690321 CN201220690321U CN202993383U CN 202993383 U CN202993383 U CN 202993383U CN 201220690321 CN201220690321 CN 201220690321 CN 201220690321 U CN201220690321 U CN 201220690321U CN 202993383 U CN202993383 U CN 202993383U
Authority
CN
China
Prior art keywords
solution
dew point
indirect evaporative
temperature
point indirect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN 201220690321
Other languages
English (en)
Inventor
黄华铃
何华明
尹进福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AOLAN (FUJIAN) INDUSTRY Co Ltd
Original Assignee
AOLAN (FUJIAN) INDUSTRY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AOLAN (FUJIAN) INDUSTRY Co Ltd filed Critical AOLAN (FUJIAN) INDUSTRY Co Ltd
Priority to CN 201220690321 priority Critical patent/CN202993383U/zh
Application granted granted Critical
Publication of CN202993383U publication Critical patent/CN202993383U/zh
Anticipated expiration legal-status Critical
Withdrawn - After Issue legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Gases (AREA)

Abstract

本实用新型公开了溶液式恒温除湿机,其包括两组除湿器、露点间接蒸发冷却器、直接蒸发器和制冷系统,两组除湿器均与露点间接蒸发冷却器的输入端连接,露点间接蒸发冷却器与直接蒸发器的输入端连接,直接蒸发器还分别与两组除湿器连接;露点间接蒸发冷却器还与制冷系统连接。本实用新型采用室外低温的空气作为冷源,通过除湿处理后与回风进行热交换,设备耗电量大大降低,且冷源来源丰富;还利用制冷系统的废热对除湿溶液进行再生,即节能又环保。本实用新型的控制方法中,采用露点间接蒸发冷却技术,对吸入的室外低温空气进一步降温;采用直接蒸发器回收吸入的室外低温空气的低温能量;采用热气旁通技术防止除湿溶液过分蒸发。

Description

溶液式恒温除湿机
技术领域
本实用新型涉及制冷设备领域,尤其涉及溶液式恒温除湿机。
背景技术
传统的恒温恒湿机,一般都是用制冷系统对室内空气进行降温除湿,再利用电加热或热水或蒸汽热源再热恒温,恒湿则是利用蒸汽加湿器进行等温加湿。这样的设备非常耗电,对用户来说不经济实用,且无法利用免费的室外低温空气能作为冷源。 
目前,溶液除湿空调系统得到广泛的关注。利用溶液对空气进行处理,可以在较高的温度下对空气除湿,避免产生凝结水,提高了空气处理品质。溶液除湿空调系统实现了空气温湿度独立处理,与传统的空调系统相比,具有较大的优势。目前市面上的溶液除湿空调系统一般都设有专门的溶液再生器,需要专门的加热器对除湿液体进行加热再生,无法应用制冷系统的废热对除湿液体进行加热再生。
发明内容
本实用新型的目的是提供一种结构简单,节能又环保的溶液式恒温除湿机。
为实现上述目的,本实用新型溶液式恒温除湿机,其包括两组除湿器、露点间接蒸发冷却器、直接蒸发器和制冷系统,两组除湿器的输出端均与露点间接蒸发冷却器的输入端连接,露点间接蒸发冷却器一输出端与直接蒸发器的输入端连接,直接蒸发器还分别与两组除湿器连接;露点间接蒸发冷却器另一输出端与制冷系统连接。
本实用新型所述的溶液式恒温除湿机,其还包括除湿液体再生段,除湿液体再生段包括除湿液体再生器和热量平衡器,除湿液体再生器和热量平衡器分别与制冷系统连接。
所述制冷系统包括压缩机、膨胀阀、表冷器和冷凝器,压缩机的输出端与冷凝器的输入端连接,冷凝器的输出端与膨胀阀的输入端连接,膨胀阀的输出端与表冷器的输入端连接,表冷器的输出端与压缩机连接,形成循环回路;除湿液体再生器与冷凝器的换热管形成循环回路,压缩机另一输出端与热量平衡器输入端连接,热量平衡器的输出端与膨胀阀另一输入端连接。
所述露点间接蒸发冷却器另一输出端与制冷系统中的表冷器的另一输入端连接。
本实用新型中,所述溶液式恒温除湿机的控制方法包括以下步骤:
1)一组除湿器吸入室外低温空气,并由其内的除湿液体对吸入的室外低温空气进行除湿和进一步降温,然后将除湿降温的室外低温空气送入露点间接蒸发冷却器中;
2)露点间接蒸发冷却器采用露点蒸发冷却技术对步骤1)除湿降温的室外低温空气进行再次降温;
3)另一组除湿器由其内的除湿液体对回风进行除湿,然后再送入露点间接蒸发冷却器中;
4)步骤2)再次降温的室外低温空气在露点间接蒸发冷却器中与步骤3)除湿的回风进行显热交换,从而降低回风温度,将降低温度的回风送入制冷系统中,将温度升高的室外低温空气送入直接蒸发器中;
5)回风与表冷器中的低压低温工质液体热交换后,进一步冷却,然后再送入空调房间内;
6)步骤4)温度升高的室外低温空气与直接蒸发器中冷却水进行热交换,降低冷却水的温度,室外低温空气温度继续升高后排出直接蒸发器;
7)直接蒸发器中降温的冷却水分别与两组除湿器中的除湿溶液进行热交换,降低除湿液体的温度,维持除湿液体温度的稳定。
本实用新型步骤1)中,除湿器吸入室外低温空气,并对吸入的室外低温空气进行除湿,使吸入的室外低温空气露点温度进一步降低,并得到初步净化、杀菌。
步骤5)中,采用表冷器进一步冷却回风,使回风的温度能得到独立的控制。
步骤6)中,采用直接蒸发器回收吸入的室外低温空气中的低温能量。
步骤7)中,除湿溶液在对吸入的室外低温空气和回风进行除湿后,与直接蒸发器中的冷却水进行热交换,从而维持除湿溶液温度的稳定。
本实用新型所述的溶液式恒温除湿机的控制方法,还包括除湿器内的除湿液体再生步骤,具体为:
将除湿器内稀释的除湿溶液先通入除湿液体再生器中,压缩机将压缩的高温高压的工质气体通入冷凝器中,除湿液体再生器将除湿液体通入冷凝器的换热管中与高温高压的工质气体进行热交换,热交换后,高温高压的工质气体转成高温低压的工质气体,除湿液体中多余的水分蒸发,除湿液体完成再生过程,回到除湿液体再生器,再通过管路将除湿液体送回除湿器内继续使用;同时,除湿液体再生器中吸入新风,将除湿液体蒸发的水分带走;高温低压的工质气体由管道送入膨胀阀中,经膨胀阀节流转为低温低压的工质液体,并送入表冷器中,表冷器中低温低压的工质液体与回风进行热交换后转为低温低压的工质气体,该低温低压的工质气体通过管路回到压缩机中。
所述除湿液体再生步骤中,当高温高压的工质气体在除湿液体再生器中与除湿液体过度热交换,除湿液体过分蒸发导致流量不足或结晶时,打开热量平衡器,压缩机将部分的高温高压的工质气体通入热量平衡器中,热量平衡器再将高温高压的工质气体冷却成高温低压的工质气体送入膨胀阀中;同时吸入的新风将除湿液体蒸发的水分带走,然后再对热量平衡器进行冷却,最后排出。利用热量平衡器的热气旁通技术,能对除湿溶液在除湿和再生过程中,因能力的差异导致的浓度变化进行平衡,防止除湿溶液因水分过度蒸发导致的流量不足或结晶。
本实用新型中,采用室外低温的空气作为冷源,通过除湿处理后与回风进行热交换,处理过程设备耗电量大大降低,且冷源来源丰富;还利用制冷系统的废热对除湿溶液进行再生,即节能又环保。在本实用新型的控制方法中,采用露点间接蒸发冷却技术,对吸入的室外低温空气进一步降温;还采用直接蒸发器回收吸入的室外低温空气的低温能量;采用热气旁通技术,防止除湿溶液过分蒸发。这些技术的使用,在极其节能的情况下实现回风的除湿处理和对除湿溶液的再生处理。
附图说明
下面结合附图和具体实施方式对本实用新型作进一步详细的说明:
图1为本实用新型溶液式恒温除湿机的结构示意图。
具体实施方式
下面结合具体实施方式对本实用新型作进一步详细的说明:
如图1所示,本实用新型溶液式恒温除湿机,其包括两组除湿器1、2、露点间接蒸发冷却器3、直接蒸发器4和制冷系统5,两组除湿器1、2的输出端均与露点间接蒸发冷却器3的输入端连接,露点间接蒸发冷却器3一输出端与直接蒸发器4的输入端连接,直接蒸发器4还分别与两组除湿器1、2连接;露点间接蒸发冷却器3另一输出端与制冷系统5连接。
本实用新型采用两组除湿器1、2分别对吸入的室外低温空气和回风进行除湿,吸入的室外低温空气和回风在露点间接蒸发冷却器3中进行热交换,降温后的回风进入制冷系统5进一步冷却后排入空调房间;吸入的室外低温空气在热交换后进入直接蒸发器4与直接蒸发器4中的冷却水进行热交换,然后再排出。直接蒸发器4中的冷却水经热交换后降温,并对两组除湿器1、2中的除湿液体降温,保持除湿溶液温度的稳定。
本实用新型所述的溶液式恒温除湿机,其还包括除湿液体再生段,除湿液体再生段包括除湿液体再生器6和热量平衡器7,除湿液体再生器6和热量平衡器7分别与制冷系统5连接。
所述制冷系统5包括压缩机51、膨胀阀52、表冷器53和冷凝器54,压缩机51的输出端与冷凝器54的输入端连接,冷凝器54的输出端与膨胀阀52的输入端连接,膨胀阀52的输出端与表冷器53的输入端连接,表冷器53的输出端与压缩机51连接,形成循环回路;除湿液体再生器6与冷凝器54的换热管输入端连接,压缩机51另一输出端与热量平衡器7输入端连接,热量平衡器7的输出端与膨胀阀52另一输入端连接。
所述露点间接蒸发冷却器3另一输出端与制冷系统5中的表冷器53的另一输入端连接。
本实用新型中,所述溶液式恒温除湿机的控制方法包括以下步骤:
1)一组除湿器1吸入室外低温空气,并由其内的除湿液体对吸入的室外低温空气进行除湿和进一步降温,然后将除湿降温的室外低温空气送入露点间接蒸发冷却器3中;
2)露点间接蒸发冷却器3采用露点蒸发冷却技术对步骤1)除湿降温的室外低温空气进行再次降温;
3)另一组除湿器2由其内的除湿液体对回风进行除湿,然后再送入露点间接蒸发冷却器3中;
4)步骤2)再次降温的室外低温空气在露点间接蒸发冷却器3中与步骤3)除湿的回风进行显热交换,从而降低回风温度,将降低温度的回风送入制冷系统5的表冷器53中,将温度升高的室外低温空气送入直接蒸发器4中;
5)回风与表冷器53中的低压低温工质液体热交换后,进一步冷却,然后再送入空调房间内;
6)步骤4)温度升高的室外低温空气与直接蒸发器4中冷却水进行热交换,降低冷却水的温度,室外低温空气温度继续升高后排出直接蒸发器4;
7)直接蒸发器4中降温的冷却水分别与两组除湿器1、2中的除湿溶液进行热交换,降低除湿液体的温度,维持除湿液体温度的稳定。
本实用新型所述的溶液式恒温除湿机的控制方法,还包括除湿器内的除湿液体再生步骤,具体为:
将除湿器1、2内稀释的除湿溶液先通入除湿液体再生器6中,压缩机51将压缩的高温高压的工质气体通入冷凝器54中,除湿液体再生器6将除湿液体通入冷凝器54的换热管中与高温高压的工质气体进行热交换,热交换后,高温高压的工质气体转成高温低压的工质气体,除湿液体中多余的水分蒸发,除湿液体完成再生过程,回到除湿液体再生器6,再通过管路将除湿液体送回除湿器1、2内继续使用;同时,除湿液体再生器6中吸入新风,将除湿液体蒸发的水分带走;高温低压的工质气体由管道送入膨胀阀52中,经膨胀阀52节流转为低温低压的工质液体,并送入表冷器53中,表冷器53中低温低压的工质液体与回风进行热交换后转为低温低压的工质气体,该低温低压的工质气体通过管路回到压缩机51中。
所述除湿液体再生步骤中,当高温高压的工质气体在除湿液体再生器6中与除湿液体过度热交换,除湿液体过分蒸发导致流量不足或结晶时,打开热量平衡器7,压缩机51将部分的高温高压的工质气体通入热量平衡器7中,热量平衡器7再将高温高压的工质气体冷却成高温低压的工质气体送入膨胀阀52中;同时吸入的新风将除湿液体蒸发的水分带走,然后再对热量平衡器7进行冷却,最后排出。利用热量平衡器7的热气旁通技术,能对除湿溶液在除湿和再生过程中,因能力的差异导致的浓度变化进行平衡,防止除湿溶液因水分过度蒸发导致的流量不足或结晶。

Claims (4)

1.溶液式恒温除湿机,其特征在于:其包括两组除湿器、露点间接蒸发冷却器、直接蒸发器和制冷系统,两组除湿器的输出端均与露点间接蒸发冷却器的输入端连接,露点间接蒸发冷却器一输出端与直接蒸发器的输入端连接,直接蒸发器还分别与两组除湿器连接;露点间接蒸发冷却器另一输出端与制冷系统连接。
2.根据权利要求1所述的溶液式恒温除湿机,其特征在于:其还包括除湿液体再生段,除湿液体再生段包括除湿液体再生器和热量平衡器,除湿液体再生器和热量平衡器分别与制冷系统连接。
3.根据权利要求2所述的溶液式恒温除湿机,其特征在于:所述制冷系统包括压缩机、膨胀阀、表冷器和冷凝器,压缩机的输出端与冷凝器的输入端连接,冷凝器的输出端与膨胀阀的输入端连接,膨胀阀的输出端与表冷器的输入端连接,表冷器的输出端与压缩机连接,形成循环回路;除湿液体再生器与冷凝器的换热管形成循环回路,压缩机另一输出端与热量平衡器输入端连接,热量平衡器的输出端与膨胀阀另一输入端连接。
4.根据权利要求3所述的溶液式恒温除湿机,其特征在于:所述露点间接蒸发冷却器另一输出端与制冷系统中的表冷器的另一输入端连接。
CN 201220690321 2012-12-13 2012-12-13 溶液式恒温除湿机 Withdrawn - After Issue CN202993383U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201220690321 CN202993383U (zh) 2012-12-13 2012-12-13 溶液式恒温除湿机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201220690321 CN202993383U (zh) 2012-12-13 2012-12-13 溶液式恒温除湿机

Publications (1)

Publication Number Publication Date
CN202993383U true CN202993383U (zh) 2013-06-12

Family

ID=48564559

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201220690321 Withdrawn - After Issue CN202993383U (zh) 2012-12-13 2012-12-13 溶液式恒温除湿机

Country Status (1)

Country Link
CN (1) CN202993383U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102997343A (zh) * 2012-12-13 2013-03-27 澳蓝(福建)实业有限公司 溶液式恒温除湿机及其控制方法
CN103791592A (zh) * 2014-02-25 2014-05-14 上海理工大学 用于温湿独立控制系统的降温除湿方法
CN107019925A (zh) * 2017-03-02 2017-08-08 南京航空航天大学 闭式溶液循环零排放蒸发浓缩系统及其方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102997343A (zh) * 2012-12-13 2013-03-27 澳蓝(福建)实业有限公司 溶液式恒温除湿机及其控制方法
CN102997343B (zh) * 2012-12-13 2015-07-15 澳蓝(福建)实业有限公司 溶液式恒温除湿机及其控制方法
CN103791592A (zh) * 2014-02-25 2014-05-14 上海理工大学 用于温湿独立控制系统的降温除湿方法
CN103791592B (zh) * 2014-02-25 2016-04-13 上海理工大学 用于温湿独立控制系统的降温除湿方法
CN107019925A (zh) * 2017-03-02 2017-08-08 南京航空航天大学 闭式溶液循环零排放蒸发浓缩系统及其方法

Similar Documents

Publication Publication Date Title
CN103075770B (zh) 一种利用室内排风蒸发冷却的转轮除湿装置及其使用方法
CN100552311C (zh) 节能型空调除湿系统
CN206469445U (zh) 一种全新风大焓差型冷凝热回收空调机组
CN103256666A (zh) 一种含有热管换热器的独立新风系统及其工作方法
CN102506475A (zh) 冷凝废热驱动的基于固体除湿的热湿独立控制的热泵系统
CN201368542Y (zh) 热管式新风除湿机
CN101216225A (zh) 一种双温冷水/冷风机组
CN201047646Y (zh) 一种热湿分别处理的空调机组
CN107246681A (zh) 一种外接冷源的小型户式溶液调湿新风机组
CN102538087A (zh) 带全热回收装置的溶液调湿全空气机组及溶液调湿方法
CN202452608U (zh) 带全热回收装置的溶液调湿全空气机组
CN101122406B (zh) 热湿分别处理的小型中央空调机组
CN106766355B (zh) 一种温湿度独立控制空调系统
CN201858724U (zh) 全新风热泵型屋顶式空调机
CN201255472Y (zh) 蓄能型空调除湿系统
CN110513905B (zh) 一种基于开式吸收循环的冷热联供系统
CN106322810B (zh) 基于调湿与蒸发冷却的无霜空气源热泵系统
CN202993383U (zh) 溶液式恒温除湿机
CN104676760A (zh) 一种无露点控制的空调系统
CN102997343B (zh) 溶液式恒温除湿机及其控制方法
CN206269310U (zh) 能量回收型双冷源大焓差蓄能新风机组
Wang et al. Brief introduction of dehumidification technology and research progress
CN201764648U (zh) 一种恒温恒湿机
CN116336795A (zh) 一种通过双压缩系统实现内部能量转移的节能除湿方法
CN201255476Y (zh) 空调除湿系统氯化锂转轮吸附剂的再生热源装置

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20130612

Effective date of abandoning: 20150715

RGAV Abandon patent right to avoid regrant